Course overview

1. Geometry
2. Low & Mid-level vision

3. High level vision



Course overview

1. Geometry

- How to extract 3d information?
- Which cues are useful?
- What are the mathematical tools?



Linear Algebra & Geometry

why is linear algebra useful in computer vision?

References:

-Any book on linear algebral
-[HZ] - chapters 2, 4

Some of the slides in this lecture are courtesy
to Prof. Octavia I. Camps, Penn State University



Why is linear algebra useful in
computer vision?

* Representation

— 3D points in the scene
— 2D points in the image

e Coordinates will be used to
— Perform geometrical transformations
— Associate 3D with 2D points

* Images are matrices of numbers
— Find properties of these numbers



A WN —

Agenda

How did you like the movie¢ ©
Basics definitions and properties
Geometrical transformations

Application: removing perspective
distortion



Vectors (i.e., 2D or 3D vectors)

P =[xy,z]

3D world

Image



Vectors (i.e., 2D vectors)

A
V=(X1,X2) ”

Magnitude: || v = /X, + X,
If ||[V|=1, V Isa UNIT vector

V X, X,
— = Is a unit vector
vl v v

B X
Orientation: 6 =tan I[X j
1



Vector Addition

V+W = (xl,X2)+(y1, yz) — (X1 T Y, X, + yz)

v+w




Vector Subtraction

V=W =(X,X)=(Y,Y,) =X =Y. X, = ¥,)

V-W
\’
w



Scalar Product

av = a(xla Xz) — (axla axz)

av



Inner (dot) Product

V/ . a
Mw = (X1, X,) (Y1, Y2) = XY, +X,Y,

The inner product is a SCALAR!

VW =(X,X,) (Y,Y,) = V][ w] cosex

if viw, v-w=? =0



Orthonormal Basis
P - - )
20 v 1= (10) =1 -] =
P =0 =1
' x1
V=(X,X,) V=X,1+X,]

V-i=? =(x,1+x,))-1=x,1+x,0=Xx,

V- =(x,1+x,)) ]=x,.0+x,.1=Xx,



Vector (cross) Product

U=VXW

The cross product is a VECTOR!

Magnitude:|| u || =|| v- W [|=]| v ||| W || sin &

ulv=u-v=(vxw)-v=0
Orientation:
Uulw=u-w=(vxw)-w=0

if v/w? —>u=0



Vector Product Computation

i =(1,0,0) i|=1
j=(0,1,0) jlI=1 i-j=0 i'k=0 j-k=0
k =(0,0,1) KI|=1

U=VXW=(X,%, %)X (Y, ¥, Y;)

= (X2Y3 _X3Y2)i +(X3y1 _X1Y3)j+(X1Y2 _X2Y1)k



Matrices

a, &8, - ay
dy Ay o Ay
Avm =8 8 o &y >
_anl A, | Qg |
Pixel’s intensity value
: _ C. =a. +D.
Sum: Cnxm = Anxm + anm ij ij ]

A and B must have the same dimensions!

2 5] [6 2] [8 7
Example: 3 11711 51714 6



Matrices

a, 4, - a.i

d, Ay o Ay

an2 e a

nl nm

Product:

Cnxp — Anxm mgp

L

A and B must have
compatible dimensions!

Anxn ann 7 ann Anxn

_b11 b12 Im
b21 bzz b2m
anm = b31 b32 b3m
_bnl bn2 bnm_
bj
m
c;=a;-b; =) a,b,
k=1




Matrices

Transpose:
men = AT nxm (A+ B)T = AT + BT
Cij = a; (AB)' =B'A'
f A=A A is symmetric
Examples: 5 o
_ - Symmetric¢ No!
: 6 2 1 5]
{6 2} _{6 1} s {6 1 3}
15 2 5 3 g 2538 3 2 Symmetric?




