
Documentation of class ScaleSpaceStudies

Methods

• main:
The main method allows to set

– the parameters of the phantom, which determine the type and the size of the phantom.
There are five possible types of phantom (see Figure 1):
∗ custom phantom of geometric shapes
∗ Shepp-Logan phantom
∗ uniform circle phantom
∗ ring phantom
∗ "dartboard" phantom with nine rings

– the parameters of the Gaussian / Laplacian of Gaussian, which determine the kernel
size and the values for the Gaussian width σ

– whether the Gaussian, Laplacian or the Laplacian of Gaussian is used. More-
over, it is possible to compare the Laplacian of Gaussian referred to the method
laplacianOfGaussian (see below) with the successive application of filtering an
image with the Gaussian and then with the Laplacian.

At first, the phantom is created according to the set parameters. By default, the Shepp-
Logan phantom is taken. A fan-beam projector creates a projection image, i. e. a
sinogram, from the phantom. This sinogram is convolved with either the Laplacian or the
Gaussian respectively the Laplacian of Gaussian for the different values of σ. By default,
the convolution with the Laplacian of Gaussian is executed. The resulting sinogram is
corrected using a Ram-Lak filter and a cosine filter for every row of the sinogram, before
the fan beam backprojector creates the back-projected image out of it. At last, an image
displaying the difference between the phantom and the reconstruction is computed in case
of the Gaussian. For the comparison of the Laplacian of Gaussian with the successive
application of a gaussian and a laplacian filter, the difference between both reconstructions
is additionally shown in an image.

• ScaleSpaceStudies:
The constructor creates the custom phantom. It consists of

– a big circle slightly shifted from the center to the lower right with the intensity 1.0
– a small circle slightly shifted from the center to the upper left with the intensity 1.5
– an ellipse in the upper left with the intensity 0.9
– a rectangle in the lower left with the intensity 1.5

The intensity in the area, where the big circle and the rectangle intersect, is the sum of
both intensities of the circle and the rectangle, i. e. 2.5 (see Figure 1(a)).

• phantomDartboard:
This method of type Grid2D creates a phantom that looks like a dartboard with nine
rings by adding up circles with different radii. The given radius r (input of type double)
defines the radius of the outermost circle. The radii of the other circles depend irregularly
on r, so that some rings are wider or smaller than others (see Figure 1(e)).
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(a) Custom phantom (b) Shepp-Logan phantom (c) Uniform circle phantom

(d) Ring phantom (e) "Dartboard" phantom with
nine rings

Figure 1: Possible types of phantom

• gaussianSinogram:
This method returns a sinogram of type Grid2D which results out of the convolution of a
given sinogram (input of type Grid2D) with the Gaussian function for a given σ (input of
type double). Therefore, the sinogram is splitted into single rows which are transformed in
the Fourier space to multiply them by the Fourier transform of the Gaussian distribution
e− 1

2σ
2ω2 . Finally, the resulted rows are transformed back using an inverse Fourier transform

and copied back into the output sinogram.

• laplacianOfGaussianSinogram:
Using this method of type Grid2D, the convolution of a given sinogram (input of type
Grid2D) with the Laplacian of Gaussian for a given σ (input of type double) is computed.
Therefore, the input sinogram is splitted into single rows which are convolved with the
Laplacian of Gaussian using the method convolutionLoG (see below) which additionally
needs the kernel size (type int) as input. Finally, the computed rows are copied back into
the output sinogram.

• convolutionLoG:
This method of type Grid1D computes the convolution of a signal (input of type Grid1D)
with the Laplacian of Gaussian for a given σ (input of type double) and a given kernel
size (input of type int). The result has the same size as the input signal. Successively, for
each element n of the input signal a kernel window with the lower bound kmin and the
upper bound kmax is determined. These bounds ensure that only values within the signal
are taken into account, i. e. they prevent an out-of-bound-exception. For better results,
the signal is converted to a higher sampling rate v (upsampling).
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The value at position n of the convolved result is gained by the successive addition of all
values given by the multiplication of the interpolated signal values and the values from
the Laplacian of Gaussian kernel. Corresponding values are given for k ∈ [kmin; kmax] for
the signal at (1− u) · signal(k) + u · signal(k+ 1) and the kernel at n− v, where v = k+ u
and u is the sampling step.

• laplacianOfGaussian:
Use this method of type double to calculate the second derivative of the Gaussian
distribution at a given position x (input index of type int) and for a given σ (input of
type double) according to

LoG(x) = − 1
σ3
√

2π
·
(

1− x2

σ2

)
· exp

(
− x2

2σ2

)
.

