$$\frac{a-b}{\sqrt{2}}\delta$$
 Figure: Optimal approximation in the plane

 $\varepsilon_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\varepsilon_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\alpha = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\delta = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \varepsilon_1 + b \varepsilon_2 = \frac{a+b}{\sqrt{2}} \alpha + \frac{a-b}{\sqrt{2}} \delta$$

Another basis for $\mathcal{V} = \mathcal{L}^2([0,1))$

- Use step functions for approximation!
- This allows for
 - capturing local properties of functions (localization)
 - refinement by adjusting the step width (resolution)

The relevant operations are known as translation and dilation

- ▶ Two basic scaling operations for functions $f : \mathbb{R} \to \mathbb{C}$, in particular for $f \in \mathcal{L}^2(\mathbb{R})$
 - dilation: for a > 0

$$(D_a f)(t) = \sqrt{a} f(a t)$$

▶ translation: for $b \in \mathbb{R}$

$$(T_b f)(t) = f(t-b)$$

Illustration of Dilation and Translation (1)

Figure: The function $f(t) = \sin(t^2) \cdot \mathbf{1}_{[0,3\pi)}(t)$

Figure: The functions f(t) (black), $T_2 f(t)$ (green), $T_{-2} f(t)$ (blue)

Illustration of Dilation and Translation (2)

Figure: The function $f(t) = \sin(t^2) \cdot \mathbf{1}_{[0,3\pi)}(t)$

Figure: The functions f(t) (black), $D_{1/2}f(t)$ (green), $D_2f(t)$ (blue)

Illustration of Dilation and Translation (2)

Figure: The function $f(t) = \sin(t^2) \cdot \mathbf{1}_{[0,3\pi)}(t)$

Figure: The functions f(t) (black), $D_{1/2}f(t)$ (green), $D_2f(t)$ (blue)

Illustration of Dilation and Translation (3)

Figure: The functions $T_2D_2f(t)$ (green) and $D_{3/2}T_{-1}(t)$ (blue)

Figure: The functions $T_1D_{1/2}f(t)$ (green), $D_{1/2}T_1f(t)$ (blue)

Properties of Dilation and Translation

Check!

- 1. $D_a(D_b f) = D_{a \cdot b} f$
- 2. $T_a(T_b f) = T_{a+b} f$
- 3. $D_a(T_b f) = T_{b/a}(D_a f)$
- 4. $\langle f | D_a g \rangle = \langle D_{1/a} f | g \rangle$
- 5. $\langle f | T_b g \rangle = \langle T_{-b} f | g \rangle$
- 6. $\langle D_a f | D_a g \rangle = \langle f | g \rangle$, in particular $||D_a f|| = ||f||$
- 7. $\langle T_b f | T_b g \rangle = \langle f | g \rangle$, in particular $||T_b f|| = ||f||$

The Haar scaling function

▶ For an interval $I = [a, b) \subset \mathbb{R}$ its indicator function is

$$\mathbf{1}_I(t) = \mathbf{1}_{[a,b)}(t) = egin{cases} 1 & ext{if} & a \leq t < b \\ 0 & ext{otherwise} \end{cases}$$

Similarly for intervals [a, b] or (a, b] or (a, b)

lacktriangle The $\emph{dyadic itervals }\emph{I}_{j,k}$ (for $j,k\in\mathbb{Z}$) are defined as

$$I_{j,k} = [k \cdot 2^{-j}, (k+1) \cdot 2^{-j})$$

▶ The *Haar* scaling function is defined as

$$\phi(t) = \mathbf{1}_{I_{0,0}}(t) = \mathbf{1}_{[0,1)}(t) = egin{cases} 1 & ext{if } 0 \leq t < 1 \ 0 & ext{otherwise} \end{cases}$$

▶ For $i, k \in \mathbb{Z}$ put

$$\phi_{i,k}(t) = (D_{2^j}T_k\phi)(t) = 2^{j/2} \cdot \phi(2^jt-k) = 2^{j/2}\mathbf{1}_{I_{i,k}}(t)$$

