Python Reconstruction Operators in Neural Networks

PYRO-NN
PYRO-NN

• Geometries
• Trajectories
• Filters
• Layers
Base-Geometry Properties

Volume
- The volume size in [Z, Y, X] order
- The spacing between voxels in [Z, Y, X] order.
- Volume center is world coordinate origin

Detector
- Shape of the detector in [Y, X] order.
- The spacing between detector voxels in [Y, X] order.

Acquisition Geometry
- Number of equidistant projections.
- The covered angular range.
2D Parallel-Geometry Properties

Trajectory
- based on ray vectors
- unit vectors with angle $\theta \in [0 ; \text{angular range}]$
2D Fan-Geometry Properties

Trajectory
- based on central-ray vectors of the fan-beam
- unit vectors with angle $\theta \in [0 ; \text{angular range}]$
- Source to isocenter distance (sid)
- Source to detector distance (sdd)
3D Cone-Geometry Properties

Trajectory

- based on projection matrices
 - Calibrated matrices from real systems can be used
- Source to isocenter distance (sid)
- Source to detector distance (sdd)

2D & 3D Trajectory Generator

Circular Trajectory 2D:
- Derived from defined geometry (2D parallel / fan-beam)
- Computes vector array

Circular Trajectory 3D:
- Projection matrices based on defined 3D cone-beam geometry
- Computes projection matrices
Filters

Reconstruction Filters
• Ramp filter for 2D & 3D
• Ram-Lak filter for 2D & 3D

Geometric Correction Weights
• Cosine-weighting (2D fan & 3D cone)
• Parker-weighting for short-scans (2D fan & 3D cone)

Layers

Forward projector
- 2D parallel- and fan-beam
- 3D cone-beam
 - Implemented as ray-driven

Backprojector
- 2D parallel- and fan-beam
- 3D cone-beam
 - Implemented as voxel-driven

- Gradient are internally already registered
PYRO-NN Examples

• Examples are provided within the PYRO-NN Repository under https://github.com/csyben/PYRO-NN

• Following examples are provided in a runnable code capsule under https://codeocean.com/capsule/6772846/
Example: 2D Parallel

Geometry & Phantom definitions

```python
# Define Geometry

# Volume Parameters:
volume_size = 256
volume_shape = [volume_size, volume_size]
volume_spacing = [1, 1]

# Detector Parameters:
detector_shape = 800
detector_spacing = 1

# Trajectory Parameters:
number_of_projections = 360
angular_range = 2 * np.pi

# Create Geometry class
geometry = GeometryParallel2D(volume_shape, volume_spacing, detector_shape, detector_spacing, number_of_projections, angular_range)

# Compute and set trajectory
trajectory_vectors = circular_trajectory.circular_trajectory_2d(geometry)
geometry.set_ray_vectors(trajectory_vectors)

# Get Phantom
phantom = shepp_logan.shepp_logan_enhanced(volume_shape)
phantom = np.expand_dims(phantom, axis=0)  # Add batch dimension
```

Imports

```python
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

from pyronn.ct_reconstruction.layers.projection_2d import parallel_projection2d
from pyronn.ct_reconstruction.layers.backprojection_2d import parallel_backprojection2d
from pyronn.ct_reconstruction.geometry.geometry_parallel_2d import GeometryParallel2D
from pyronn.ct_reconstruction.helpers.filters import filters
from pyronn.ct_reconstruction.helpers.phantoms import shepp_logan
from pyronn.ct_reconstruction.helpers.trajectories import circular_trajectory
```
Example: 2D Parallel

Projection & Reconstruction

imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

from pyronn.ct_reconstruction.layers.projection_2d import parallel_projection2d
from pyronn.ct_reconstruction.layers.backprojection_2d import parallel_backprojection2d
from pyronn.ct_reconstruction.geometry.geometry_parallel_2d import GeometryParallel2D
from pyronn.ct_reconstruction.helpers.filters import filters
from pyronn.ct_reconstruction.helpers.phantoms import shepp_logan
from pyronn.ct_reconstruction.helpers.trajectories import circular_trajectory

Call Layers
with tf.Session() as sess:
 # Create sinogram according to geometry
 result = parallel_projection2d(phantom, geometry)
 sinogram = result.eval()

 # Get filter
 reco_filter = filters.ram_lak_2D(geometry)

 # Filter sinogram in frequency domain
 sino_freq = np.fft.fft(sinogram, axis=-1)
 sino_filtered_freq = np.multiply(sino_freq, reco_filter)
 sinogram_filtered = np.fft.ifft(sino_filtered_freq, axis=-1).real
Example: 2D Parallel

Projection & Reconstruction

---------------- Call Layers ----------------
with tf.Session() as sess:
 ...

