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What is Color? 
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What is Color? 

  We use the same word to denote 2 different things. 

  Consider for example the color of an object. 

  We can use the word color to refer to the color we 
perceive an object has. 
  Subjective (influence by culture, individual differences on people’s 

optic system) 
  Vague descriptors (e.g. fuschia, mauve, lilac... How does a mauve 

object differ from a lilac one?)  

  We can use the word color to describe the part of 
the visible light that is not absorbed by the object. 
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Outline 

  The importance of color (other presentation) 

  Color in physics 

  Trichromatic color 

  Color perception 

  Color capture 

  Applications 
  Specular Highlights 
  Color Constancy 
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Physics of Color 

  Color is a property related to the wavelength of the EM 
spectrum. It is only applicable over the visible range. 
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Spectral Distribution 

  Most objects emit/reflect light at a collection of wavelengths. 

  At different wavelengths they emit/reflect a different “amount” of 
light. 

  If we know the amount of emitted/reflected light for each 
wavelength, then we know the spectral distribution (or spectrum) 
of an object. 

  Lasers by definition are single wavelength light sources (i.e. for 
HeNe lasers 632.8nm) 
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Measurements by E. Koivisto. 

Sample Flower Spectra 
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Spectral Irradiance 

  Irradiance: power of light falling on a surface patch 

  Measured in W/m2 

  Spectral Irradiance: power of light falling on a 
surface patch per unit wavelength 

  Measured in W/m3 

€ 

E =
dP
dA

€ 

E λ =
d2P
dAdλ
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Spectral Radiance 

  Radiance: power of light falling on a surface patch 
from a specific direction 

  Measured in W/sr*m2 

  Spectral Radiance: power of light falling on (emitted 
from) a surface patch from a specific direction for a 
unit wavelength 

  Measured in W/sr*m3 

€ 

L =
d2P

dωdAcosϑ

€ 

Lλ =
d3P

dωdAcosϑdλ
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Light Sources 

  The biggest body of work in computer vision focuses on 
surfaces that reflect light. 

  In order to observe such a surface, there must be light falling 
on the surface. 

  The same object can produce different spectral (ir)radiances 
depending on the spectrum of the incident light. 
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The Color of Light Sources 

  In order to understand/analyze the color of an object we need 
to know the color of the incident illumination. 

  Different types of light sources produce different illumination 
spectra. 

  One can talk about 
  Indoor Illumination 
  Outdoor Illumination 

  Under indoor illumination we can have different types of light 
sources: 
  Incandescent lamps 
  Fluorescent lamps 
  Arc lamps 

  There is an overlap between indoor and outdoor illumination. A 
large number of these lights are black body radiators. 
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Measurements by J. Parkkinen and P. Silfsten.   

Violet         Indigo Blue      Green             Yellow            Orange                 Red 

Illuminant Spectra 
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Measurements by H. Sugiura.   

Spectra of Fluorescent Light 
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Black Body Radiators 

  Black body: A body (object) that reflects no light. 

  If we heat a black body (e.g. the sun, the filament 
in an incandescent light bulb) it will start emitting 
EM radiation. 
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Spectrum of Black Body Radiators 

  The spectrum of a black body radiator (BBR) 
depends only on the temperature of the black body. 

  Planck’s law closely approximates the spectrum of a 
BBR, that is why BBRs are often also called 
Planckian Illuminants.  

€ 

I(λ,T) =
2hc
λ5

1
e
hc
λkT −1

h: Planck’s constant 
c: speed of light in vacuum 
k: Boltzmann’s constant 
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BBRs and Real Illuminants 

  Incandescent lamps are black body radiators. 

  The sun is a black body radiator. A BBR at 5780°K 
closely approximates the sun spectrum. 

  Though the earth’s atmosphere scatters short 
wavelengths more than the longer ones, we still 
treat outdoor light as a black-body radiator. For the 
sky we use a BBR of higher temperatures: 
  Overcast sky, BBR at 7000°K 
  Clear blue sky, BBR at 10,000°K  

  Fluorescent lamps are not black body radiators. 
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Relative spectral 
power of two 
standard illuminant 
models. D65 models 
sunlight, and 
illuminant A models 
incandescent lamps.  
Relative spectral 
power is plotted 
against wavelength in 
nm.  The visible 
range is about 400nm 
to 700nm.   

