Seminar New Iterative Reconstruction Methods in Medical Imaging

Kerstin Müller, Jana Hutter 03.05.2013 Pattern Recognition Lab (CS 5)

TECHNISCHE FAKULTÄT

Requirements & Information

TECHNISCHE FAKULTÄT

Course Assessment: 2 Options

Option "Implementation"

- Implementation of a conference paper (C++ MR framework)
- Appointments by requirement
- Short report (~2 pages)
 - Implementation overview, results
- Presentation (30 min)

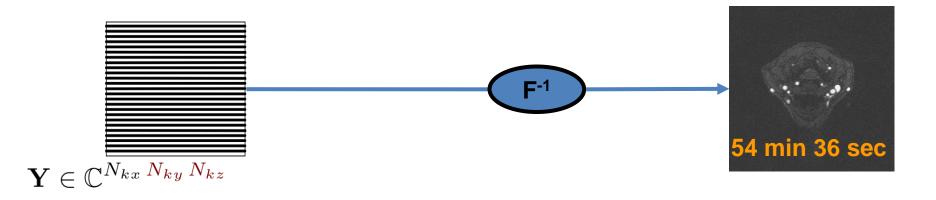
Option "Review"

- Review of a journal paper (~10-15 pages)
- Presentation (30 min)
- Attendance of the reconstruction colloquium (Thursday 9:00 10:30)
- Long report (~10 pages):
 - Introduction/ Context
 - Content of the paper
 - Problems for the choosen application

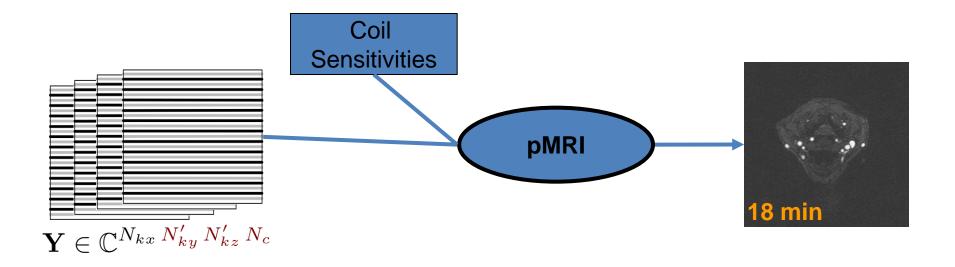
Iterative Magnetic Resonance Reconstruction - **Basics**

TECHNISCHE FAKULTÄT

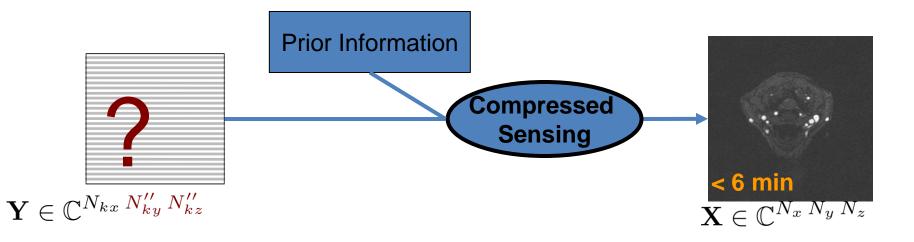
Acquisition details – Reconstruction of undersampled data



Acquisition details – Reconstruction of undersampled data



Acquisition details – Reconstruction of undersampled data



03.05.2013 | NIRM | Pattern Recognition Lab (CS 5) |

Iterative Reconstruction

 $f(\mathbf{I}) = D(\mathbf{I}) + \alpha R(\mathbf{I})$

- The target function $f({\bf I})$ is composed of the data fidelity term $D({\bf I})$ and the regularization function $R({\bf I})$
- The solution is found iteratively by solving the minimization problem $\mathbf{I}^{k+1} = \operatorname*{argmin}_{\mathbf{I}^k} f(\mathbf{I}^k)$

Iterative Reconstruction

$$f(\mathbf{I}) = D(\mathbf{I}) + \alpha R(\mathbf{I}) = \sum_{j}^{Y} \left| \left| \mathbf{PFC^{j}I} - \mathbf{M^{j}} \right| \right|_{2}^{2} + \alpha R(\mathbf{I})$$

