Exercises for Pattern Analysis Marco Bögel, Sebastian Käppler Assignment 4, 19.05.2015

General Information:

Lecture (3 SWS) :	Mo $08.30 - 10.00$ (H16) and Tue $08.15 - 09.45$ (H16)		
Exercises (1 SWS):	Tue $12.15 - 13.15$ (02.134-113) and Thu $8.30 - 9.30$ (E1.12)		
Certificate:	Oral exam at the end of the semester		
Contact:	marco.boegel@fau.de		
	sebastian.kaeppler@fau.de		

${\bf CARTs-Classification}$

Category	Systolic		Diastolic
Normal	< 120	AND	< 80
Prehypertension	120 - 139	OR	80 - 89
High blood pressure			
Stage 1	140 - 159	OR	90–99
Stage 2	> 160	OR	> 100

Exercise 1 Blood pressure can be categorized as follows:

(Information was obtained from *National Institues of Health.*)

Design a binary classification tree for the four blood pressure categories.

- (a) Draw the hierarchical tree structure.
- (b) Draw the partitions of the tree in 2-D feature space.

Exercise 2 In a classification tree, an objective function I_j for a node j with a feature set S_j is used for the process of tree creation. This exercise examines the information gain function:

- (a) Write down the information-gain function I_j for a node j.
- (b) Write down the entropy function $H(S_j)$ for a node j and for N classes.
- (c) Show that the entropy function is a concave function. What is the benefit of this property with respect to numerical optimization methods?
- (d) Assume a classification problem with N = 2 classes is given. Simplify the general form of $H(\mathbf{S}_j)$ which is one-dimensional in this case.
- (e) For the case of N = 2 classes: Calculate the minimum and the maximum values of $H(\mathbf{S}_j)$ and draw the function in the interval [0, 1]
- (f) How does the concavity of the entropy function help to solve the overall optimization problem for the classification tree?

Exercise 3 Matlab exercise

The goal of this exercise is to implement the **information gain** as impurity measurement for a CART node.

- (a) Download the Matlab code from the exercise homepage.
- (b) *CART_example.m* generates some sample data for two classes and uses *train_cart_leavenode.m* to find a split for the data using the impurity measurement implemented in *information_gain.m*.
- (c) You only need to implement the information gain in *information_gain.m.* Everything else does not need to be changed.
- (d) Think about why the maximum of the information gain can not be obtained using an optimizer like gradient ascent.