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Pattern Recognition Pipeline 

n  Classification 
§  Statistical classifiers 

§  Bayesian classifier 
§  Gaussian classifier 

§  Polynomial classifiers 
§  Non-Parametric classifiers 

§  k-Nearest-Neighbor density estimation 
§  Parzen windows 
§  Artificial neural networks 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	



Learning Training samples 
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Probability Estimates 

n  A Bayesian classifier decides for the class with the 
highest posterior probability. 

n  We can compute which class maximizes the 
posterior probability by exploiting the Bayesian rule 
and using the prior class probability            and the 
class-conditional likelihood            : 
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Probability Estimates – Special Cases 

n  In the special case of a Gaussian classifier, there 
exists a parametric density function (i.e. normal 
distribution) that describes the class-conditional 
density. 

 

n  In that case one can use Maximum Likelihood 
Estimation to obtain values for the parameters of 
the probability density function (pdf): the mean      
and the covariance      . 
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Probability Estimates – General 

n  Often, we have no information about the model of 
the underlying probability density function, about 
how the features are distributed. 

n  How can we obtain estimates of the posterior 
probability, or the class prior or the likelihood? 

n  We could try to approximate the distribution of the 
features with a more general model like a mixture of 
Gaussians, or we use a non-parametric approach. 

n  Non-parametric classifiers are specifically 
designed for handling non-parametric 
representations of probability densities. 
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Non-Parametric Density Estimators 

n  The various types of non-parametric classifiers differ 
from one another by the kind of non-parametric 
density estimator that they use. 

n  A non-parametric density estimator is the term used 
for describing a methodology for estimating the 
probability density function of a random variable 
from a finite sample set. 

n  The simplest nonparametric density estimator is the 
histogram estimator, where we obtain pdf 
estimates by computing the relative frequencies in a 
histogram. 
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Histogram Estimator 

n  Formally, a histogram is a function g(i) that counts the number 
of observations that fall into each of b disjoint categories 
(known as bins).  If N is the total number of observations then 
the histogram function must satisfy the following equation: 

n  The graph of a histogram is merely one way to represent a 
histogram. 
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N = g(i)
i=1

b

∑

Histogram of the Lena image courtesy of J.-M. Vezien http://www.limsi.fr/Individu/vezien/trima.html   
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Histogram and Relative Frequencies 

n  By counting how many samples fall within each bin 
one can compute relative frequencies. 

n  For scalar features, it is straightforward to obtain 
relative frequency estimates. The probability that the 
scalar feature c1 has the particular value v is: 

n  Estimating the probability of a particular value 
occurring simply involves counting. 
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p(c1 = v) =
m
N
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A Realistic Example 

n  Consider a training data set of N=106 (1 million) samples. 
The Compaq skin database for example is composed of 
2000 images with 22.669.739 skin pixels and 
149.119.846 non-skin pixels. 

n  Assume a 15-dimensional feature vector,            . 
n  Let us construct a histogram with b=10 bins in each of the 

15 dimensions. 

n  We have a total of 1015 bins. 
n  There are many more bins than feature vectors. 
n  Even in the best case scenario, where our training 

samples are nicely spread and we get no duplicates, we 
still have at least 1015-106 empty bins. 
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Remarks on Histograms 
n  There is no "best" number of bins. 
n  Methods have been developed for determining the 

optimal number of bins, but they generally make 
strong assumptions about the shape of the 
distribution. 

n  Different bin sizes can reveal different characteristics 
of the data. 

n  The appropriate bin width is typically determined via 
experimentation. 

n  In a similar manner, the end points of the bins can 
affect the resulting estimated density. 

n  Lastly, histograms, unlike pdfs are discontinuous. 
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Region-Based Approach 

n  What is the probability that a particular feature 
vector      will fall within a specific sub-volume 
(region), say R, of the feature space? 

n  If we knew the probability density function it would 
be straightforward to compute such a probability. 

n  The probability of observing a feature     in a specific 
sub-region R of the feature space (if the density 
function is known) is: 

 where V is the volume of region R. 
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Regions and Class-Conditional Probabilities 

n  Assume that all the features vectors that fall in 
region R are all associated with class Ωκ and that all 
the features vectors that belong to class Ωκ fall in 
region R. 

n  One can then get an estimate of the class-conditional 
probability for class Ωκ as follows: 

 where g(κ) is the number of samples in region R, i.e. 
in class Ωκ. 
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Remarks on Region-Based Approaches 

n  Thus, using regions and knowing the pdf one can 
measure                     and when regions are 
associated with classes             .   