Reconstruction from filtered sinogram
 result_back_proj = parallel_backprojection2d(sinogram_filtered, geometry)
 reco = result_back_proj.eval()

Visualize result
 plt.figure()
 plt.imshow(reco, cmap=plt.get_cmap('gist_gray'))
 plt.axis('off')
 plt.savefig('2d_par_reco.png', dpi=150, transparent=False, bbox_inches='tight')
Example: Learn Filter

Situation: Ramp filter is correct for continuous systems
- Discretization error leads to offset & cupping artifacts

Goal: Learn the correct discretization for the reconstruction filter [1]

Recap: CT Reconstruction

\[p(s, \theta) \xrightarrow{h(s) \ast p(s, \theta)} q(s, \theta) \xrightarrow{f(x, y) = \int q(s, \theta) \, d\theta} \]

where \(h(s) \) is the Ramp-Filter
Cupping Artifacts

Line profile through phantom.

Line profile through Ramp-Reco
Deriving the Network Topology

Discrete reconstruction problem:

\[Ax = p \]

\[x = \left(A^T (A A^T)^{-1} \right) p \]

Back-projection

Filter

substituting the inverse:

\[x = A^T F^H K p \]

where

- \(A \) is the system matrix
- \(x \) is the object
- \(p \) is the sinogram
- \(F, F^H \) is the Fourier and inverse Fourier-transform
- \(K \) is the filter in Fourier domain
Example: Learn Reco Filter

Input data

PYRO-NN

Training parameter

Geometry parameter

Pipeline

Training

Validation

Evaluation

Model

Results

PYRO-NN

Main
Learn Reco Filter

Data generation I (input_data.py)

#Training data := Circles with increasing radii (+2 pixel)
def generate_training_data():
 label_list = []
 input_data_list = []
 max_radius = np.min(GEOMETRY.volume_shape) // 2
 center_pos = [(GEOMETRY.volume_shape[0]-1)//2, (GEOMETRY.volume_shape[1]-1)//2]
 #Compute phantom
 for n in range(9, max_radius, 2):
 #Add batch dimension with dim == 1 for sinogram generation
 phantom = primitives_2d.circle(GEOMETRY.volume_shape, center_pos, n)
 label_list.append(np.expand_dims(phantom, axis=0))
 #Create sinogram data
 with tf.Session() as sess:
 for phantom in label_list:
 sinogram = generate_sinogram_parallel_2d(phantom, GEOMETRY)
 input_data_list.append(sinogram)
 #Remove batch dimension | Return input & label
 return np.squeeze(np.asarray(input_data_list)), np.squeeze(np.asarray(label_list))
Learn Reco Filter
Data generation II (input_data.py)

Validation Test Cupping Test
class filter_model:
 def __init__(self):
 filter = ramp(GEOMETRY.detector_shape[0])
 # Define filter weights tensor. Initialize with ramp filter
 self.filter_weights = tf.get_variable(name='filter_frequency', dtype=tf.float32, initializer=filter, trainable=True)
 self.filter_weights_placeholder = tf.placeholder(tf.float32, name='filter_weights_placeholder')
 self.set_filter_weights = self.filter_weights.assign(self.filter_weights_placeholder)

 def forward(self, input_sinogram):
 sinogram_frequency = tf.fft(tf.cast(input_sinogram, dtype=tf.complex64))
 # Filtering step.
 filtered_sinogram_frequency = tf.multiply(sinogram_frequency, tf.cast(self.filter_weights, dtype=tf.complex64))
 filtered_sinogram = tf.real(tf.ifft(filtered_sinogram_frequency))
 # Reconstruction using PYRO-NN parallel backprojection layer
 reco = parallel_backprojection2d(filtered_sinogram, GEOMETRY)
 return reco, self.filter_weights
Learn Reco Filter
Pipeline I

class pipeline:

 Here the training environment in term of Tensorflow is defined, including all necessary structure for training and validation datasets, loss computation and optimization.

def __init__(self, session):
 self.sess = session # The Tensorflow session is made available to the pipeline methods
 self.model = filter_model() # The defined model is used
 self.results = dict()

def init_placeholder_graph(self):
 # define placeholder for the learning process, including learning rate, average loss and train/test switch
 self.learning_rate = tf.get_variable(name='learning_rate', dtype=tf.float32, initializer=tf.constant(0.0001))
 self.learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate_placeholder')
 self.set_learning_rate = self.learning_rate.assign(self.learning_rate_placeholder)

 self.is_training = tf.get_variable(name="is_training", shape=[], dtype=tf.bool, trainable=False)
 self.set_training = self.is_training.assign(True)
 self.set_validation = self.is_training.assign(False)

 self.avg_loss_placeholder = tf.placeholder(tf.float32, name='avg_loss_placeholder')
 self.avg_validation_loss_placeholder = tf.placeholder(tf.float32, name='avg_validation_loss_placeholder')
Learn Reco Filter
Pipeline II

class pipeline:
...

