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Abstract. In biomedical signal acquisition like electrocardiography ECG
or electroencephalography EEC one of the main problems is to separate
the small input signals from noise and disturbances caused by the 50 Hz
power supplies, high frequency interference and random body voltages.
Different types of analogue and digital filters are used to remove the un-
wanted spectral parts. In most applications the filter bandwidth of those
filtes are fixed and will not adapt to changing interference patterns.
Adaptive filter techniques are required to overcome this problem. Differ-
ent adaptive filter types have been analyzed. Finite Impulse Response
(FIR) filters are prefered because of their better stability. An adaptive
filter was implemented which suppresses known noise sources in an ECG
application. Simulations were done with MATLAB and VHDL. The fil-
ter was coded in VHDL and tested on a FPGA.
A 50 Hz interference on the ECG input signal was attenuated by 50 dB.
The convergence time for the adaptive algorithm was less than 3 sec.
The filter implementation needed 9500 equivalent gates and worked with
7.1 µW for a filter clock speed of 1.8 kHz.

1 Introduction

In many applications for biomedical signal-processing the information-bearing
signals are superposed by further components. Thus signals get distorted and
the extraction of information is complicated. In electrocardiography interferences
may have a technical source, for example a power supply unit, or a biological
source, for example respiration.
Commonly frequency-selective filters with fixed coefficients are used to suppress
a specific frequency range of a signal. If the frequency spectrum of signal and
interference overlap or the characteristic of the interference is time dependent or
not exactly known, filters with fixed coefficients can hardly meet the demands.
Often the filter’s transfer behavior can’t be specified sufficiently exact or those
spectrals of the ECG which fall in the filter’s cut-off region get lost[1], [2].
These difficulties can be handled using an adaptive filter, a system with variable
instead of fixed coefficients. This is a time-variant systems which is able to adapt
its coefficients to the environment during operation. In contrast to frequency-
selective filters adaptive systems enable direct gripping of the eliminated signal.
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If it is not exclusively an unwanted signal, the included information can be pro-
cessed where required.
The 50 Hz power line hum resulting from power supply units is commonly elim-
inated from the ECG by using notchfilters. In this paper an alternative in the
form of an adaptive filter is presented.

2 Methods

The concept of interference cancellation with adaptive filters is shown in Fig. 1.
Starting point is a mixture of signals d[n] consisting of the information-bearing
EGC signal ekg[n] and an interfering component noise[n]. Having a reference sig-
nal which is correlated with noise[n] and uncorrelated with ekg[n], it is possible
to eliminate the interference using an adaptive filter. In order to suppress the 50
Hz power line hum, the reference signal x[n] is gripped at the power supply. It
has the same frequency, but different amplitude and phase compared to noise[n].
Unlike using frequency-selective filters the adaptive filter is applied to x[n] in-
stead of the primary input d[n]. The filter output y[n] is an estimate of noise[n].
Subtracting this from the underlying signal d[n] we get the dejamed signal e[n],
an estimate of ekg[n].
Adaptive filters are preferably designed as FIR filters known for their good sta-
bility properties and simple cost function.

Fig. 1. Concept of interference cancellation

In order to minimize the power of e[n] different cost functions as functions
of the filter coefficients are possible. One is the MSE3-criterion that leads to the
following optimization problem:

J = E{e2[n]} = (d[n]− y[n])2 → min .

For a filter with filter order N this results in a quadratic cost-function with a
global minimum. R is the autocorrelation matrix according to x[n] and p is the
3 Minimum square error
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crosscorrelation-vector between x[n] and d[n].

J = E{e2[n]} = E{d2[n]} − 2wT p + wT Rw .

with
w = (w0, w1, . . . , wN−1)T : filtercoefficients

There are several algorithms to solve the minimization problem. Due to the sim-
ple implementation the LMS4-algorithm was considered. It is derived from the
gradient-method by using stochastic instead of exact gradients.
For each iteration step the filtercoefficients for the next step w(n + 1) are com-
puted the following:

w(n + 1) = w(n) + µe[n]x(n) .

In order to guarantee convergence for the LMS-algorithm, µ has to be adapted
to the maximal amplitude of the reference signal (ma(x)). An upper bound can
be defined:

µmax =
2

3N ·ma(x)2
.