n  Region-based density estimators provide good class-
conditional approximations when the volumes are 
infinitesimally small,          , and            .  

n  Histograms can be seen as a special case of a 
region-based approach, where all regions have V=1. 

n  How do we estimate P if we don't have the pdf? 

n  How do we compute the size of the volume V?   
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Relative Frequency 

n  Assume we have N training samples which are 
uniformly distributed. 

n  Using the binomial distribution we can compute the 
probability that K samples (out of the N) fall within 
the region R as: 

 where P in this equation is the probability of having 1 
feature vector fall in region R. Recall that                    
and we are examining one feature at a time.  
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Relative Frequency – Mean Value 

n  According to the binomial distribution, the expected 
value of K is: 

 

n  This equation indicates that when we compute the 
relative frequencies (i.e. how many samples fall 
within a region over the total number of samples), 
we get as a mean the P we were looking for. 

n  In other words from the relative frequencies we can 
get an unbiased estimate of P. 
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Relative Frequency - Variance 

n  Similarly, according to the binomial distribution the 
variance of K is: 
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E{(K − NP)2} = NP(1− P)
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divide both sides with N2 

n  This last equation indicates that as             the 
variance in relative frequencies, K/N, approaches 0.  
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N→∞

n  So relative frequencies have a mean that is 
approximately P and a variance that approaches 0 
for an infinitely large sample set.  
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Conclusions on Relative Frequencies 
n  For uniformly distributed training samples: 
1.  The expected value of relative frequencies is P. 
2.  If             , the variance of the relative frequencies 

approaches 0. 
n  These two facts imply that the probability density 

function of the relative frequencies p(K/N) is sharply 
peaked. 

n  Recall that                      and that given P one can 
estimate the likelihood                                .  

n  Thus, one can obtain density estimates of  the class-
conditional density by analyzing relative frequencies 
in different regions of feature space.   
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Density Estimation from Relative Frequencies 

n  Recall that: 

n  Thus: 

n  We have also shown that for uniform distributions from 
the relative frequencies we obtain an estimate of P:  

n  Hence, from the relative frequencies we can also get an 
estimate of        :  
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Remarks on Density Estimation  

n  The larger the size of the training set N, the better. 
n  The smaller the volume V, the more accurate the estimate. 
n  So what is the right choice for V? 
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p( c ) =
K

NV

n  Option 1: Use a fixed value for K and find the 
corresponding V from the data 

=> K-nearest-neighbor (fix K, look for a V) 

n  Option 2: Use a fixed volume V and find the corresponding 
value of K  from the data 

=> kernel-based density estimation (fix V, look for a K) 
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K-Nearest Neighbor Density Estimation 
n  A K-nearest neighbor classifier, assigns a feature 

vector         to the class that gets the majority vote 
among its K nearest neighbors in feature space. 

n  How does this relate to                      ?    
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p( c ) = K NV( )

  

€ 

 c new

n  Grow a sphere centered around       . Stop when it is 
big enough to hold K samples. The volume of the 
sphere is the volume V. 
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Density Estimation – Fixed K 

n  The volume V is a function of K,         . 
n  Thus, we now have: 
 

n  Different K values will give different pdf estimates. 
n  The larger the K the smoother the pdf estimate. 
n  From the simplest viewpoint, a classifier that uses 

K-nearest neighbor density estimation, is a K-
nearest neighbor classifier. 

n  From a Bayesian viewpoint, such a classifier uses 
the K-nearest neighbors to obtain a posterior 
probability estimate.  
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K-NN Density Estimates and Bayes Classific. 
n  Assume we have N training samples                 . 

n  Let Nκ of these N features belong to class Ωκ. 

n  Assume L disjoint classes: 

n  Consider a sphere around     large enough to hold K 
features. Then 

1. The class conditional density is 

 where Kκ is the number of features in the sphere 
that belong to class Ωκ. 