- ▶ *j* : dilation parameter (*resolution*),
- ▶ *k* : translation parameter (*localization*)

Properties of the $\phi_{i,k}$

Orthogonality

$$\langle \, \phi_{j,k} \, | \, \phi_{j,\ell} \,
angle = \int_{\mathbb{R}} \phi_{j,k}(t) \, \phi_{j,\ell}(t) \, \mathsf{d}t = \delta_{k,\ell}$$

▶ That is: for any fixed $i \ge 0$ the family

$$\Phi_j = \{ \phi_{j,k}(t); \ 0 \le k < 2^j \}$$

is an orthonormal system in $\mathcal{L}^2([0,1))$

▶ The subspace V_j of $V = \mathcal{L}^2([0,1))$ generated by taking Φ_j as its basis is the space of dyadic step functions with step width 2^{-j}

The space V_i has dimension 2^j

This space is known as approximation subspace on level j

lacktriangle The scaling equation relates \mathcal{V}_j and \mathcal{V}_{j+1}

$$\phi_{j,k}(t) = \frac{1}{\sqrt{2}} \left(\phi_{j+1,2k}(t) + \phi_{j+1,2k+1}(t) \right)$$

Illustrations of the Haar scaling function

Figure: The Haar scaling function $\phi(t)$

Figure: $\phi_{1,1}(t)$ (black), $\phi_{2,-3}(t)$ (red), $\phi_{3,10}(t)$ (green), $\phi_{-1,0}(t)$ (blue)

Optimal approximation with step functions

▶ Optimal approximation in V_i for $f \in \mathcal{L}^2([0,1))$

$$\alpha_j(f;t) = \sum_{0 \le k < 2^j} a_{j,k} \, \phi_{j,k}(t)$$

has approximation coefficients

$$a_{j,k} = \langle f | \phi_{j,k} \rangle = 2^{j/2} \int_{I_{j,k}} f(t) dt$$

▶ Important: unlike the Fourier coefficients, the approximation coefficients $a_{j,k}$ only depend locally on f(t), precisely:

$$a_{j,k}\cdot\phi_{j,k}(t)=\mu_{j,k}(f)\cdot\mathbf{1}_{I_{j,k}}(t),$$
 where $\mu_{j,k}(f)=rac{1}{|I_{j,k}|}\int_{I_{i,k}}f(t)\,dt$

is the average of f(t) over $I_{j,k}$

Changing the resolution

- ▶ Important question: how do the approximation coefficients $a_{j,k}$ change when changing the resolution parameter j ?
- ▶ Partial answer: from $I_{j,k} = I_{j+1,2k} \uplus I_{j+1,2k+1}$ it follows that

$$a_{j,k} = 2^{j/2} \int_{I_{j,k}} f(t) dt$$

$$= 2^{j/2} \left(\int_{I_{j+1,2k}} f(t) dt + \int_{I_{j+1,2k+1}} f(t) dt \right)$$

$$= \frac{2^{(j+1)/2}}{\sqrt{2}} \left(\int_{I_{j+1,2k}} f(t) dt + \int_{I_{j+1,2k+1}} f(t) dt \right)$$

$$= \frac{1}{\sqrt{2}} (a_{j+1,2k} + a_{j+1,2k+1})$$

Changing the resolution

 The recurrence equation for the Haar approximation coefficients

$$a_{j,k} = rac{1}{\sqrt{2}}(a_{j+1,2k} + a_{j+1,2k+1})$$

is really a consequence of the scaling equation

$$\phi_{j,k}(t) = \frac{1}{\sqrt{2}} \left(\phi_{j+1,2k}(t) + \phi_{j+1,2k+1}(t) \right),$$

because by linearity of the inner product

$$\langle f | \phi_{j,k} \rangle = \frac{1}{\sqrt{2}} \left(\langle f | \phi_{j+1,2k} \rangle + \langle f | \phi_{j+1,2k+1} \rangle \right)$$