"""
Here the training environment in term of Tensorflow is defined, including all necessary structure for training and validation datasets, loss computation and optimization.
"""

def data_loader(self, inputs, labels):
 # Data iterator
 # Make pairs of elements. (X, Y) => ((x0, y0), (x1)(y1)),.....
 image_set = tf.data.Dataset.from_tensor_slices((inputs, labels))
 # Identity mapping operation is needed to include multi-threaded queue buffering.
 image_set = image_set.map(lambda x, y: (x, y), num_parallel_calls=4).prefetch(buffer_size=200)
 # Batch dataset. Also do this if batchsize==1 to add the mandatory first axis for the batch_size
 image_set = image_set.batch(1)
 # Repeat dataset for number of epochs
 image_set = image_set.repeat(args.MAX_EPOCHS+1)
 # Prefetch data to gpu.
 # Select iterator
 iterator = image_set.make_initializable_iterator()
 return iterator

#Imports
import tensorflow as tf
import os
from model import training_parameter as args
from model.geometry_parameter import GEOMETRY
from model.model import filter_model
class pipeline:
...

def build_graph(self):

 # Set Placeholders
 optimizer = tf.train.AdamOptimizer(self.learning_rate, epsilon=0.1) # Optimizer
 # Tensor placeholders that are initialized later. Placeholder for training and test dataset
 self.inputs_train = tf.placeholder(tf.float32, (None, *GEOMETRY.sinogram_shape))
 self.labels_train = tf.placeholder(tf.float32, (None, *GEOMETRY.volume_shape))
 self.inputs_validation = tf.placeholder(tf.float32, (None, *GEOMETRY.sinogram_shape))
 self.labels_validation = tf.placeholder(tf.float32, (None, *GEOMETRY.volume_shape))
 # Get next_element "operator" and iterator that is initialized later
 self.iterator_train = self.data_loader(self.inputs_train, self.labels_train)
 self.iterator_validation = self.data_loader(self.inputs_validation, self.labels_validation)
 # Get next (batch of) element pair(s)
 self.input_element, self.label_element = tf.cond(self.is_training,
 lambda: self.iterator_train.get_next(),
 lambda: self.iterator_validation.get_next())

 # Model and loss function
 self.prediction, self.filter_weights = self.model.forward(self.input_element) # Model evaluation
 self.loss = self.model.l2_loss(self.prediction, self.label_element) # Compute loss
 self.train_op = optimizer.minimize(self.loss) # Update weights

 # Summary stuff
...
class pipeline:

 ...

 def validation(self, epoch):
 # Switch to validation dataset
 self.sess.run(self.set_validation)
 avg_validation_loss = 0
 for step in range(0, args.NUM_VALIDATION_SAMPLES):
 # Do one step of model validation (no weight update)
 validation_loss, reco, current_filter = self.sess.run([self.loss, self.prediction, self.filter_weights])
 avg_validation_loss += validation_loss
 # Compute average validation error
 self.avg_validation_loss = avg_validation_loss / args.NUM_VALIDATION_SAMPLES
 print("epoch: %d | avg validation loss: %f" % (epoch, self.avg_validation_loss))
 # Switch back to training dataset
 self.sess.run(self.set_training)
Learn Reco Filter
Pipeline V

class pipeline:
...

def train(self, inputs_train, labels_train, inputs_validation, labels_validation):
 #Setup & initialize graph
 self.build_graph()
 self.sess.run(tf.global_variables_initializer())
 self.sess.run(tf.local_variables_initializer())

 #Saver
 self.saver = tf.train.Saver(max_to_keep=100)

 # Feed training (input, label) and validation (input,label) to the previously defined data_loader
 self.sess.run(self.iterator_train.initializer,
 feed_dict={self.inputs_train: inputs_train, self.labels_train: labels_train})
 self.sess.run(self.iterator_validation.initializer,
 feed_dict={self.inputs_validation: inputs_validation, self.labels_validation: labels_validation})

 # Set training mode & learning rate
 _ = self.sess.run([self.set_training, self.set_learning_rate],
 feed_dict={self.learning_rate_placeholder: args.LEARNING_RATE})

 # Save initial filter for result generation
 self.results.setdefault('initial_filter', self.model.get_filter(self.sess))
 print("Start Training")
 loss_epoch_before = 1e16