- The data fidelity term includes the pMRI reconstruction algorithm switching between
 - Multiple coil k-space data $\mathbf{M}^{\mathbf{j}} \in \mathbb{C}^{N_k imes 4N_t}$
 - The actual image estimate $\mathbf{I} \in \mathbb{C}^{N imes 4N_t}$
- The data fidelity term contains
 - Coil Sensitivity maps
 - Fourier Coefficient Matrix
 - Sampling Pattern matrix

$$\mathbf{C^{j}} \in \mathbb{C}^{N imes N}$$

 $\mathbf{F} \in \mathbb{C}^{N_{k} imes N}$

 $\mathbf{P} \in \mathbb{C}^{N_k \times 4N_t}$

MR Options

• Option "Review"

Kim D., Dyvorne H., Otazo R., Feng L., Sodickson D., Lee V.: "Accelerated Phase-Contrast Cine MRI Using k-t SPARSE-SENSE", MRM 67:1054-1064 (2012)

- Phase Contrast MRI
- 2 step iterative reconstruction
- Special Focus on Temporal FFT + Temporal PCA

MR Options

Framework Introduction Monday 06.05. 15:00

Option "Implementation"

Löcher: "L1-SPIRiTphase for Separate Magnitude and Phase Reconstruction with a Divergence Penalty for 3D Phase-Contrast Flow Measurements", ISMRM (2012)

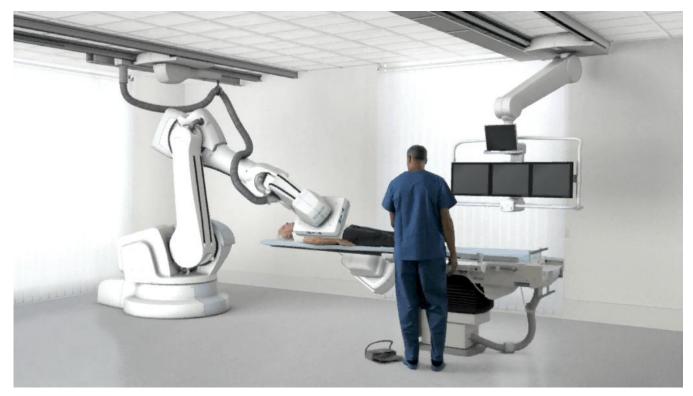
- Implementation of the divergence-free constraint into the MR framework
- Phase Contrast MRI (blood flow data)

$$f(\mathbf{I}) = D(\mathbf{I}) + \alpha R(\mathbf{I}) = \sum_{j}^{Y} ||\mathbf{PFC^{j}I} - \mathbf{M^{j}}||_{2}^{2} + \alpha R(\mathbf{I})$$
Wavelet PCA
Total Variation Divergence-free

Iterative Reconstruction to improve Cardiac Imaging with C-arm CT

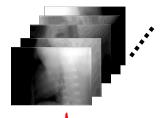
03.05.2013 | NIRM | Pattern Recognition Lab (CS 5) |

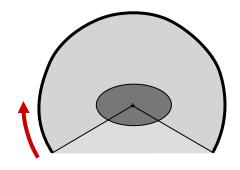
Cardiac C-arm CT imaging

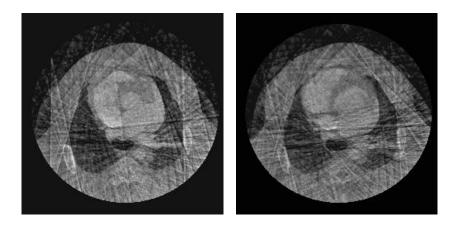


Artis zeego C-arm system. Image taken from Siemens AG, Healthcare Sector.