Changing the resolution

- ► The complete answer:
 - ▶ Define detail coefficients for $0 < k < 2^j$

$$d_{j,k} = \frac{1}{\sqrt{2}}(a_{j+1,2k} - a_{j+1,2k+1})$$

then

$$\begin{bmatrix} a_{j,k} \\ d_{j,k} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a_{j+1,2k} \\ a_{j+1,2k+1} \end{bmatrix}$$

and consequently

$$\begin{bmatrix} a_{j+1,2k} \\ a_{j+1,2k+1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a_{j,k} \\ d_{j,k} \end{bmatrix}$$

▶ This defines the HAAR transformation at level i + 1!

$$(a_{j+1,0}, a_{j+1,1}, \dots, a_{j+1,2^{j+1}-1})$$
 \updownarrow
 $(a_{j,0}, a_{j,1}, \dots, a_{j,2^{j}-1}, d_{j,0}, d_{j,1}, \dots, d_{j,2^{j}-1})$

What the $d_{i,k}$ really are

From the definition:

$$d_{j,k} = \frac{1}{\sqrt{2}} (a_{j+1,2k} - a_{j+1,2k+1})$$

$$= \frac{2^{(j+1)/2}}{\sqrt{2}} (\int_{I_{j+1,2k}} f(t) dt - \int_{I_{j+1,2k+1}} f(t) dt)$$

$$= \langle f | \psi_{j,k} \rangle$$

where $\psi_{j,k}(t)=2^{j/2}\psi(2^jt-k)$ and where

$$\psi(t) = \mathbf{1}_{[0,1/2)}(t) - \mathbf{1}_{[1/2,1)}(t) = egin{cases} 1 & ext{ für } 0 \leq t < 1/2 \ -1 & ext{ für } 1/2 \leq t < 1 \ 0 & ext{ sonst} \end{cases}$$

is known as the Haar wavelet function

Note that

$$\psi_{j,k}(t) = (D_{2^j} T_k \psi)(t)$$

Illustration of the Haar wavelet function

Figure: The Haar wavelet function $\psi(t)$

Figure: $\psi_{1,1}(t)$ (black), $\psi_{2,-3}(t)$ (red), $\psi_{3,10}(t)$ (green) $\psi_{-1,0}(t)$ (blue)

The wavelet equation appears

▶ The definition of the $d_{j,k}$ is equivalent to the wavelet equation

$$\psi_{j,k}(t) = \frac{1}{\sqrt{2}} \left(\phi_{j+1,2k}(t) - \phi_{j+1,2k+1}(t) \right)$$

The family

$$\Psi_j = \{ \psi_{j,k}(t) \}_{0 \le k < 2^j}$$

is an ONS in $\mathcal{V} = \mathcal{L}^2([0,1))$

- ► The subspace W_j of $V = \mathcal{L}^2([0,1))$ generated by Ψ_j is called wavelet or detail subspace at level j
- ▶ The space W_i has dimension 2^j
- ▶ Check: All $\phi_{j,k}$ are orthogonal to all $\psi_{j',\ell}$ for $j \leq j'$ and $(0 \leq k < 2^j, 0 \leq \ell < 2^{j'})$
- ▶ Check: All $\psi_{j,k}$ are orthogonal to all $\psi_{j',\ell}$ for $j' \neq j$

Putting ϕ and ψ together

▶ The functions

$$\Phi_{j+1} = \{ \phi_{j+1,k}(t) \}_{0 \le k < 2^{j+1}}$$

generate (as an ONS) the subspace V_{j+1} of $V = \mathcal{L}^2([0,1))$ of step functions of step width 2^{-j-1}

This space has dimension 2^{j+1}

▶ By definition

$$\mathcal{V}_j \subset \mathcal{V}_{j+1}$$
 and $\mathcal{W}_j \subset \mathcal{V}_{j+1}$