Violet         Indigo Blue      Green             Yellow            Orange                 Red 

Standard Illuminant Spectra 
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The Color of Surfaces 

  A large variety of mechanisms affect the color of surfaces. 
  Reflection 
  Refraction 
  Diffraction 
  Scattering 

  The physics community looks at light interaction at the 
microscopic level and has complex models that can describe a 
variety of light and surface interactions. 

  The computer vision community bundles all these effects into 
macroscopic models which describe how the color will change 
as the geometry and the illumination changes. 

  Example reflectance model for diffuse+specular reflection: 

€ 

L(P,ϑ o,φo,λ) = ρd (P,λ) L(P,ϑ i,φi,λ)cosϑ i
Ω

∫ (P)dω +

+ρs(P,λ)L(P,ϑ s,φs,λ)cos
n (ϑ s(P) −ϑ o(P))
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Trichromacy 

  In Computer Vision and Computer Graphics we 
could do all the color computations using a 
continuous color space (full spectrum). 

  However, experiments have shown that for most 
people a combination of three basis colors, formally 
known as three primary colors, is sufficient to 
represent the entire color space that we can sense. 

  So most algorithms in CV and CG operate in 
trichromatic space.  

  Space and time efficiency 

  Early work inspired by CG and sensors which have a human 
observer. 
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Trichromacy Experiment 

  Observer faces a monitor with a black background. A 
test light is presented in one half. The observer is 
asked to adjust a mixture of lights in the other half 
until the 2 lights are perceived to have the same color. 

  For most observers adjusting three primary colors was 
sufficient in order to match the two colored lights. 

  In other words, any light T can be described as: 

    where  

€ 

T = w1P1 + w2P2 + w3P3

€ 

w1,w2,w3 ≥ 0
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More Trichromacy Results 

  Almost any perceived color can be expressed as a 
linear combination of three primary colors. 

  For the three colors to be primary colors they have 
to be: 
  independent  
  span the space of perceived color. 

  Most observers select the same mixture of primaries 
(same wi's) 

€ 

T = w1P1 + w2P2 + w3P3
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Grassmann’s Laws 

  In 1853 H.G. Grassmann developed a theory on color 
mixing that became known as Grassmann’s Laws. 

“If two simple but non-complementary spectral 
colors be mixed with each other, they give rise to 
the color sensation which may be represented by a 
color in the spectrum lying between both and 
mixed with a certain quantity of white.” 

  Consider 2 colored lights Ta and Tb: 

€ 

Ta = wa1
P1 + wa2

P2 + wa3
P3

€ 

Tb = wb1
P1 + wb2

P2 + wb3
P3
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Grassmann’s Laws (continued) 

1.  Mixing the lights = Mixing the weights (matches) 

2.  If two lights are matched by using the same weights 
(matches) then they must be the same. 

3.  Matching is linear: 

€ 

wai
= wbi

,∀i⇒ Ta = Tb

€ 

kTb = kwb1
P1 + kwb2

P2 + kwb3
P3

€ 

Ta + Tb = (wa1
+ wb1

)P1 + (wa2
+ wb2

)P2 + (wa3
+ wb3

)P3
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Human Physiology 

  For most people there are 4 distinct receptors, 3 cones and 1 
rod, on the retina. 

  Each cone is sensitive to a different part of the visible 
spectrum, roughly blue, red and green. 

  Red cones "fire" when red light falls on them, etc. 

  Rods "fire" in low light and fire independent of the wavelength 
(as long as it is in the visible range) 
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Cones 

  The distribution of cones and rods varies in people. 

  The response (sensitivity) to different wavelengths 
varies among people. 

  Three types of cones: 
  L cones: respond most to light of long wavelengths, typically peak at 

red,  near 564–580nm. 
  M cones: respond most to light of medium wavelengths, typically 

peak at green-yellow, near 534–545nm. 
  S cones: respond most to light of short wavelengths, typically peak 

at blue, near 420–440nm. 
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Metamerism 

  The reduction of full spectral information down to 3 
values, introduces a significant loss of information. 

  Metamerism: the phenomenon where distinct 
spectra produce the same trichromatic response.  
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Standardized Trichromatic Color 

  CIE Commision International d'Eclairage was established in 
order to develop color standards (similar to IEEE for electronic 
engineering). 

  First goal was to standardize the three primaries. 

