Figure: Optimal approximation in the plane
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Another basis for V = £2([0, 1))

» Use step functions for approximation!

> This allows for
» capturing local properties of functions (localization)
» refinement by adjusting the step width (resolution)

The relevant operations are known as translation and dilation

» Two basic scaling operations for functions f : R — C, in
particular for f € £L2(R)
» dilation: for a > 0

(D,f)(t) = Vaf(at)
» translation: for b € R

(Tuf)(t) = f(t —b)



lllustration of Dilation and Translation (1)
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Figure: The function f(t) = sin(t?) - 1j0,3m)(t)
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Figure: The functions f(t)
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lllustration of Dilation and Translation (2)
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Figure: The function f(t) = sin(t?) - 1jp35)(t)
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Figure: The functions f(t) (black), Dy,»f(t) (green), D>f(t) (blue)



lllustration of Dilation and Translation (2)
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Figure: The function f(t) = sin(t?) - 1jp35)(t)
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Figure: The functions f(t) (black), Dy,»f(t) (green), D>f(t) (blue)



lllustration of Dilation and Translation (3)
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Figure: The functions T1D; >f(t) (green), Dy > T1f(t) (blue)



Properties of Dilation and Translation

» Check!

1. Do(Dsf) = Dasf

To(Tof) = Tarnf

Dy(Tuf) = Tb/a(Daf)

(f1D.g) = (Dy/af | 8)

(FlTog) =(T-bflg)

(Daf [ Dag) = (f|g), in particular || D,f| = ||f]]
(Tuf | Tog) = (f | g), in particular || Tpf|| = || f]|

N o o s~ »w DN



The Haar scaling function

» For an interval | = [a, b) C R its indicator function is

1,(t) = 1) (t) = {

Similarly for intervals [a, b] or (a, b] or (a, b)
The dyadic itervals I; i (for j, k € Z) are defined as

Lo =[k-277 (k+1)-277)

The Haar scaling function is defined as

1 if a<t<b
0 otherwise

v

v

1 ifo<t<1

0 otherwise

o(t) = llo,o(t) = 1[071)(t) = {

v

For j,k € Z put
6 k(1) = (Dy Tko)(t) = 2% - ¢(Dt — k) = 2171, (1)

J @ dilation parameter (resolution),
k : translation parameter (localization)

v

v



Properties of the ¢; «
» Orthogonality

(B3 ) = [ 03.(e) ) ot = B
» That is: for any fixed j > 0 the family
®; = {pjk(t);0< k< 2}

is an orthonormal system in £2([0,1))

» The subspace V; of V = £2([0,1)) generated by taking ®; as
its basis is the space of dyadic step functions with step width
2—J
The space V; has dimension 2
This space is known as approximation subspace on level j

» The scaling equation relates V; and V1

1

o k(t) = 7 (Bj+1,26(t) + @j1,2k41(2))



lllustrations of the Haar scaling function
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Figure: The Haar scaling function ¢(t)
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Figure: ¢1.1(t) (black), ¢2,—3(t) (red), ¢3.10(t) (green), ¢_1,0(t) (blue)



Optimal approximation with step functions
» Optimal approximation in V; for f € £2(]0,1))
aj(fit) = Y akdjk(t)
0<k<2i
has approximation coefficients
a0 = (Floju) =27 [ f(0)de
Ij,k

» Important: unlike the Fourier coefficients, the approximation
coefficients a;  only depend locally on f(t), precisely:

ajk - Pjk(t) = pik(f) -1, (1),

L f(t)dt

where wjk(f) = Tl ),
Js lj k

is the average of f(t) over /;



Changing the resolution

» Important question: how do the approximation coefficients
aj x change when changing the resolution parameter j ?

> Partial answer: from /; o = li 112 W li11 2441 it follows that

ajk = 21/2/ f(t)dt
)

ik

— /2
2 (/I#w f(t)dt+[ f(t)dt)

J lj+1,2k+1
PR ks [ e
= t)dt 4+ t)dt
\/i 1,2k liv1,2k41

1
= \ﬁ(aﬂrl@k + aj11,2k+1)



Changing the resolution

» The recurrence equation for the Haar approximation
coefficients

ajk = \ﬁ(aﬂrmk + 3j+1,2k+1)
is really a consequence of the scaling equation
1
k() = 7 (Dj+1,26(t) + djr12641(2)) 5

because by linearity of the inner product

(Floju) = % ((F | djsne) + (FlSjer2ks1))



Changing the resolution

» The complete answer:
» Define detail coefficients for 0 < k < 2

1
dik = —=(aj+1,2 — 3j+1,2k+1)

aj,k :i 1 1 aj 41,2k
di k V2 |1 =1 |aj51,2k01

and consequently
ajrrac | _ L 11 1| fajk
dj+1,2k+1 V2 |1 —1) [dix

» This defines the HAAR transformation at level j 4 1!

N

then

(3j41,0, @j+1,15 -+ aj+1,2f+171)
!