ECG-gating

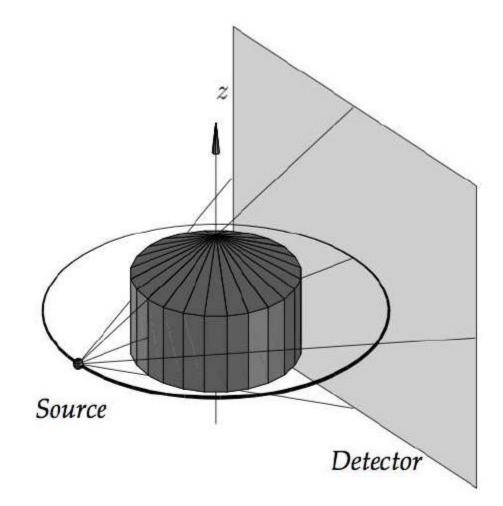


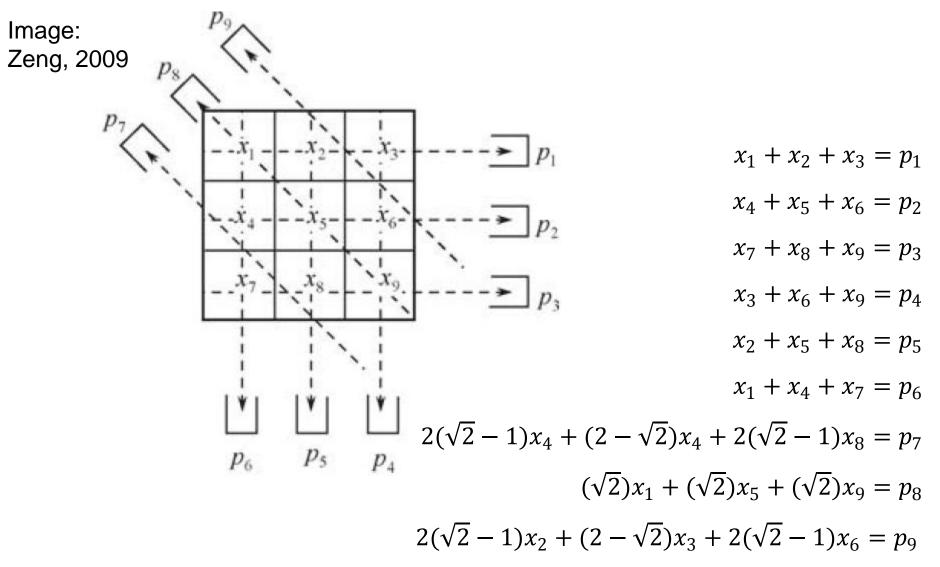




FDK reconstruction of a relative heart phase of 30% and 80%. Image courtesy of Fahrig Lab, RSL, Department of Radiology, Stanford University (W 1530 C 650 HU).

Geometry: Cone-beam geometry





Linear Equation System

• Rewrite to

AX = P

with

$$X = (x_1, x_2, ..., x_9)^\top$$

 $P = (p_1, p_2, ..., p_9)^\top$

- A is the system matrix with elements a_{ii}
- The a_{ij} describe the contribution of each voxel to each ray

Linear Equation System

For larger systems solutions of

$$AX = P$$

with

$$X = A^{-1}P$$
$$X = (A^{\top}A)^{-1}A^{\top}P$$
$$X = A^{\top}(AA^{\top})^{-1}P$$

are infeasible (Gauss-Seidel, SVD, etc.)

⇒ Solution that does not require the inversion of *A* or a product of *A* is desirable

03.05.2013 | NIRM | Pattern Recognition Lab (CS 5) |

Algebraic Reconstruction Technique (ART)

• Idea: Find an iterative solution of AX = P using Kaczmarz' method:

• For each pixel p_i and each row A_i of A perform the following update:

$$\boldsymbol{X}^{k+1} = \boldsymbol{X}^k + \frac{p_i - A_i \boldsymbol{X}^k}{A_i \boldsymbol{A}_i^{\mathsf{T}}} \boldsymbol{A}_i^{\mathsf{T}}$$

• Repeat until convergence

ART Extensions

- Slow convergence is the main drawback of ART
- Extensions aim at improving convergence speed
- Compute update using more than one projected pixel:
 - Simultaneous ART (SART): Multiple updates at the same time and combine the result
 - Simultaneous Iterative Reconstruction Technique (SIRT): Compute update once per iteration
- Use intelligent methods to select the order of the update equations (Ordered Subsets)
- Use more realistic models within the system matrix

Regularizations

- Introduction of additional information into the reconstruction process to enforce a certain property of the solution
- Advantageous, if the problem is underdetermined
- Additional weighting terms used to suppress noise or artifacts

Papers

• Option "Review"

Jia et al.,,4D Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization", MICCAI (2010)

- 4D-CT reconstruction
- Temporal Non-local Means (TNLM)
- Alternating two step algorithm

Papers

• Option "Review"

Jia et al.,,GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization", PMB (2011)

- Cone-beam CT (CBCT)
- Iterative tight frame (TF) based algorithm

Papers

• Option "Review"

Sidky et al.,,A constrained, total-variation minimization algotihm for lowintensity x-ray CT", MP (2011)

- Low intensity x-ray CT
- Based on steepest-descent and projection onto convex sets (SD-POCS)