  CIE XYZ primaries: 
  x(λ): small peak at 440nm, large peak at 590nm, local minimum 

at 490nm, sensitive from 380 to 700nm. 
  y(λ): single peak at 548nm, sensitive from 400 to 700nm. 
  z(λ): single peak at 430nm, sensitive from 380 to 550nm. 
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€ 

X = I(λ)x(λ)dλ
0

∞

∫

Y = I(λ)y(λ)dλ
0

∞

∫

Z = I(λ)z(λ)dλ
0

∞

∫

Spectrum to CIE XYZ. 

  The CIE xyz primaries are formally known as the 
CIE color matching functions. 

  Given a spectrum I(λ), one can compute the CIE X, 
Y, Z tristimulus values as follows: 
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RGB:  primaries are 
monochromatic, energies 
are 645.2nm, 526.3nm, 
444.4nm.       

Color matching functions 
have negative parts -> 
some colors can be 
matched only 
subtractively. 

RGB Color Matching Functions 
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CIE XYZ Color Space 
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A qualitative rendering of 
the CIE (x,y) space.  

The horseshoe-like region 
represents visible colors.   

Each slice, typically shows 
a constant brightness 
section of the color space.  

There are sets of (x, y) 
coordinates that don’t 
represent real colors, 
because the primaries are 
not real lights (so that the 
color matching functions 
could be positive 
everywhere). 

CIE  Color Space  
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A plot of the CIE (x,y) 
space. The spectral 
locus (the colors of 
monochromatic lights) 
and the black-body 
locus (the colors of 
heated black-bodies) is 
shown, as well as  the 
range of typical 
incandescent lighting. 

Illuminants in CIE  Color Space  
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HSV Hexcone 
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CIE XYZ vs. RGB cube 
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At the center of the ellipse is the color of a test light. The size of the ellipse 
represents the scatter of lights that the human observers matched to the test color. 
The boundary of the ellipses corresponds to just noticeable differences.  
The ellipses on the left have been magnified 10x for clarity. On the right they are 
plotted to scale.  
The ellipses are known as MacAdam ellipses after their inventor.  

Color Matching in CIE x,y Space 
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CIE u’, v’ is a 
projective 
transformation of 
the CIE x,y space. 

We transform (x,y) 
points so that 
ellipses are more 
similar.   

Distance metric in 
CIE u’,v’ space are 
more uniform. 

Color Matching in CIE u’,v’ Space 
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Color Cameras- review 

  Most color cameras give a triplet of color values per pixel 
(R,G,B). 

  Either a separate chip is used per color, or a filter composed of a 
mosaic of smaller individual color filters is laid over the CCD chip.   

          Bayer filter 

50% G, 25% R, 25% B 3 CCD chip 

     RGBE filter 
equal distribution 

Images courtesy of Wikipedia  htttp://en.wikipedia.org  Image courtesy of Canon   

htttp://www.usa.canon.com/tro  
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Incident Irradiance on Sensor 

  Under orthographic projection, the amount of light (incident 
irradiance) arriving at a pixel p for a particular color filter k (e.g. 
k=R,G,B) depends on: 

1.  The spectral irradiance          of the light falling on the surface. 

2.  The spectral reflectance                         of the surface patch 
projected on the pixel p (e.g. Lambertian, or Specular or a 
mixture). 

3.  The spectral response           of the kth color filter of the sensor. 

  Thus, the value at pixel p for color filter k is: 

€ 

E(λ)

€ 

S(λ,ϑ i,φi,ϑ r,φr )

€ 

σ k (λ)

  

€ 

pk = σ k (λ)S(λ,ϑ i,φi,ϑ r,φr )E(λ)
I(λ)

         
dλ

λ

∫
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Camera Spectral Sensitivities 

  solid line: 3CCD Sony DXC-755P (as published by Oulu University) 

  dashed line: 3CCD Sony DXC-930 (as published by K. Barnard) 
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Camera Spectral Sensitivities 2 

  Canon 40D and Nikon D200. Both Bayer pattern sensors, Canon 40D 
uses a CMOS chip, while Nikon D200 uses a CCD chip. (images 
courtesy of http://www.maxmax.com/spectral_response.htm 
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Camera Spectral Sensitivities 3 

  Nikon D700 vs. Nikon D200. Both Bayer pattern sensors, Nikon D700 
uses a CMOS chip, while Nikon D200 uses a CCD chip. (images 
courtesy of http://www.maxmax.com/spectral_response.htm 
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Foveon CMOS color sensor 

  Newest color technology. The Foveon X3 chip can 
currently be found on cameras by Sigma Corp. 
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Foveon Camera Spectral Sensitivities 

  Spectral sensitivities of Sigma Foveon D10, which uses the foveon x3 
chip. (Image courtesy of J. Vazquez i Corral, Universitat Autonoma de 
Barcelona.) 
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Simplified Model for Pixel Response 

  Recall that the value at pixel p for color filter k is  

  The spectral response          is often unknown. 