2. The pdf of the feature space is 

3. The class prior is   
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K-NN Density Estimates and Bayes Classific. 

n  According to the Bayesian decision rule: 
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n  So to maximize the posterior probability one has to 

maximize the ratio Kκ/K. One must decide for the 
class that has the most samples in the sphere that 
includes just K features.  
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A K-NN Theorem 

n  Recall that pB is the error probability of the ideal 
Bayesian classifier and is the lower limit in the 
probability of misclassification that we can achieve. 

n  Let pNN be the error probability of the 1-nearest 
neighbor classifier. Then as            : 

 where M is the number of classes.  
n  For the K-nearest neighbor classifier as           : 
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Conclusions on the K-NN Classifier 

n  So the K-nearest neighbor classifier, though simple 
has a pretty good performance. 

n  So why bother with other more complex classifiers? 

n  We need to store all the training samples and use 
them during each classification decision. 
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Kernel Density Estimation 

n  Recall that for uniformly distributed samples 

n  We have already examined how we can obtain an 
estimate of the pdf by selecting a value for K and allowing 
V to vary. 

n  We can also fix V and allow K to vary. This is called kernel 
density estimation. 

n  Kernel density estimation is a fundamental data 
smoothing problem, where inferences about the 
population are made based on finite set of data samples.  

n  It is also known as the Parzen-Rosenblatt window(s) 
method, or just Parzen window(s). 
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Main Concept of Parzen Windows 

n  Recall that we said that two of the problems with 
histograms is that the obtained estimates : 
§  depend on the width of the bins  
§  depend on the endpoints of bins 

n  Kernel density estimators, remove the dependence 
on the end points of the bins, by centering each of 
the bins (more appropriately hypecubes) at each 
data point. 

n  The width of the block can vary. 

n  So instead of the bins of the histogram we have 
hypercubes of side length h, which center around 
each feature vector    .   
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Hypercube 

n  Our goal is to approximate                   , where V is 
the volume of a region R in which K samples exist. 
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p( c ) = K
NV

n  Let us assume that the 
region R we are considering 
is a d-dimensional hypercube 
(i.e. we are in d-dimensional 
feature space) with side 
length h. 

n  The volume of the hypercube 
is: 
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Kernel Function 

n  As a first step we need to measure distances within 
and around the hypercube, 

n  Given a new feature vector     and a training sample 
compute a normalized distance vector     between 
them: 

n  The vector     is normalized by the length of the cube.  
n  A kernel function can then be defined as: 

n  This uniform kernel function returns 1 if the sample is 
inside the hypercube of length 1 and 0 otherwise. 
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Use of the Hypercube and Kernel Function 

n  An equivalent way of defining the uniform kernel 
function is: 

n  Use: Given a new feature vector    , we center the 
hypercube at     and examine how many of the 
feature vectors in our training set fall inside the 
hypercube. 

n  The number of features that fall in a hypercube 
around     is: 
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Hypercubes in Feature Space 

n  Hypercubes can overlap.  
n  It depends on the data. 

c1 

c3 

c2 
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Density Estimation Using Kernel Functions 

n  Our goal is to estimate                    . 
n  We know N, the number of our training samples.  
n  We know V,           . 

n  We can use the kernel function to compute K: 

n  Thus, we can estimate the pdf as follows:  
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Kernel Functions 

n  Like the histogram, the uniform kernel function also 
has discontinuities. 

n  Thus, in practice other kernel functions are used that 
result in a smoother estimated density. 

n  For example, a Gaussian (a.k.a. normal) kernel is 
commonly used:  

n  Another widely used kernel is the biweight or quartic: 
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Plots of Different Kernel Functions 
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Density Estimation – Parzen Windows 

n  The number of samples K, that fall inside the 
hypercube is a function of        . 

n  Thus, for Parzen windows we have: 
 

n  Different hypercube sizes values will give different 
pdf estimates. 

n  A feature vector       will be recognized as belonging 
to the class that gets the majority vote in the 
hypercube centered at      . 

n  Parzen windows are a general tool for estimating 
probability density functions from discrete samples. 
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Remarks on Kernel Density Estimation 

n  Computing K using a kernel function involves all 
samples in the training set. Thus, obtaining a pdf 
estimate can become a costly operation, especially 
as N becomes very very large (a desirable property). 

n  Kernel based density estimation is basically a 
superposition of (smeared) hypercubes. 

n  The bins are not predefined (as in the case of 
histograms), but depend on data. 

n  As in K-nearest neighbor the entire training data 
must be available at classification time. 

n  As in histogram the width of the bins can affect the 
resulting pdf estimates. 
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Hypecube Size 

n  The width of the hypercube h directly controls the 
smoothness of the resulting pdf. 

n  A large h, in this case h=0.1 can result in 
underfitting or oversmoothing. 
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Hypecube Size - oversmoothing 

n  As h decreases, in this case h=0.05 the amount of 
smoothing decreases. 
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Hypecube Size – reasonable smoothing 

n  As h decreases further, in this case h=0.02 the 
approximation better captures the attributes of the 
sample data. 
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Hypecube Size – overfitting 

n  As h decreases even further, in this case h=0.005 
the approximation ends up overfitting the sample 
data. 
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