
Exercises for “Wavelet Transformationen in der Bildverarbeitung” WS 17/18

Task 5

Compression, closely oriented on the JPEG 2000 Standard

Christian Riess (christian.riess@fau.de)

1 Summary

JPEG2000 is an algorithm for image compression. It was standartized by the Joint Photographic
Experts Group in the year 2000. Although not widely adopted in practice, this algorithm
outperforms the older JPEG image compression on photographic pictures. At the core
of JPEG2000 lies a 2-D wavelet transform, but you will notice that there is a significant
amount of work around the wavelet transform, to make the image representation really
compact. Strictly speaking, the JPEG2000 standard defines a family of compression formats.
Lossless compression uses the wavelet CDF 5/3. Lossy compression uses the wavelet CDF 9/7
with additional quantization and omission of insignificant coefficients. In this exercise, we
implement a simplified version of the lossy compression scheme.

Here is an overview on the JPEG2000 encoding steps, with comments on variations in our
task:

1. Shifting of the input values to the domain of [−127; 128].
2. Conversion of RGB colors to another color space (omitted)
3. Image tiling for more efficient processing (omitted)
4. Multiresolution analysis with wavelet CDF 9/7 (slightly varied: we use bior4.4)
5. Level-adaptive quantization of the coefficients
6. Subdivision into small code blocks
7. Bit-level encoding of code blocks, and further bit-level processing (omitted)
8. Arithmetic coding (varied: we use Huffman coding)
9. Partitioning of coded data into packets (omitted)

Decoding of a JPEG2000 image inverts this processing chain.

2 Encoding and Decoding

Please use your methods mra2D and mrs2D from the previous exercise as a basis for this
implementation. Load an image and make sure that image height and image width are powers
of two. Throughout this worksheet, we assume that we only deal with 8 bit images (i.e.,
intensities range between 0 and 255).

1. First, shift the input values to a domain of [−127; 128].

2. Implement the function compress for encoding the input image. As CDF 9/7 is not part
of Matlab’s wavelet toolbox, we use here bior4.4. Use the Matlab function wfilters
to obtain the filter coefficients. Perform a 2-D multi-scale wavelet decomposition with
these filters.

3. Implement quantization of the obtained wavelet coefficients in the function quantize.
To achieve this, define first a matrix with the same size as the wavelet coefficients. Each
entry of this matrix shall contain the quantization level ∆b for the respective wavelet
coefficient.

Let the maximum decomposition level be L, and an intermediate level l, 0 < l ≤ L.
Furthermore, let τ denote a user-chosen quantization strength that is passed as an
argument to quantize. Then, ∆b is defined at

• Approximation (at level L): ∆b = 2−L
· τ

• DetailH, DetailV (at every level l): ∆b = 2−(l−1)
· τ

• DetailD (at every level l): ∆b = 2−(l−2)
· τ

The quantization levels are applied to the coefficients by using the equation

w′ = signum(w) ·
⌊
|w|
∆b

⌋
4. Implement the function encode for encoding the quantized coefficients. First, decompose

the coefficients into blocks of 8 × 8 entries. The goal is to have a stream of 8 × 8 blocks
representing the whole image. We will add processing for each 8 × 8 block in the
submethod encode_block (see description below). The result of encode_block is a list of
code numbers in the range of 0 and 64 (inclusively). Concatenate these numbers to a list
and perform Huffman coding to reduce the bitlength of the list. For Huffman encoding,
you may find the methods huffmandict and huffmanenco useful. In a real compression
algorithm, the Huffman dictionary would have to be stored together with the encoded
stream. We omit this step, and just return the encoded stream and the dictionary to the
calling function.

5. Implement the function encode_block for encoding a block of 8×8 quantized coefficients.
Decompose the coefficients into bit planes. First, it is necessary to find out how many
bit planes are required. This depends on the maximum value of the coefficients. Each
bit plane is subject to run length encoding. Thus, instead of storing the values of a bit
plane directly, store the number of subsequent zeros and ones. For example, “11100010”
becomes “3311”. If the bit plane starts with a zero, the resulting sequence shall also
start with a zero. For example, “00011101” becomes “03311”. Note that matlab’s matrix
trickery allows run length encoding without an explicit for-loop. It may be worth to
google for or think about such a solution.

The fully encoded block shall first contain one number indicating the number of bit
planes, and then for each bit plane the number of values in the sequence, then the
sequence itself. Return this list of values to the calling function.

There is one important detail to take care of, prior to run length encoding: negative
coefficients must be represented. A good strategy is to append the sign to the binary

representation of a number. For example, “3” (binary “110”) becomes “1100”, “-3”
becomes “1101”.

6. Implement the function decode_block. It shall invert the function encode_block, i.e.,
undo the run length encoding for each bit plane, and reconstruction of the bit plane. This
is a great opportunity to test your implementation of the block encoder and decoder: feed
artificial input to encode_block, and check whether a subsequent call to decode_block
leads to the original input. Please also test our method with negative coefficients and
zero coefficients.

7. Implement the function dequantize. First, construct the matrix of quantization levels.
Then, multiply the quantization levels to the coefficients.

8. Implement the function decompress. It calls decompress_block and dequantize. Then,
perform multiresolution synthesis using bior4.4.

3 Experiments with the Code

1. Make sure that what the code that you have implemented works. Compare the input
image with the output image by visualizing the differences between them, and by
computing the root mean squared error.

2. Think about the stream encoding as a whole: how does the subdivision into 8 × 8 blocks
interact with the Huffman encoding?

3. In encode_block, we appended the sign to the binary representation of a number. Why
is this a better strategy than, e.g., adding an offset to each number to end up with
all-positive values?

4. Evaluate different compression parameters τ: how do compression rate and deviations
from the original image change? (Approximately) compare your compression method
to JPEG 1992 images and the lossless PNG format. How well are we performing?

5. Finally, if you are curious, here is a link to a draft for the first ISO standard for JPEG2000:
http://nmdos.zesoi.fer.hr/projekt/2006-2007/jpg2000/Literatura/

JPEG2000_PosljednjiDraftNijeKonacnoISOIEC 15444-12000.pdf.

http://nmdos.zesoi.fer.hr/projekt/2006-2007/jpg2000/Literatura/JPEG2000_PosljednjiDraftNijeKonacnoISOIEC 15444-12000.pdf
http://nmdos.zesoi.fer.hr/projekt/2006-2007/jpg2000/Literatura/JPEG2000_PosljednjiDraftNijeKonacnoISOIEC 15444-12000.pdf

	Summary
	Encoding and Decoding
	Experiments with the Code