▶ But the space V_{j+1} also has

$$\Phi_j \cup \Psi_j = \{ \phi_{j,k}(t) \}_{0 \le k < 2^j} \cup \{ \psi_{j,k}(t) \}_{0 \le k < 2^j}$$

as an ONS! Hence

$$\mathcal{V}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j$$

Two bases in one space

▶ The 1-level Haar transformation (at level j+1) is an orthogonal basis transformation in the space V_{j+1} between bases

$$\Phi_{j+1}$$
 and $\Phi_j \oplus \Psi_j$

which explicitly reads

$$\begin{bmatrix} \phi_{j,k}(t) \\ \psi_{j,k}(t) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_{j+1,2k}(t) \\ \phi_{j+1,2k+1}(t) \end{bmatrix}$$

and equivalently

$$\begin{bmatrix} \phi_{j+1,2k}(t) \\ \phi_{j+1,2k+1}(t) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_{j,k}(t) \\ \psi_{j,k}(t) \end{bmatrix}$$

Basic identities

► Haar scaling identity (Analysis)

$$\phi_{j,k}(t) = \frac{1}{\sqrt{2}}(\phi_{j+1,2k}(t) + \phi_{j+1,2k+1}(t))$$

► Haar wavelet identity (Analysis)

$$\psi_{j,k}(t) = \frac{1}{\sqrt{2}}(\phi_{j+1,2k}(t) - \phi_{j+1,2k+1}(t))$$

▶ Both identities together (Analysis)

$$\begin{bmatrix} \phi_{j,k}(t) \\ \psi_{j,k}(t) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_{j+1,2k}(t) \\ \phi_{j+1,2k+1}(t) \end{bmatrix}$$

Reconstruction (Synthesis)

$$\begin{bmatrix} \phi_{j+1,2k}(t) \\ \phi_{j+1,2k+1}(t) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \phi_{j,k}(t) \\ \psi_{j,k}(t) \end{bmatrix}$$

Transforming the coefficients

Analysis

$$\begin{bmatrix} a_{j,k} \\ d_{j,k} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a_{j+1,2k} \\ a_{j+1,2k+1} \end{bmatrix}$$

Synthesis

$$\begin{bmatrix} a_{j+1,2k} \\ a_{j+1,2k+1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a_{j,k} \\ d_{j,k} \end{bmatrix}$$

▶ This defines the HAAR transformation at level j + 1!

$$(a_{j+1,0}, a_{j+1,1}, \dots, a_{j+1,2^{j+1}-1})$$
 \updownarrow
 $(a_{j,0}, a_{j,1}, \dots, a_{j,2^{j}-1}, d_{j,0}, d_{j,1}, \dots, d_{j,2^{j}-1})$

Outlook (for $\mathcal{L}([0,1))$

The set of functions

$$\set{\phi(t)} \cup \bigcup_{j \geq 0} \Psi_j = \set{\phi(t)} \cup \set{\psi_{j,\ell}(t)}; j \geq 0, 0 \leq \ell < 2^j}$$

is a Hilbert basis in the space $\mathcal{L}([0,1))$

- ► This is the HAAR wavelet basis.
- ▶ This means that functions $f \in \mathcal{L}^2([0,1))$ can be written as

$$egin{split} f(t) &= \left\langle \, f(t) \, | \, \phi(t) \,
ight
angle \, \phi(t) + \sum_{\substack{j \geq 0 \ 0 \leq \ell < 2^j}} \left\langle \, f \, | \, \psi_{j,\ell} \,
ight
angle \, \psi_{j,\ell}(t) \ &= \int_0^1 f(t) \, dt + \sum_{\substack{j \geq 0 \ 0 \leq \ell < 2^j}} d_{j,\ell} \, \psi_{j,\ell}(t) \end{split}$$

