Unsupervised Unstained Cell Detection using SIFT Keypoint Clustering and Laplacian Boundary Potential (2)

Firas Mualla 27.01.2014 Pattern Recognition Lab (CS 5)

Outlines

- Reminder of our supervised cell detection system
- Unsupervised approach
- Evaluation
- Conclusion & outlook

Reminder

TECHNISCHE FAKULTÄT

The system

So far!

- + Fully automatic cell detection
- + High detection rate
- + High scores in scale-, orientation-, and illumination-invariance
- + General design
- Needs training

Unsupervised approach

27.01.2014 | Firas Mualla | Pattern Recognition Lab (CS 5) | Unsupervised Cell Detection Approach

System overview

Blob type detection ? or Positive Negative < 0.5 > 0.5 $\omega_i = \frac{s(\mathbf{p}_i)}{\text{score}(\mathbf{p}_i)}$ PositiveFit = $\frac{\sum_{i=1}^{N} \omega_i |DOG(\mathbf{p}_i)| H(DOG(\mathbf{p}_i))}{\sum_{i=1}^{N} \omega_i |DOG(\mathbf{p}_i)|}$ • $s(\mathbf{p}_i)$: scale of the keypoint \mathbf{p}_i .

- $\operatorname{score}(\mathbf{p}_i)$: non-circularity measure.
- $\mathbf{p}_i, i = 1..N$ are the keypoints in the image.
- $DOG(\mathbf{p}_i)$: difference of Gaussians value.
- H is the Heaviside step function.

System overview

Mean scale computation

$$SE = \frac{\sum_{i=1}^{M} |DOG(\mathbf{p}_i)| s(\mathbf{p}_i)}{\sum_{i=1}^{M} |DOG(\mathbf{p}_i)|}$$

- $s(\mathbf{p}_i)$: scale of the keypoint \mathbf{p}_i .
- $DOG(\mathbf{p}_i)$: difference of Gaussians value.
- \mathbf{p}_i , i = 1..M are the one-sided keypoints (after blob type detection).

System overview

Smoothing

- Image is smoothed with a Gaussian kernel.
- Its standard deviation is the previous mean scale.
- Applying SIFT again:
 - The new keypoints are more stable.
 - Their number is considerably less.

System overview

Keypoint clustering

- K-means clustering
- Clusters which correspond to 1D Otsu thresholding of the DOG values are used as initialization.
- City-block distance measure
- Modality-specific features:
 - DOG and score were used in phase contrast.
 - DOG and intensity were used in bright-field.
- Applying SIFT again seems to have considerable effect on the result!

System overview

Cell keypoint clustering

• Back to intuition:

Cell SIFT keypoints

Artificial inner and cross profiles

Sample inner profiles

- Randomly sample M_1 keypoints from the resulting cell keypoints.
 - Use a triangular distribution in scale.
 - M_1 was set to 100 in our experiments.
- For each keypoint \mathbf{p}_i , pick a random angle θ_i and extract a profile between the following two points:
 - \mathbf{p}_i
 - $-\mathbf{p}_i + (\mathbf{s}(\mathbf{p}_i)\mathbf{cos}(\theta_i), \mathbf{s}(\mathbf{p}_i)\mathbf{sin}(\theta_i))$
- Assign label "inner" to the extracted profiles.

Sample cross profiles

- Compute the pairwise Euclidean distance matrix of the cell keypoints.
- Randomly pick M_2 distances more than $C \cdot SE$:
 - $-M_2$ was set to 100.
 - -C was set to 10.
- Assign label "cross" to the corresponding profiles.

Boundary potential

- Laplacian of Gaussian L of the smoothed image is used as boundary potential.
 - L(blob-type * L > 0) = 0, (blob-type = +1 or -1)
 - L = |L|

Image of CHO cells and its boundary potential

Training

- Extract features which are invariant to profile length.
 - Currently we use max(L) along the extracted profile.
- Use the extracted features to train a Bayesian classifier with Gaussian class conditional densities.

Cell keypoint clustering

- For each cell keypoint:
 - Find its K-nearest neighbors (K=3).
 - Classify the corresponding profiles using the Bayesian classifier.
- Similar to the supervised approach:
 - Agglomerative hierarchical clustering
 - Linkage method: average

Evaluation

27.01.2014 | Firas Mualla | Pattern Recognition Lab (CS 5) | Unsupervised Cell Detection Approach

Bright-field

- 16 images
- Three cell lines
- More than 3500 manually labeled cells
- Ground truth type: border delineation

Sf21 cells

L929 cells

Phase contrast

- 11 images
- One cell line
- More than 1100 cells
- Ground truth type: dot at each cell center

HeLa cells

Results

	СНО	L929	Sf21	HeLa
F-Measure	80.58~%	84.31~%	88.26~%	85.72~%

Comparison with state-of-the-art: bright-field

	Mualla et al.[1]	Our approach	Becattini et al.[2]
F-measure	87.85~%	81.24~%	69.64~%

One CHO image was used to train [1] and the rest of the CHO images were used for evaluating the three approaches

[1] Mualla F, Schöll S, Sommerfeldt B, Maier A, Hornegger J (2013) Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Trans Med Image 32(12):2274–2286.

[2] Becattini et al "A novel framework for automated targeting of unstained living cells in bright field microscopy," in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2011, pp. 195–198.

Comparison with state-of-the-art: phase contrast

	Arteta et al.[3]	Our approach
F-Measure	87.95~%	85.74~%

[3] C. Arteta, V.S. Lempitsky, J.A. Noble, and A. Zisserman, "Learning to detect cells using non-overlapping extremal regions", ;in Proc. MICCAI (1), 2012, pp.348-356.

Conclusions & outlook

27.01.2014 | Firas Mualla | Pattern Recognition Lab (CS 5) | Unsupervised Cell Detection Approach

Conclusions

- We have an unsupervised approach which has competitive performance compared to supervised state-of-the-art approaches on bright-field and phase contrast microscopy.
- Smoothing with mean image scale seems to provide:
 - Stable keypoints
 - Very good boundary potential between cells
- Use extreme cases when you do not have ground truth.

Outlook

- More features?
- More clever inner/cross profile selection?
- Bottleneck: Background / cell clustering

Thank you very much!

27.01.2014 | Firas Mualla | Pattern Recognition Lab (CS 5) | Unsupervised Cell Detection Approach