 ... # Training next slide
class pipeline:
 ...
 def train(self, inputs_train, labels_train, inputs_validation, labels_validation):
 ...
 for epoch in range(1, args.MAX_EPOCHS+1):
 avg_loss = 0
 for step in range(0, len(inputs_train)):
 # Do one step of model evaluation and subsequent weight update with train_op
 _, loss, reco, current_filter = self.sess.run([self.train_op, self.loss, self.prediction, self.filter_weights])
 avg_loss += loss
 # Compute average loss over epoch
 avg_loss = avg_loss / len(inputs_train)
 print("epoch: %d | avg epoch loss: %f"%(epoch, avg_loss))
 # Do one validation step
 self.validation(epoch)
 # Early stopping if loss is increasing or staying the same after one epoch
 if avg_loss >= loss_epoch_before:
 # Save best model
 self.saver.save(self.sess, args.WEIGHTS_DIR, global_step=epoch * args.MAX_TRAIN_STEPS)
 break
 loss_epoch_before = avg_loss
 print("training finished")
 self.results.setdefault('learned_filter', self.model.get_filter(self.sess))
 # Save learned filter in result dict

#Imports
import tensorflow as tf
import os
from model import training_parameter as args
from model.geometry_parameter import GEOMETRY
from model.model import filter_model
class pipeline:
 ...
 # One pure forward pass of the defined model
 def forward(self, input_data, label_data, filter=None):
 # Switch to validation placeholder
 self.sess.run(self.set_validation)
 # Set filter weights if not None
 if filter is not None:
 self.model.set_filter(self.sess, filter)
 # Feed dataset (input, label) to validation iterator
 self.sess.run(self.iterator_validation.initializer,
 feed_dict={self.inputs_validation: input_data,
 self.labels_validation: label_data})

 avg_loss = 0
 result = []
 for step in range(0, len(input_data)):
 # Do one model evaluation
 loss, reco, current_filter = self.sess.run([self.loss,
 self.prediction,
 self.filter_weights])
 avg_loss += loss
 result.append(reco)

 avg_loss /= len(input_data)

 return result, avg_loss

#Imports
import tensorflow as tf
import os
from model import training_parameter as args
from model.geometry_parameter import GEOMETRY
from model.model import filter_model
Learn Reco Filter
Main

Generate training, validation, test and cupping datasets (input, label)
data, label = generate_training_data()
data_val, label_val = generate_validation_data(args.NUM_VALIDATION_SAMPLES)
data_test, label_test = get_test_data(args.NUM_TEST_SAMPLES)
data_cupping, label_cupping = get_test_cupping_data()

Configure Tensorflow session using initially 50% of GPU memory and allow growthconfig = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
 # Initialize training pipeline
 training = pipeline(sess)
 # Start training
 training.train(data, label, data_val, label_val)
 # Get Ramp, Ram-Lak and learned filter weights
 initial_filter = training.results.get('initial_filter')
 learned_filter = training.results.get('learned_filter')
 ram_lak_filter = ram_lak(GEOMETRY.detector_shape, GEOMETRY.detector_spacing)

 # Evaluate model with test dataset for Ramp, Ram-Lak and the learned filter
 result_test_initial, rti_avg_loss = training.forward(data_test, label_test, initial_filter)
 result_test_ram_lak, rtrl_avg_loss = training.forward(data_test, label_test, ram_lak_filter)
 result_test_learned, rtl_avg_loss = training.forward(data_test, label_test, learned_filter)
Learn Reco Filter

Results – Test dataset – Shepp-Logan phantom

Ramp-Reco

Ram-Lak-Reco

Learned-Reco
Learn Reco Filter

Results – Cupping test dataset
Learn Reco Filter

Results – Learned Filter
Learn Reco Filter

Training parameters

```python
# training parameters
LEARNING_RATE = 1e-6
BATCH_SIZE_TRAIN = 1
NUM_TRAINING_SAMPLES = 10
MAX_TRAIN_STEPS = NUM_TRAINING_SAMPLES//BATCH_SIZE_TRAIN +1
BATCH_SIZE_VALIDATION = 1
NUM_VALIDATION_SAMPLES = 10
MAX_VALIDATION_STEPS = NUM_VALIDATION_SAMPLES//BATCH_SIZE_VALIDATION
NUM_TEST_SAMPLES = 1
MAX_TEST_STEPS = NUM_TEST_SAMPLES
MAX_EPOCHS = 100

#Path
LOG_DIR = 'logs/
WEIGHTS_DIR = 'trained_models/"
```
This file defines the Geometry parameters used by the whole model. A GeometryParallel2D instance is provided to be used by everyone that needs it.

Declare Parameters

```python
volume_shape = [256, 256]
volume_spacing = [1, 1]
detector_shape = 365
detector_spacing = 1
number_of_projections = 180
angular_range = np.pi
```

Create Geometry class instance

```python
GEOMETRY = GeometryParallel2D(volume_shape, volume_spacing, detector_shape, detector_spacing, number_of_projections, angular_range)
```

Compute trajectory and set ray vectors

```python
GEOMETRY.set_ray_vectors(circular_trajectory.circular_trajectory_2d(GEOMETRY))
```
Play with the code capsule!

https://codeocean.com/capsule/6772846