Gonvex Optimization of the Sammon Iransformation

Final presentation

Susanne Westphal
02/17/2014
Computer Science Dept. 5 (Pattern Recognition)
Friedrich-Alexander University Erlangen-Nuremberg

Convex Optimization of the Sammon Transformation

- Motivation
- Derivation
- Weighted Inner Product Objective Function
- Convexity
- Results
- Real Data

■ Outlook \& Conclusion

- Questions?

Motivation

- In 1969 John Sammon published an article about a non-linear mapping for data structure analysis
- It is a mapping from a high-dimensional space to a lower-dimensional space
- The inner-point distances of the points are preserved as good as possible
- The Stress Function is an indicator for size of the difference of the inner-point distances in the different spaces
- For finding the best fitting points in the low-dimensional space we have to minimize this equation

Sammon Stress Function:

$$
E=\frac{1}{\sum_{i<j} d_{i j}} \sum_{i<j}^{N} \frac{\left(d_{i j}-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}\right)^{2}}{d_{i j}}
$$

$d_{i j}$ are the inner-point distances in the original space
$\boldsymbol{x}_{i}, \boldsymbol{x}_{j}$ are the projected points in the low-dimensional space

Fields of Application

- face recognition
- speech recognition
- sensor localization
- shape matching
- and many more

Objective of the Thesis

- Finding a convex function by using Lagrange Multipliers
- It should have the same properties as the Sammon Mapping
- And also a small Sammon Error

Questions ...

- Sounds a bit unlikely that there exists such a function...
- Nobody had the idea before ...
- And I should be able to do it ...

Derivation

Lagrange Multipliers

Optimization problem:

$\operatorname{minimize}$	$f_{0}(\boldsymbol{x})$
subject to	$f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m ;$
	$h_{i}(\boldsymbol{x})=0, \quad i=1, \ldots, p ;$

Lagrange Multipliers

Optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\boldsymbol{x}) \\
\text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m ; \\
& h_{i}(\boldsymbol{x})=0, \quad i=1, \ldots, p ;
\end{array}
$$

The Lagrangian is defined as:

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\boldsymbol{x})
$$

Forming the Lagrangian

Objective function: $\quad f_{0}(\boldsymbol{x})=0$
Constraint: $\quad d_{i j}^{2}=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2} \forall i, j$

Forming the Lagrangian

Objective function: $\quad f_{0}(\boldsymbol{x})=0$
Constraint: $\quad d_{i j}^{2}=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2} \forall i, j$

Then the Lagrangian is:

$$
L(\boldsymbol{x}, \boldsymbol{\nu})=\sum_{i, j} \nu_{i j}\left(d_{i j}^{2}-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}\right)
$$

We can define matrices A and B,

$$
\begin{gathered}
\boldsymbol{A}=\left(a_{i j}\right)=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2} \\
\boldsymbol{B}=\left(b_{i j}\right)=\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}
\end{gathered}
$$

so that

$$
B=-\frac{1}{2} H A H
$$

if the points are centered around the origin.
\boldsymbol{H} is defined as:

$$
\boldsymbol{H}=\boldsymbol{I}_{n}-n^{-1} \boldsymbol{J}_{n}
$$

\boldsymbol{I}_{n} is the identity matrix with size $(n \times n)$ and \boldsymbol{J}_{n} is a $(n \times n)$-matrix of ones.
$\boldsymbol{H} \in \mathbb{R}^{n \times n}$ has the rank $n-1$. So we can solve the equation for \boldsymbol{A} using the pseudo-inverse:

$$
\boldsymbol{A} \cong-2 \cdot \boldsymbol{H}^{\dagger} \boldsymbol{B} \boldsymbol{H}^{\dagger}
$$

for a high number of points:

$$
\begin{aligned}
& \cong-2 \cdot \boldsymbol{I}_{n} \boldsymbol{B} \boldsymbol{I}_{n} \\
& =-2 \cdot \boldsymbol{B}
\end{aligned}
$$

So our Lagrangian is:

$$
L(\boldsymbol{x}, \boldsymbol{\nu})=\sum_{i j} \nu_{i j}\left(d_{i j}^{2}+2 \cdot \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right)
$$

ν has to be a symmetric matrix, in our case it is defined as the constraint itself.

The new target function

$$
L(\boldsymbol{x})=\sum_{i} \sum_{j}\left(2 \cdot\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle+d_{i j}^{2}\right)^{2}
$$

$d_{i j}$ are the inner-point distances in the original space. $\boldsymbol{x}_{i}, \boldsymbol{x}_{j}$ are the projected points in the low-dimensional space.

It really works!!!

Our objective function
Sammon Objective Function

4D Cube

Our objective function

Sammon Objective Function

Swiss Roll

Our objective function

Sammon Objective Function

Swiss Roll

Weighted Inner Product Objective Function

Improvement of the actual target function

We want to have:

- Non-linear projection
- Smaller distances should be weighted stronger

Improvement of the actual target function

We want to have:

- Non-linear projection
- Smaller distances should be weighted stronger

So we introduce a weighting factor as it is done in the Sammon Objective Function.