Matrices

Determinant:
all al2 all a12
det|: = =4a;;d,, —a,,4,,
a21 a22 a21 22
all a'12 a'13
a'22 23 a'21 a23 a21
det| a a a,,|=a —a +a
21 22 23 11 12 13
a32 33 a’31 a33 a31
_a'31 a32 a33 |

A must be square

2 5
. det =2-15=-13
Example: L J




Matrices

Inverse:

Anxn A_lnxn — A_lnxn Anxn — |

-1
{an a;, } . 1 { d,, o al2:|
dy  dy a8, —8,a, | —ay a

A must be square




2D Geometrical Transformations



2D Translation




2D Translation Equation

P P=(X,Y)
- t=(tt,)

P'=P+t=(x+t,,y+t,)



2D Translation using Matrices

P=(XY)
t=(t,.t)
x+t. | [1 0

y+1

y




Homogeneous Coordinates

* Multiply the coordinates by a non-zero
scalar and add an extra coordinate equal to
that scalar. For example,

(X,y)—)(X'Z,y'Z,Z) z#0
(X,¥,Z) > (X-W,y-w,z-w,w) w=0



Back to Cartesian Coordinates:

* Divide by the last coordinate and eliminate it. For
example,

(X,¥,2) z#0—>(X/2,y/2)
(X,¥,Z,W) W=0—>(X/W,y/w,z/w)

 NOTE: in our example the scalar was 1



2D Translation using
Homogeneous Coordinates

tx

P'—

X+t

P=(Xy)—=>(XY.l)
t:(txa y)_)(txa ya) ;

y+ty

1







Scaling Equation

o
A - P=(x,y) > P'=(s;x,s,y)
___________ P
e P =(X,y) > (X, Y.])
P'=(5,X,8,¥) = (5,%X,8,Y,1)
X S, X

sx| [s, 0 O][x]| _ _

S'" 0
P'— Syy =0 Sy 0 ¢ Y |= -P=S.P

0 1

i 1 | _O 0 1_ _1_ - -




Scaling & Translating

P'=S-P
P/’ =T-P’

P'=T-P'=T-(S-P)=(T-S)P=A-P



Scaling & Translating

1 0 t |ls, O Ofx
P'=T-S-P={0 1 t,t|0 s, O|y|=

0 0 1[0 Lf1]
s. 0 t |x]| - x| [s.x+t,

S t

=| 0 sytyyzolyzsyy+ty

0O O 11| - Ly
A



Translating & Scaling
= Scaling & Translating ¢

1 0 t s, 0 0| x S 0 t.o || X _SXX-I-'[X_
P"=T-S:P=|0 1 ¢t |0 s, Ofly|=|0 s, t |y|=]s,y+t,

0 0 1y__o oy 1f1] |o 0y ly__l_ N
s, 0 0]l1 0 t |x
P'"=S.T-P=] 0 Sy 00 1 ty Y| =
0 0 10 0 I ]J1]
_SX 0 Sxtx__X_ _sxx—l-SXtX_




Rotation




Rotation Equations

Counter-clockwise rotation by an angle 6

X'=cosO x—smby

y'=cos0 y+sm0 x

X'| [cos@ —sin@

y'| |smn@ cosO

P'=R P




Degrees of Freedom

X'| [cos@® —sin@] x

y'| |sn@ cosO |y

R is 2x2 m—> 4 elements

Note: R belongs to the category of normal matrices
and satisfies many interesting properties:

R.RT=R"-R=1
det(R) =1



Rotation+ Scaling +Translation

P'=(TRS)P
(1 0 t |[cos® —sin® Ofs, 0 Ofx]
P'=T-R-S-P=|0 1 t | smnb cos® 0|0 s Ofy
0 0 1] 0 0 1o 0 1]1
(cos® —sin® t |[s, 0 Ofx
=|sin® cosO t (|0 s, Ofy|=
0 o0 L]0 0 IA--I-/ If s,=s,, this is a
o o g similarity
X 1l x :
R’ tIIS 0 R'S t transformation!
o 1o 1|77 o 1]’
_1_ __1_




Transformation in 2D

-lsometries
-Similarities
-Affinity

-Projective



Transformation in 2D

X R ( X X
Isometries: y' {o J y|=H.|y
[Euclideans] 1 1 1]

- Preserve distance (areas)
- 3 DOF
- Regulate motion

of rigid object




Transformation in 2D

X X X
.« . . e ' sR t
Similarities: y'I=1, lY[=H:|Y
i 1 | _1_ _1_
- Preserve
- ratio of lengths
- angles