(aj,Oa aj,la veey aj721—17(7'J',07 dj,17 ey dj,2j—l)



What the d;  really are

» From the definition:

dix = \2(3141,2;( — aj+1,2k+1)
:wﬂw( ﬂom/ f(t) dt)
V2 li+1,2k li+1,2641
= (f[¥jk)

where Vi k(t) = 272(2t — k) and where

1 firo<t<1/2

P(t) = 1[071/2)(1.‘) — 1[1/271)(1') =4q-1 firl/2<t<1
0  sonst

is known as the Haar wavelet function
» Note that

Vi k(t) = (Dy Tirp)(t)



[llustration of the Haar wavelet function
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Figure: The Haar wavelet function )(t)
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Figure: 41 1(t) (black), 12,_3(t) (red), ¢3,10(t) (green) ¢_1o(t) (blue)




The wavelet equation appears

» The definition of the d; x is equivalent to the wavelet equation

1

Vik(t) = 7 (Bj+1,2k(t) — Bjy12k+1(t))

v

The family
Vi ={¥jk(t) o<k<o
is an ONS in V = £2(]0,1))
The subspace W; of V = £2([0,1)) generated by V; is called
wavelet or detail subspace at level j

v

v

The space W, has dimension 2

Check: All ®j k are orthogonal to all 1 ¢ for j <" and
(0<k<2,0<t<2)

Check: All 9; , are orthogonal to all s 4 for j' # j

v

v



Putting ¢ and v together

» The functions

®ir1 = {djr1.k(t) bockenivr

generate (as an ONS) the subspace Vj;1 of V = £2([0,1)) of
step functions of step width 2—/~1

This space has dimension 21
» By definition

Vi CVjgr and W; C Vi
» But the space Vj,1 also has
®; UV = {dji(t) bocker U{¥jk(t) bock<a
as an ONS! Hence

Vi =V, @W,



Two bases in one space

» The 1-level Haar transformation (at level j + 1) is an
orthogonal basis transformation in the space V; 1 between
bases

CDJ'_H_ and d)j@\l’j

» which explicitly reads

[ij,k(t)] 1 [1 1] [ Pj41,24(t) ]

Yin(t)] V2 |1 =1 [¢jr12641(2)

V2
and equivalently

el = Al



Basic identities
» Haar scaling identity (Analysis)

b(t) = é(dymk(t) - bpaakna(D))

» Haar wavelet identity (Analysis)

Bia(t) = \2(@“%@) — br1ak1(1))

» Both identities together (Analysis)

-¢j,k(t)] _ 1 [1 1] [ $jr1,24(t) |

Wik(t)] V2 (1 —1) |@j+126t1(t))

» Reconstruction (Synthesis)

[ djr1.0k(1) } _ 1 [1 1 } [@,k(f)_
|Dj126+1(8)] V2 (1 —1] [9jk(t)]




Transforming the coefficients

> Analysis
j

,k] _ 1 [1 1] [ ajt1.2k |
dik] V2 (1 —1] |ajt12k+1]

» Synthesis

[ aji1,2 ] _ 1 [1 1 ] [aj,k—
[3j+12k+1] V2 |1 1] [djk]
> This defines the HAAR transformation at level j 4 1!

(341,00 341,15+ - 3j410741_1)
I

(aj,()? aj,l? sy aj721'—17dj,07 dj,l? ey dj72j—l)



Outlook (for £([0,1))

» The set of functions

{3l Jw;={o()}u{ve(t);j>00< <2}
Jj20
is a Hilbert basis in the space £([0,1))
» This is the HAAR wavelet basis.
» This means that functions f € £2([0,1)) can be written as

F(£) = (F() [ 6(2)) $(8) + D (Fleye)djelt)

j=>0
0<e<2)

:/01 F(t)dt+ > dietye(t)

j=>0
0<e<2/



Outlook (for £([0,1))

» For each fixed J > 0, the set of functions

HJ:(DJUUWJ'
Jj=J

={¢J,k;0§k<2J}U{1/JJg j>J0< <)

is a Hilbert basis in the space £([0, 1))
» This means that functions f € £2([0,1)) can be written as

F(t)= D (FO)[dunl(t)) dun(t) + D (Flhje)bje(t)

0<k<2/ i2J
0<e<2)
= § ayk ¢ k( E di o1 e(
0<k<2J izJ

0<e<2)



Outlook (for £(RR))

» Take intervals /;  for j,k € Z
» Take functions ¢; , and 1; « for j, k € Z

» Define
i =Adjki k €2} Vi = {¢jx; keZ}
HJ:q)JUUWJ' 7—[:¢:ij
= >z
Vs = span(®) W, = span(V;)

» &;, V;, H,; and H are orthogonal families

» Viy1 = V; @ W; is an orthogonal decomposition

» Scaling and wavelet identities are precisely the same as before
> Coefficient transformations are the same as before

» Haar transformation is the same as before



Outlook (for £(RR))

» For each fixed J > 0, the set of functions

H;y=d,U U \UJ-
jizJ
={dsk; ke Z}U{jt); j,LeZ}
is a Hilbert basis in the space L(R)

» This means that functions f € £2(R) can be written as

F(£) = (F()[duu(t)) duu(t) + D (F ) eje(t)

keZ iz

LEL

= Z ajk Puk(t) + Z dje ¥je(t)
kEZ izJ

LeZ



Outlook (for £(RR))

» The set of functions

H=V=| V= {vju(t);j kecZ}
JEZL
is a Hilbert basis in the space L£(R)
» This means that functions f € £?(R) can be written as

F(E) =D (Fluju) viw(t) = dikju(t)

JkeZ Jkez