The new target function looks like this:

$$
L(\boldsymbol{x})=\sum_{p} \sum_{q>p} \frac{\left(2 \cdot\left\langle\boldsymbol{x}_{p}, \boldsymbol{x}_{q}\right\rangle+d_{p q}^{2}\right)^{2}}{d_{p q}}
$$

This leads to instabilities due to small inner-point distances. So we add a factor k :

$$
L(\boldsymbol{x})=\sum_{p} \sum_{q>p} \frac{\left(2 \cdot\left\langle\boldsymbol{x}_{p}, \boldsymbol{x}_{q}\right\rangle+d_{p q}^{2}\right)^{2}}{d_{p q}+k}
$$

We can weight the smaller distances stronger by a quadratic denominator:

$$
L(\boldsymbol{x})=\sum_{p} \sum_{q>p}\left(\frac{2 \cdot\left\langle\boldsymbol{x}_{p}, \boldsymbol{x}_{q}\right\rangle+d_{p q}^{2}}{d_{p q}+k}\right)^{2}
$$

4D Cube

linear denominator, $k=3.5$

quadratic denominator, $k=7$

Swiss Roll 1

linear denominator, $k=1.0$

quadratic denominator, $k=10$

Swiss Roll 2

linear denominator, $k=0.2$

quadratic denominator, $k=0.5$

Which k-factor is the best one?

Which k-factor is the best one?

Linear denominator:

3D Cube

Swiss Roll

Which k-factor is the best one?

Linear denominator:

3D Cube

- If the principal components have about the same length a smaller k is better
- Otherwise a PCA is a good solution, and the solution of the WIPOF with a big k is similar to a PCA

Which k-factor is the best one?

Quadratic denominator:

3D Cube

Swiss Roll

Which k-factor is the best one?

Quadratic denominator:

3D Cube

Swiss Roll

- In general a big k-factor is better
- But exceptions exist

Convexity

Convexity

Weighted Inner Product Objective Function

Sammon Objective Function

Results

Results in numbers

Linear denominator:

function	SOF	PCA	WIPOF (best k)
Swiss(0.4, 20, 5)	0.0115	0.0160	$\mathbf{0 . 0 1 5 9}$
Swiss(1.0, 20, 8)	0.0360	0.0390	$\mathbf{0 . 0 3 8 7}$
Swiss(0.1, 20, 8)	0.00266	0.00508	$\mathbf{0 . 0 0 4 7 9}$
Cube(1.0, 3, 0.05, 10)	0.0677	$\mathbf{0 . 0 7 5 9}$	0.0934
Cube(1.0, 4, 0.25, 10)	0.0960	0.105	$\mathbf{0 . 1 0 1}$
Cube(1.0,5, 0.1,5)	0.131	0.139	$\mathbf{0 . 1 3 6}$

Tab.: Comparison of WIPOF with PCA and SOF

Results in numbers

Quadratic denominator:

function	SOF	PCA	WIPOF (best k)
Swiss(0.4, 20, 5)	0.0115	$\mathbf{0 . 0 1 6 0}$	0.0173
Swiss(1.0, 20, 8)	0.0366	$\mathbf{0 . 0 3 9 0}$	0.0436
Swiss(0.1, 20, 8)	0.00266	$\mathbf{0 . 0 0 5 0 8}$	0.00747
Cube(1.0, 3, 0.05, 10)	0.0650	0.0763	$\mathbf{0 . 0 7 3 4}$
Cube(1.0, 4, 0.25, 10)	0.0884	0.115	$\mathbf{0 . 1 0 9}$
Cube(1.0,5, 0.1,5)	0.124	0.151	$\mathbf{0 . 1 4 0}$

Tab.: Comparison of WIPOF with PCA and SOF

TECHNISCHE FAKULTAAT

Real Data

Pathological speech data

2D presentation with the Sammon Objective Function

With the WIPOF..... very bad results..... but why??????

Graph of the Sammon Error over the optimization:

Pathological Speech Data

Movement Fields of MR

Best results of all iteration steps

Weighted Inner Product Objective
Function (quadratic denominator)
Error: 0.0342

Sammon Objective Function Error: 0.000448

Weighted Inner Product Objective Function (linear denominator) Error: 0.30170

Sammon Objective Function Error: 0.1064

Possible causes (1)

Small size of principal components.

Possible causes (1)

Small size of principal components.

- The principal components of the real data are on average smaller.

Possible causes (1)

Small size of principal components.

- The principal components of the real data are on average smaller.

But:

Possible causes (1)

Small size of principal components.

- The principal components of the real data are on average smaller.

But:

- A Hypercube, with additional dimensions of noise, still converges to a good result

Possible causes (1)

Small size of principal components.

- The principal components of the real data are on average smaller.

But:

- A Hypercube, with additional dimensions of noise, still converges to a good result
- A PCA of the real data, before the optimization, does not affect the result

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu
- Many points

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu
- Many points

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu
- Many points
- Mean value equal to zero

Possible causes (2)

The three conditions from the derivation have to be fulfilled.

- Symmetric nu
- Many points
- Mean value equal to zero

Possible causes (3)

Outliers

Possible causes (3)

Outliers

Some points have a bigger distance to the origin than the others. Ignoring them leads to good results with the pathological speech data.

Error: 0.1440

Outlook \& Conclusion

Still existing questions:

Still existing questions:

- Why are outliers a problem?
- How can we make the function more stable?
- Is there a possibility to predict a good k-factor?

Still existing questions:

- Why are outliers a problem?
- How can we make the function more stable?
- Is there a possibility to predict a good k-factor?

What we have:

Still existing questions:

- Why are outliers a problem?
- How can we make the function more stable?
- Is there a possibility to predict a good k-factor?

What we have:

- A new target function
- A logical derivation
- Convexity
- Quite good results

Questions?

The End