-4 DOF




Transformation in 2D

[ X' A 4 (X | (X
Affinities: y' :{o J y|=H,|y
1 1 1

dyjp Ay S 0
A{ } ~R(6)-R(~¢)-D-R(¢) D{S }

a a
21 22 Sy

oA «4
=3 ) N
<k [ — A




Transformation in 2D

X A ¢ X X
Affinities: y' :{o J y|=H,|y
1 1 1

dyjp Ay s, 0
A:{ } =R(0)-R(-¢)-D-R(9) D:{O S}

-Preserve:
- Parallel lines
- Ratio of areas
- Ratio of lengths on
collinear lines
- others...

- 6 DOF

A




Transformation in 2D

Pd X | [ X |
p . _I_. . o At _H
rojecrive: }1’ b i’ = 0, i’

- 8 DOF

- Preserve:
- cross ratio of 4 collinear points
- collinearity
- and a few others...




_—o

ransformation in 2D




Removing perspective distortion

(rectification)

= g o :
.--I. | "-- - . 3
| ‘*' 'llii. -
! | T A T|.|. A = 15
i AIED SRR T TS gy

TR § B T e
Joh., Leidy et e b g'_|‘""_-FI-'!‘E | el John Leidy







Computing H,

- 8 DOF
- how many points do | need to estimate H ¢

At least 4 points! (8 equations)

- There are several algorithms...



DLT algorithm (Direct Linear Transformation)




DLT algorithm (direct Linear Transformation)

unknown
: [
X! xHx. =0 — A, h=0
-
Function of
(h1)T measurements
h' 1 hy ha hsl
h: hE . H= .Il!_| h,r_., h‘lj.
h? he he e Homogenous
— system!

ox1



DLT algorithm (direct Linear Transformation)

How tosolve A. h =0 2

Singular Value Decomposition (SYD)!



Eigenvalues and Eigenvectors

E1gen relation
Au=Au

Matrix A acts on vector u and produces a scaled version of
the vector.

Eigen 1s a German word meaning ““proper” or “specific”
u is the eigenvector while A is the eigenvalue.



Eigenvalues and Eigenvectors

The eigenvalues of A are the roots of the
characteristic equation

0(A) = det(Al — A) =0

STAS=A=

diagonal form of matrix

Eigenvectors of A are columns of S



Singular Value decomposition

« Singular values: Non negative square roots of the
eigenvalues of A*A. Denoted ¢, i=1,...,n

« SVD: It A 1sareal m l;y 1 matrix theI; there exist
orthogonal matrices U (€ R”*") and V (€R"*") such

that

U'AV=X=




Properties of the SVD

Suppose we know the singular values of A and we know
¥ are non zero

= Oy .. 28,2 gy = . =B~
— Rank(A) =r.
— Null(A) = span{v ., seesV,}
— Range(A)=span{uy,...,u }
A||F'= 0,/°+ o t.. + 0 4[],= o;
Numerical rank: It k singular values of 4 are larger than
a given number € Then the € rank of A 1s £

Distance of a matrix of rank » from being a matrix of
ran_k k = O-k+1



Why 1s 1t useful?

Square matrix may be singular due to round-ott errors.
Can compute a “regularized” solution
- x=Ab=(UZ Vt)1b = yuby,

-1 O'
If o; 1s small (vanishes) the solution “blows up”™
Given a tolerance € we can determine a solution that 1s
“closest” to the solutlon of y{he (l))ngmal equation, but that

u
does not “blow up” x, = c; ;- c,>€, 0,,,5¢
i=1 i

Least squares solution 1s the x that satisfies
AAx=A'b
can be effectively solved using SVD



DLT algorithm (direct Linear Transformation)

A2X9

1

h
How to solve| A .[[h|= 0 2

A
A
A

. h
h

2

v =

0
O —> A2N><9 h9><1 — O

|
U 2nx9 D 9><9V T 9x9

Last column of V gives h! = H]

0




Next lecture

Cameras models




Appendix:
DLT algorithm (direct Linear Transformation)

From:

Multiple View Geometry in Computer Vision,
by R. Hartley and A. Zisserman, Academic Press, 2002



4.1 The Direct Linear Transformation (DLT) algorithm

We begin with a simple linear algorithm for determining H given a set of four 2D to 2D
point correspondences, x; «+ X;. The transformation is given by the equation x| = Hx;.
Note that this is an equation involving homogeneous vectors; thus the 3-vectors x; and
Hx; are not equal, they have the same direction but may differ in magnitude by a non-
zero scale factor. The equation may be expressed in terms of the vector cross product
as X, x Hx; = 0. This form will enable a simple linear solution for H to be derived.