  The majority of the surfaces exhibit a mixture of specular and 
diffuse reflectance. 

  Thus a popular model for the value at a camera pixel x is: 

    where 
    is the image value for the kth color filter of  the diffuse reflection of an 
equivalent flat frontal surface viewed under the same light. 
     is a geometric term that captures the variation in brightness caused by 
changes in the surface orientation. 
     is the image value for the kth color filter of  the specular reflection of an 
equivalent flat frontal surface viewed under the same light. 
     is a geometric term that captures the variation in the amount of energy 
that is specularly reflected. 

€ 

dk

€ 

σ k (λ)

€ 

pk (x) = gd (x)dk (x) + gs(x)sk (x)

€ 

gd

€ 

sk

€ 

gs

€ 

pk = σ k (λ)S(λ,ϑ i,φi,ϑ r,φr)E(λ)dλλ∫
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Example Application: Specularity Detection 

  We have many algorithms (stereo, tracking, shape 
recovery) that assume purely diffuse reflection.  

  Other algorithms (estimation of light source 
position) assume specular reflection. 

  Most real surfaces exhibit a mixture of diffuse and 
specular reflectance. 
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Specularity Detection- continued 

  How should we treat images which include diffuse, specular 
and diffuse+specular pixels? 

  Identify/Separate specularities. 
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Specularity Detection - continued 

  How should we treat images which include diffuse, specular 
and diffuse+specular pixels? 

  Identify/Separate specularities. 
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Finding Specularities 

  Consider a picture of a single-colored object. 

  If we plot each pixel in RGB space, we should obtain a distribution of 
RGB points (a gamut) that looks like the plot on the left. 

  The term                  produces a line T that should pass through the 
origin. 

€ 

gd (x)dk (x)

€ 

pk (x) = gd (x)dk (x) + gs(x)sk (x)
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Finding Specularities 

  If there is a specularity, a 2nd line, S,  is formed, which is caused by the 
term                . It is parallel to the illuminant color. 

  The specular line, S , is parallel to the illuminant color.  

  It is an offshoot of the diffuse line, T, because in many pixels we have a 
combination of specular and diffuse. 

€ 

gs(x)sk (x)

€ 

pk (x) = gd (x)dk (x) + gs(x)sk (x)
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Finding Specularities 

  All pixels on S are specular pixels. 

  We want to identify and exclude such specular pixels if our algorithm 
assumes diffuse reflectance.  
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On Specularity Detection 

  There exist a large number of algorithms for 
specularity detection/elimination that analyze the 
distribution of pixels in color space and try to identify 
the lines S and T. 

  Complexities: 
  Unknown illumination color  
  The model is too simple and thus does not capture all the 

complexities of light interaction. => We do not get nice straight 
lines. 

  Multi-colored objects 
  Perspective projection 
  Non-linear camera response (camera-gamma) 
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Example Application 2: Color Constancy 
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Color Constancy 

  Color constancy is the term we use to describe the 
mechanism that humans have, which allows them to 
extract the spectral content (color) of a scene 
relatively independent of the spectral content (color) 
of the illumination of the scene. 
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Camera response varies 
with the illuminant 
color.  

This figure shows 
a uniform reflectance 
illuminated by five  
different lights, and 
the result plotted on 
CIE x,y 

Humans “See” the Color Difference 
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The same object 
can generate 
different color 
responses due to 
different 
illuminations.  

A blue flower 
illuminated by five  
different lights, and 
the result plotted 
on CIE x,y.  Notice 
how it looks 
significantly more 
saturated under 
some lights. 

Humans “See” the Color Difference 
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Humans “See” the Color Difference 
The same object 
can generate 
different color 
responses due to 
different 
illuminations.  

A green leaf 
illuminated by five  
different lights, and 
the result plotted 
on CIE x,y.  Notice 
how it looks 
significantly more 
saturated under 
some lights. 
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Color Constancy Algorithms 

  The variation in captured color as the illumination 
changes affects recognition and tracking. 

  Color constancy algorithms aim at cancelling out the 
effects of illumination variation. 