The LMS-algorithm does not converge to the exact solution but to a sufficient
good approximation. As a measure for the deviation between approximation and
exact solution the so called misadjustment M is introduced. It depends on the
average power of the reference signal (power(x)) and the stepsize µ. In order to
achieve a small misadjustment a small stepsize is required.

M =
µ

2
·N · power(x) .

But a small stepsize leads to a large convergence time. The convergence time τ
can be expressed like the following where α is the applied stepsize normalized to
the maximum possible µmax. λmax is the largest, λmin the smallest eigenvalue
of R.

τ ≈ 1
4α

κ(R) .

with

κ(R) =
λmax

λmin
conditon number

So the speed of convergence also depends on the condition number of R and
therefore on the character of the reference input x[n]. The LMS-algorithm shows

4 Least Mean Square
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slow convergence for signals with non-smooth and fast convergence for signals
with uniformly distributed spectrum.
Among suiting the parameters N and µ to the problem, several optimization
strategies can be applied in order to improve the behaviour of the LMS-algorithm.
Different strategies lead to different filter types. Normalization of the stepsize µ
according to signal power in each step or reducing κ(R) via orthogonal trans-
forms are just a selection of possiblities. Above all the hardware complexity has
to be considered.
The 50 Hz power line interference noise(t) only has a frequency component at
50 Hz and is asumed to be a sine. It can be expressed as follows:

noise(t) = ansin(ωt + ϕ)
= an(sin(ωt)cos(ϕ) + cos(ωt)sin(ϕ))
= ancos(ϕ) · sin(ωt) + ansin(ϕ) · sin(ωt + ∆)
= w0sin(ωt) + w1sin(ωt + ∆)

According to this the filter order has been set to N = 2. Because of the small fil-
ter order the LMS-filter was designed without one of the mentioned optimization
strategies. Both for d[n] and the outputs y[n] and e[n] a 16-bit-representation is
used, whereas for x[n] a 8-bit-representation is required.
First simulations of the filter behaviour were done with MATLAB. At this stage
the influence of µ on the signal qualtity of e[n] and y[n] was established. After
choosing µ the filter was coded in VHDL and simulated with Modelsim on differ-
ent levels of abstraction. To monitor quantisation effects the MATLAB-filter was
used as a reference-model for the VHDL-models in each level. Using a simulation
environment developed for this application, both models were simulated parallel
and results were compared. Finally the filter was tested on a FPGA with ECG
signals.

3 Results

The ECG of an healthy adult has a fundamental frequency from about 60 bpm5

up to 80 bpm. For certain disease patterns fundamental frequencies down to 20
bpm occure. At physical stress frequencies up to 200 bpm are observed [4]. The
adaptive filter was tested for ECG signals with different fundamental frequencies.
For frequencies up to 160 bpm good results were achieved, whereas the signal
quality is downgrading for higher frequencies. Furthermore the filter was applied
to ECGs with a power line interference of different frequencies. For interfering
frequencies from 30 Hz to 100 Hz the filter turned out to be well suitable. The
influence of the amplitude of the superposed signal was also studied. Interfering
components with amplitudes from 0,05% to 100% relating to the maximum ECG
amplitude can be extracted. Depending on the amplitude of the superposed sig-
nal, the interference was damped by 4 dB up to 50 dB. Convergence time of the
5 beats per minute
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adaptive algorithm is less than 3 sec.
For a VIRTEX E FPGA [3] from Xilinx the filter realisation needs 9500 equiva-
lent gates and the calculated power loss is 7.1 µW . Using a sampling frequency
of 256 Hz for the ECG the filter clock speed is 1.8 kHz.

Fig. 2. ECG before filtering Fig. 3. ECG after filtering

4 Conclusions

Commonly notchfilters with fixed coefficients are used to supress the 50Hz power-
line interference in ECG signals. The alternative introduced in this paper has
the advantage of better flexibility compared to frequency-selective filters. The
disturbance is also eliminated if its frequency is shifted. One disadvantage of the
developed adaptive filter are worse results with increasing ECG’s fundamental
frequency. The degradation of signal quality is noticeable from a fundamental
frequency of 160 bpm. Before applying the designed adaptive filter to higher fre-
quencies occuring in stress ECG the design would have to be adjusted. Further-
more unlike frequency-selective filters adaptive systems need a proper reference
signal for the interference. But this also opens an interesting method to search
for a known signal in distorted or superposed signals.
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