Results
Figure 2 shows the custom phantom of geometric shapes (left hand side) and the corresponding
sinogram (right hand side). Figure 3 to Figure 6 show the sinograms of the own created phantom
achieved from the convolution with the Laplacian of Gaussian and the resulted back-projected
images for increasing values of σ ∈ {0.1, 1.0, 3.0, 5.0}. Figure 7 shows the "dartboard" phantom
(left hand side) and the corresponding sinogram (right hand side). Figure 8 shows the sinogram
and the resulted back-projected image for the convolution with the Laplacian filter. Figure 9
to Figure 12 show the sinograms of the "dartboard" phantom achieved from the convolution
with the Laplacian of Gaussian and the resulted back-projected images for increasing values of
σ ∈ {0.1, 1.0, 3.0, 5.0}. Comparing Figure 8 with Figure 9, it can be seen, that the Laplacian
and the Laplacian of Gaussian are almost the same for small values of σ. Nevertheless, Figure 9
looks a bit more uniform due to the smoothing effect of σ in the Laplacian of Gaussian. In
general, the Laplacian of Gaussian highlights the edges with a bright and a dark line along the
edges. Small values of σ lead to images with sharp edges and therefore to a representation of
the edge structure (see Figure 3 and Figure 9). With increasing values of σ, the edges expand.
Small objects, like the circle in the upper left in the custom phantom, vanish (see Figure 6).
Especially Figure 11 shows, that large values result in the illustration of the transitions. Bigger
regions with intensity modification are pointed out.
Figure 13 to Figure 16 show the comparison for increasing values of σ ∈ {0.1, 1.0, 3.0, 5.0} of the
Laplacian of Gaussian referred to the method laplacianOfGaussian (left hand side) with the
successive application of filtering the sinogram with the Gaussian and then with the Laplacian
before the back-projection (right hand side). Underneath, a plot shows the gray values of a
straight line through the middle of the difference image of both reconstructions. The dominant
peaks appear at the edges. The higher the value of σ is, the smoother the difference image is
and the smaller the peaks are.
Figure 17 to Figure 20 show the sinograms achieved from the convolution with the Gaussian, the
resulted back-projected images and the differences between the phantom and the back-projected
images for increasing values of σ ∈ {0.1, 1.0, 3.0, 5.0}. The Gaussian blurs the edges and with
increasing values of σ, the different objects with different intensities merge into one single object
with one intensity. The convolution with a Gaussian containing a very small σ subtracted from
the phantom results in an image with very distinct edges (see Figure 17, rightmost image).
The experiments show, that filtering the projections (sinograms) with the Laplacian of Gaussian
provides a result which is similar to what is expected when applying filtering of the reconstructions.
An advantage of the former method is that computation of the scale-space features is performed
in 1D.
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Figure 2: Custom phantom and resulting sinogram

Figure 3: Sinogram and back-projected image for Laplacian of Gaussian with σ = 0.1

Figure 4: Sinogram and back-projected image for Laplacian of Gaussian with σ = 1.0
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Figure 5: Sinogram and back-projected image for Laplacian of Gaussian with σ = 3.0

Figure 6: Sinogram and back-projected image for Laplacian of Gaussian with σ = 5.0

Figure 7: "Dartboard" phantom and resulting sinogram
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Figure 8: Sinogram and back-projected image for Laplacian

Figure 9: Sinogram and back-projected image for Laplacian of Gaussian with σ = 0.1

Figure 10: Sinogram and back-projected image for Laplacian of Gaussian with σ = 1.0
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Figure 11: Sinogram and back-projected image for Laplacian of Gaussian with σ = 3.0

Figure 12: Sinogram and back-projected image for Laplacian of Gaussian with σ = 5.0
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Figure 13: back-projected image for Laplacian of Gaussian (left) and for successive filtering
with Gaussian and Laplacian (right) for σ = 0.1 and resulting plot of the centric line of the
difference image
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Figure 14: back-projected image for Laplacian of Gaussian (left) and for successive filtering
with Gaussian and Laplacian (right) for σ = 1.0 and resulting plot of the centric line of the
difference image
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Figure 15: back-projected image for Laplacian of Gaussian (left) and for successive filtering
with Gaussian and Laplacian (right) for σ = 3.0 and resulting plot of the centric line of the
difference image
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Figure 16: back-projected image for Laplacian of Gaussian (left) and for successive filtering
with Gaussian and Laplacian (right) for σ = 5.0 and resulting plot of the centric line of the
difference image

Figure 17: Sinogram, back-projected image and difference between the phantom and the
back-projected image for Gaussian with σ = 0.1
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Figure 18: Sinogram, back-projected image and difference between the phantom and the
back-projected image for Gaussian with σ = 1.0

Figure 19: Sinogram, back-projected image and difference between the phantom and the
back-projected image for Gaussian with σ = 3.0

Figure 20: Sinogram, back-projected image and difference between the phantom and the
back-projected image for Gaussian with σ = 5.0
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