  They typically involve: 
1.  Estimation of illuminant color 
2.  Mapping to a canonical (standardized) color 

  Step 1 is sometimes omitted. 

  It often involves, like specularity detection, analysis 
of pixel distributions in color space. 

  Color constancy is related to white-balancing. 
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Grey World Algorithm 

  One of the simplest methods for estimating the color of the 
incident illumination. 

  Key assumption: The average color of a scene is grey. 

  Any deviation from the expected average grey must be 
caused by the color of the illuminant.  

  Let                             be the observed color at pixel    .  

  Then according to the grey-world assumption, the illuminant 
color                      in an image             , can be estimated as 
follows:  

€ 

ic =
1
s

pc
k

k∈I
∑

pc
k

k∈I
∑

2

€ 

pk = pR
k , pG

k , pB
k( )
T

€ 

k

€ 

i = iR ,iG,iB( )T   

€ 

I, I = s
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Grey Edge Algorithm 

  Extension of the Grey World to spatial derivatives. 

  Key assumption: The average color difference of a scene is grey.  

  Differentiation increases the robustness against noise.  

  Higher order derivatives mimic how the human eye handles color 
constancy. 

 where                          is the color channel c smoothed with a 
Gaussian of standard deviation        and                is the vector 
of the directions of differentiation. 

  For            and            we obtain the Grey World (up to a 
scalar). 

€ 

ic =
∂ n pc,σ G

k

∂un

m

k∈I
∑m

€ 

m =1

€ 

n = 0€ 

pc,σ G
= pc ⊗Gc,σ G

€ 

σG

€ 

u = (u1,u2)
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White-Balancing: Laboratory Images 

Original 
image 

White-balanced image 
using the ground truth 

White-balanced image 
using the grey world 

estimates 
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White-Balancing: Real World Images 

Original 
image 

White-balanced image 
using the ground truth 

White-balanced image 
using the grey world 

estimates 
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Ground Truth for Two Illuminants 

Per-illuminant influence 
in the two-illuminant image 

+ 

= 
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Electromagnetic Spectrum & Trichromacy 

With traditional RGB cameras a continuum of EM 
radiation values is converted to 3 discrete values. 

6
3 

(        ,              ,           ) 
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Beyond Tri-chromatic Sampling 

  Solution: Capture a denser, finer spectral 
sampling of the visible light. Complex light 
reflectance interactions affect. 

  Image a scene under a multitude of different 
narrow color filters. 

●  Example: 10 filters each 10nm wide (compared to the traditional 
75nm wide RGB filters). 
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Illustration of a Multispectral “Image” 
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A Teaser: Declaration of Independence. 

Multispectral analysis of Jefferson’s rough draft of the Declaration of 
Independence. 
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Image Sources 

1.  The laser spectrum is courtesy of http://www.antonine-education.co.uk/physics_gcse/Unit_1/Topic_5/em_spectrum.jpg 
2.  The plot of the black body radiators is courtesy of http://www.ucolick.org/~bolte/AY4_00/week2/blackbodies.html 
3.  The maple leaves rendered under different colors are courtesy of 

http://static.creativecrash.com/tutorialimages/352/light_color_dihe_img_6.png 

4.  The retina drawing is courtesy of http://webvision.umh.es/webvision/imageswv/Sagschem.jpeg 
5.  The SML cones plot is courtesy of http://www.handprint.com/HP/WCL/IMG/conesens3.gif 
6.  The RGB cones plot is courtesy of http://www.physicsclassroom.com/class/light/u12l2b2.gif 
7.  The middle RGB cone plot is courtesy of Cvonline http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/

LECT14/cones.gif  
8.  The CIE XYZ curves and the CIE space are courtesy of http://escience.anu.edu.au/lecture/cg/Color/Image/ 
9.  The 3D CIE XYZ color space is courtesy of C. Ulbricht and A. Wilie 

http://www.cg.tuwien.ac.at/research/publications/2006/ulbricht-2006apw/image-orig.jpg 

10.  The colorful CIE XYZ slice is from 
http://www.knowledgerush.com/wiki_image/4/40/Cie_chromaticity_diagram_wavelength.png 

11.  The colorful MacAdam ellipses are courtesy of wikipedia,  
12.  The CIE plots are from the slides by D.A. Forsyth, University of California at Urbana-Champaign. 
13.  The malachite pictures where posted by panoguy at 
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