Outlook (for $\mathcal{L}([0,1))$

▶ For each fixed $J \ge 0$, the set of functions

$$\mathcal{H}_{J} = \Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j}$$

$$= \left\{ \phi_{J,k} : 0 \leq k < 2^{J} \right\} \cup \left\{ \psi_{j,\ell}(t) : j \geq J, 0 \leq \ell < 2^{j} \right\}$$

is a Hilbert basis in the space $\mathcal{L}([0,1))$

lacktriangle This means that functions $f\in\mathcal{L}^2([0,1))$ can be written as

$$f(t) = \sum_{0 \le k < 2^J} \langle f(t) | \phi_{J,k}(t) \rangle \phi_{J,k}(t) + \sum_{\substack{j \ge J \\ 0 \le \ell < 2^j}} \langle f | \psi_{j,\ell} \rangle \psi_{j,\ell}(t)$$
$$= \sum_{0 \le k < 2^J} a_{J,k} \phi_{J,k}(t) + \sum_{\substack{j \ge J \\ 0 \le \ell < 2^j}} d_{j,\ell} \psi_{j,\ell}(t)$$

Outlook (for $\mathcal{L}(\mathbb{R})$)

- ▶ Take intervals $I_{j,k}$ for $j, k \in \mathbb{Z}$
- ▶ Take functions $\phi_{j,k}$ and $\psi_{j,k}$ for $j,k \in \mathbb{Z}$
- Define

$$\Phi_{j} = \{\phi_{j,k}; k \in \mathbb{Z}\} \qquad \Psi_{j} = \{\psi_{j,k}; k \in \mathbb{Z}\}
\mathcal{H}_{J} = \Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j} \qquad \mathcal{H} = \Phi = \bigcup_{j \geq \mathbb{Z}} \Psi_{j}
\mathcal{V}_{J} = \overline{span}(\Phi_{j}) \qquad \mathcal{W}_{J} = \overline{span}(\Psi_{j})$$

- $lackbox{ }\Phi_{j},\ \Psi_{j},\ \mathcal{H}_{J}\ ext{and}\ \mathcal{H}\ ext{are orthogonal families}$
- $lacksquare{\mathcal{V}}_{j+1} = \mathcal{V}_j \oplus \mathcal{W}_j$ is an orthogonal decomposition
- Scaling and wavelet identities are precisely the same as before
- Coefficient transformations are the same as before
- Haar transformation is the same as before

Outlook (for $\mathcal{L}(\mathbb{R})$)

▶ For each fixed $J \ge 0$, the set of functions

$$\mathcal{H}_{J} = \Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j}$$

$$= \{ \phi_{J,k} ; k \in \mathbb{Z} \} \cup \{ \psi_{j,\ell}(t) ; j,\ell \in \mathbb{Z} \}$$

is a Hilbert basis in the space $\mathcal{L}(\mathbb{R})$

lacktriangle This means that functions $f\in \mathcal{L}^2(\mathbb{R})$ can be written as

$$egin{aligned} f(t) &= \sum_{k \in \mathbb{Z}} \langle \, f(t) \, | \, \phi_{J,k}(t) \,
angle \, \phi_{J,k}(t) + \sum_{\substack{j \geq J \ \ell \in \mathbb{Z}}} \langle \, f \, | \, \psi_{j,\ell} \,
angle \, \psi_{j,\ell}(t) \ &= \sum_{k \in \mathbb{Z}} \mathsf{a}_{J,k} \, \phi_{J,k}(t) + \sum_{\substack{j \geq J \ \ell \in \mathbb{Z}}} \mathsf{d}_{j,\ell} \, \psi_{j,\ell}(t) \end{aligned}$$

Outlook (for $\mathcal{L}(\mathbb{R})$)

The set of functions

$$\mathcal{H} = \Psi = \bigcup_{i \in \mathbb{Z}} \Psi_j = \{ \psi_{j,k}(t) ; j,k \in \in \mathbb{Z} \}$$

is a Hilbert basis in the space $\mathcal{L}(\mathbb{R})$

▶ This means that functions $f \in \mathcal{L}^2(\mathbb{R})$ can be written as

$$f(t) = \sum_{j,k \in \mathbb{Z}} \langle f | \psi_{j,k} \rangle \psi_{j,k}(t) = \sum_{j,k \in \mathbb{Z}} d_{j,k} \psi_{j,k}(t)$$