4.1 The Direct Linear Transformation { DLT) algorithm 89
If the j-th row of the matrix H is denoted by h’", then we may write
h'TJ{-
HK,‘ = h?TK,'
11"”]{,-
Writing x’ = (2!, y/, )7, the cross product may then be given explicitly as

yhiTx, — w'h®Tx,

x X Hx; = | w'h'Tx; — 2’'h*Tx;

r'h*Tx; — y'h' Tx,

SincehTx, = x/h forj =1,.... 3, this gives a set of three equations in the entries
of H, which may be written in the form
0" —wix!  yx' h'
wix] 0T —ax]T h? | =0. (4.1)
—yx!  rix! o' h?

These equations have the form A;h = 0, where A; 1s a 3 > 9 matnix, and h is a 9-vector
made up of the entries of the matrix H,

h! hy ha hy

(4.2)
h _— h'z . H= h_| h.r} hﬁ,
h:! JIIT' hy, hg].
with fi; the i—th elen..... .. ... e s ansn i 2 s s waeeenONS A€ 1N Order

here.



(i) The equation A;h = 0 is an equation linear in the unknown h. The matrix
elements of A; are quadratic in the known coordinates of the points.

(ii) Although there are three equations in (4.1), only two of them are linearly inde-
pendent (since the third row is obtained, up to scale, from the sum of ! times
the first row and ¥ times the second). Thus each point correspondence gives ‘
two equations in the entries of H. It is usual to omit the third equation in solv-
ing for H ([Sutherland-63]). Then (for future reference) the set of equations

becomes
of  —wx  yx] h.l
I T T T h* | =0. (4.3)
X, 0 — X, h?
This will be written
ﬂih — D

where A; is now the 2 x 9 matrix of (4.3).

(iii) The equations hold for any homogeneous coordinate representation (-, y/, w!)7
of the point x!. One may choose w = 1, which means that (x!,y!) are the
coordinates measured in the image. Other choices are possible, however, as
will be seen later.




90 4 Estimation - 2D Projective Transformations

Solving for H

Each point correspondence gives rise to two independent equations in the entries of H.
Given a set of four such point correspondences, we obtain a set of equations Ah = 0,
where A is the matrix of equation coefficients built from the matrix rows A; contributed
from each correspondence, and h is the vector of unknown entries of H. We seek a
non-zero solution h, since the obvious solution h = 0 is of no interest to us. If (4.1) is
used then A has dimension 12 x 9, and if (4.3) the dimension is 8 x 9. In either case
A has rank 8, and thus has a 1-dimensional null-space which provides a solution for h.
Such a solution h can only be determined up to a non-zero scale factor. However, H is
in general only determined up to scale, so the solution h gives the required H. A scale
may be arbitrarily chosen for h by a requirement on its norm such as ||h|| = 1.



4.1.2 Inhomogeneous solution

An alternative to solving for h directly as a homogeneous vector is to turn the set of
equations (4.3) into a inhomogeneous set of linear equations by imposing a condition
fi; = 1 for some entry of the vector h. Imposing the condition h; = 1 is justified by
the observation that the solution is determined only up to scale, and this scale can be
chosen such that i; = 1. For example, if the last element of h, which corresponds to
Has, 1s chosen as unity then the resulting equations derived from (4.3) are

l" lJ v l" i ) TLPT
0 0 0 —zow; —yw; —waw; Ty, Wy, i —w;Yy,
T N ! - | ! ——
Tiw, YW, wyw, 0 (J () — T, YT Wi,

where h is an 8-vector consisting of the first 8 components of h. Concatenating the
equations from four correspondences then generates a matrix equation of the form
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