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• In 1969 John Sammon published an article about a non-linear mapping
for data structure analysis

• It is a mapping from a high-dimensional space to a lower-dimensional
space

• The inner-point distances of the points are preserved as good as
possible

• The Stress Function is an indicator for size of the difference of the
inner-point distances in the different spaces

• For finding the best fitting points in the low-dimensional space we have
to minimize this equation
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Sammon Stress Function:

E =
1∑

i<j dij

N∑
i<j

(dij − ||x i − x j ||2)2

dij

dij are the inner-point distances in the original space

x i , x j are the projected points in the low-dimensional space
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Fields of Application

• face recognition

• speech recognition

• sensor localization

• shape matching

• and many more
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Objective of the Thesis

• Finding a convex function by using Lagrange Multipliers

• It should have the same properties as the Sammon Mapping

• And also a small Sammon Error
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Questions . . .

• Sounds a bit unlikely that there exists such a function . . .

• Nobody had the idea before . . .

• And I should be able to do it . . .
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Derivation
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Lagrange Multipliers

Optimization problem:

minimize f0(x)
subject to fi(x) ≤ 0 , i = 1, ...,m;

hi(x) = 0 , i = 1, ..., p;

The Lagrangian is defined as:

L(x ,λ,ν) = f0(x) +
m∑

i=1

λi fi(x) +
p∑

i=1

νihi(x)
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Forming the Lagrangian

Objective function: f0(x) = 0

Constraint: d2
ij = ||x i − x j ||22 ∀i, j

Then the Lagrangian is:

L(x ,ν) =
∑

i,j

νij(d2
ij − ||x i − x j ||22)
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We can define matrices A and B,

A = (aij) = ||x i − x j ||22

B = (bij) = x>i x j

so that
B = −1

2
HAH

if the points are centered around the origin.

H is defined as:
H = In − n−1Jn

In is the identity matrix with size (n × n) and Jn is a (n × n)-matrix of ones.
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H ∈ Rn×n has the rank n − 1. So we can solve the equation for A using the
pseudo-inverse:

A ∼= −2 · H†BH†

for a high number of points:

∼= −2 · InBIn

= −2 · B

So our Lagrangian is:

L(x ,ν) =
∑

ij

νij(d2
ij + 2 · x>i x j)

ν has to be a symmetric matrix, in our case it is defined as the constraint
itself.
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The new target function

L(x) =
∑

i

∑
j

(2 · 〈x i , x j〉+ d2
ij )

2

dij are the inner-point distances in the original space.
x i , x j are the projected points in the low-dimensional space.
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It really works!!!

Our objective function Sammon Objective Function

4D Cube
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Our objective function Sammon Objective Function

Swiss Roll

02/17/2014 | S. Westphal | CS Dept. 5, FAU Erlangen-Nuremberg | Convex Optimization of the Sammon Transformation 16



Our objective function Sammon Objective Function
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Weighted Inner Product Objective
Function
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Improvement of the actual target function

We want to have:

• Non-linear projection

• Smaller distances should be weighted stronger

So we introduce a weighting factor as it is done in the Sammon Objective
Function.

The new target function looks like this:

L(x) =
∑

p

∑
q>p

(2 · 〈xp, xq〉+ d2
pq)

2

dpq
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This leads to instabilities due to small inner-point distances. So we add a
factor k :

L(x) =
∑

p

∑
q>p

(2 · 〈xp, xq〉+ d2
pq)

2

dpq + k

We can weight the smaller distances stronger by a quadratic denominator:

L(x) =
∑

p

∑
q>p

(
2 · 〈xp, xq〉+ d2

pq

dpq + k

)2
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4D Cube

linear denominator, k = 3.5 quadratic denominator, k = 7
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Swiss Roll 1

linear denominator, k = 1.0 quadratic denominator, k = 10
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Swiss Roll 2

linear denominator, k = 0.2 quadratic denominator, k = 0.5
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Which k -factor is the best one?

Linear denominator:

k
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• If the principal components have about the same length a smaller k is

better

• Otherwise a PCA is a good solution, and the solution of the WIPOF with
a big k is similar to a PCA
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Which k -factor is the best one?

Quadratic denominator:

er
ro

rε

0.15
0.13
0.11
0.09
0.07
0.05

0.1
0

0.2

0

0.1

0.2

0.3 2
4

6
8

10

0.3

0

Minima

standard deviation k

3D Cube

0.08

0.04

0
0

0.02

0.04

0.06

0.08

0.1

0.2

0.6

1

1.4

1.8
2

0

4
6

8
10

er
ro

rε

Minima

kgap

Swiss Roll

• In general a big k -factor is better

• But exceptions exist
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Convexity
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Convexity
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Results
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Results in numbers

Linear denominator:

function SOF PCA WIPOF (best k )
Swiss(0.4, 20, 5) 0.0115 0.0160 0.0159
Swiss(1.0, 20, 8) 0.0360 0.0390 0.0387
Swiss(0.1, 20, 8) 0.00266 0.00508 0.00479
Cube(1.0, 3, 0.05, 10) 0.0677 0.0759 0.0934
Cube(1.0, 4, 0.25, 10) 0.0960 0.105 0.101
Cube(1.0, 5, 0.1, 5) 0.131 0.139 0.136

Tab.: Comparison of WIPOF with PCA and SOF
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Results in numbers

Quadratic denominator:

function SOF PCA WIPOF (best k )
Swiss(0.4, 20, 5) 0.0115 0.0160 0.0173
Swiss(1.0, 20, 8) 0.0366 0.0390 0.0436
Swiss(0.1, 20, 8) 0.00266 0.00508 0.00747
Cube(1.0, 3, 0.05, 10) 0.0650 0.0763 0.0734
Cube(1.0, 4, 0.25, 10) 0.0884 0.115 0.109
Cube(1.0, 5, 0.1, 5) 0.124 0.151 0.140

Tab.: Comparison of WIPOF with PCA and SOF

02/17/2014 | S. Westphal | CS Dept. 5, FAU Erlangen-Nuremberg | Convex Optimization of the Sammon Transformation 30



Real Data

02/17/2014 | S. Westphal | CS Dept. 5, FAU Erlangen-Nuremberg | Convex Optimization of the Sammon Transformation 31



Pathological speech data Movement fields of MR data

2D presentation with the Sammon Objective Function
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With the WIPOF..... very bad results..... but why??????

Graph of the Sammon Error over the optimization:
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Best results of all iteration steps

Weighted Inner Product Objective
Function (quadratic denominator)
Error: 0.0342

Sammon Objective Function
Error: 0.000448
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Weighted Inner Product Objective
Function (linear denominator)
Error: 0.30170

Sammon Objective Function
Error: 0.1064
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Possible causes (1)

Small size of principal components.

• The principal components of the real data are on average smaller.

But:

• A Hypercube, with additional dimensions of noise, still converges to a
good result

• A PCA of the real data, before the optimization, does not affect the result
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Possible causes (2)

The three conditions from the derivation have to be fulfilled.

• Symmetric nu

• Many points

• Mean value equal to zero
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Possible causes (3)

Outliers

Some points have a bigger distance to the origin than the others.
Ignoring them leads to good results with the pathological speech data.

Error: 0.1440
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Outlook & Conclusion
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Still existing questions:

• Why are outliers a problem?

• How can we make the function more stable?

• Is there a possibility to predict a good k -factor?

What we have:

• A new target function

• A logical derivation

• Convexity

• Quite good results
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Questions?
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The End
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