Exercises for Pattern Analysis Marco Bögel, Sebastian Käppler Assignment 7, 23.06.2015

General Information:

Lecture (3 SWS):	Mo $08.30 - 10.00$ (H16) and Tue $08.15 - 09.45$ (H16)
Exercises (1 SWS):	Tue $12.15 - 13.15$ (02.134-113) and Thu $8.30 - 9.30$ (E1.12)
Certificate:	Oral exam at the end of the semester
Contact:	marco.boegel@fau.de
	sebastian.kaeppler@fau.de

Mean Shift Algorithm

- **Exercise 1** The mean shift algorithm can be used to determine a local maximum (or a saddle point) of a probability density function $p(\mathbf{x})$. In particular, it is feasible to determine the *mode* of the density. For a mathematical formulation of the mean shift algorithm, the Parzen window approach is used to model $p(\mathbf{x})$. The mean shift iterations are equivalent to a gradient ascent for $p(\mathbf{x})$.
 - (a) Outline the main steps of the mean shift algorithm.
 - (b) Derive the mean shift vector for the following kernels:
 - Epanechnikov kernel
 - Gaussian kernel

Exercise 2 Let $S = \{x_1, \ldots, x_n\}$ be a set of N = 8 samples defined as:

$$\mathcal{S} = \left\{ \begin{pmatrix} 0.1\\0.1 \end{pmatrix}, \begin{pmatrix} 0.1\\0.2 \end{pmatrix}, \begin{pmatrix} 0.2\\0.25 \end{pmatrix}, \begin{pmatrix} 0.3\\0.2 \end{pmatrix}, \begin{pmatrix} 0.5\\0.7 \end{pmatrix}, \begin{pmatrix} 0.7\\0.8 \end{pmatrix}, \begin{pmatrix} 0.8\\0.9 \end{pmatrix}, \begin{pmatrix} 0.9\\0.8 \end{pmatrix} \right\}$$

- (a) Draw the samples in the 2-dimensional feature space.
- (b) Perform one mean shift iteration and draw the corresponding mean shift vectors using the following starting points:
 - $\boldsymbol{x}^0 = \begin{pmatrix} 0 & 0 \end{pmatrix}^\top$ • $\boldsymbol{x}^0 = \begin{pmatrix} 1 & 1 \end{pmatrix}^\top$

Use the Epanechnikov kernel with kernel width $\lambda = 0.25$.

- (c) Sketch the mean shift vectors if the mean shift iterations are performed until convergence.
- (d) Explain how the mean shift algorithm can be used for an automatic clustering. How do you determine the number of clusters? Compare mean shift clustering to hard- and soft-clustering.
- **Exercise 3** Matlab exercise: In terms of image processing, the mean shift algorithm can be employed for edge-preserving smoothing. This filtering technique can be used to denoise images. The key idea of mean shift filtering is to represent each pixel of an image by a feature vector \boldsymbol{x} and to define a joint probability density

Figure 1: Noisy (left) and denoised image (right) using mean shift filtering.

function $p(\boldsymbol{x})$ for the image. Mean shift iterations are performed to find a local maximum of $p(\boldsymbol{x})$ next to a given pixel. For the sake of simplicity, we consider 2-dimensional, intensity (gray value) images. For details of mean shift for edge-preserving smoothing please refer to

Comaniciu, D. and Meer, P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (2002), Volume 24, Issue: 5, pp. 603 - 619

- (a) Define a feature vector \boldsymbol{x}_i to model the *i*-th pixel for a given input image. Explain how the feature vector can be extended to handle color images represented in the RGB color space.
- (b) Explain how the mean shift algorithm can be employed to denoise x_i . In particular, describe which parameters are required and explain the influence of the parameters to the outcome of mean shift.
- (c) Implement the edge-preserving smoothing using the mean shift algorithm. Without loss of generalization, we use the Epanechnikov kernel for the mean shift iterations.
- (d) Test your algorithm using synthetic image data:
 - Load the example *Cameraman* image.
 - Apply your mean shift algorithm to smooth the noisy image.
 - The width of the Epanechnikov kernel can be selected empirically by visual inspection of the denoised image.
 - Compare the input and the denoised image qualitatively.