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Pattern Recognition Pipeline – Step 1 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Analog to Digital Conversion 

  The goal of analog to digital conversion is to gather 
sensed data      and change it to a representation 
that is amenable to further digital processing. 

  There are two important aspects in the A/D 
conversion that can impact the PR pipeline: 
  Sampling 
  Quantization   

  The overall goal of A/D conversion is to 
minimize information loss as the signal gets 
converted from a continuous to a discrete 
representation. 
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Sampling 

  Sampling is the process of obtaining measurements 
of the sensed signal at finite positions in time or 
space. 
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Nyquist Sampling Theorem 

 if the sampling interval is chosen as 

  Let f(x) be a band-limited function in the frequency 
range              . 

  Then f(x) is completely determined by the samples 
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  The original signal f(x) can be reconstructed without 
any error using the following interpolation 

  This theorem provides a theoretical sampling rate at 
which we will incur no information loss. 
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Quantization 

  Once the signal is recorded at discrete locations, it must 
be stored using a finite number of bits.   
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  The number of quantization steps is defined by the number 
of bits we use to represent the value of the function. 
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Quantization Error 

  Two key questions: 
1.  How many bits? 
2.  How do we use these bits? 

  When we use B bits, we get 2B quantized levels. 
f’ 
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  When we use discrete values to 
store continuous values we incur 
information loss, known as 
quantization error. 

  Quantization Error: The error we 
make when we approximate a real 
value      by a discrete value     :  
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Signal-to-Noise Ratio (SNR) 

  There exists a standardized way of expressing the 
noise in a system or sensor that is associated with 
quantization. It is called the Signal-to-Noise Ratio. 

  SNR is a general measure that is used for different 
types (sources) of noise.  

  In Pattern Recognition it is defined as: 

  Because input signals can have a wide dynamic 
range, SNR is usually expressed in  terms of the 
logarithmic decibel scale:  
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Conclusions on Quantization 

  We showed that under certain assumptions, the SNR 
is directly proportional to the number of bits used 
for quantization: 

  We also showed that for linear quantization, we get 
the best results (minimal total quantization error) if 
the signal amplitudes are equally distributed.  

  If the data is high-dimensional then the A/D 
conversion process involves vector quantization. 

  A codebook should then be created (e.g. based on 
K-means). The signal is stored as an offset to the 
closest mean (codeword). 
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Pattern Recognition Pipeline – Step 2 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Histogram Equalization 

Images courtesy of Phillip Capper, 
http://en.wikipedia.org/ 

  A histogram 
plots for each 
gray level value 
the frequency 
with which that 
value occurs 
(shown in red) 

  The goal of 
histogram 
equalization is to 
have an almost 
horizontal 
distribution of 
values. 
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Histogram Equalization Algorithm 

1.  Compute the histogram of a given image 

2.  Compute its cumulative distribution function. 

3.  Break the vertical axis of the cdf plot, into n equidistant 
blocks, where n is the number of gray values in the output 
image. 

4.  Then all the pixel values (in the horizontal x-axis) in the 
first block of the cdf get mapped to one gray value. All the 
pixel values in the 2nd block of the cdf get mapped to the 
next pixel value etc.  

5.  In the resulting image each of the n intensities has the 
same probability of occurring. The pixels are spread evenly 
across the entire range of these n pixel values. The image 
has the highest possible contrast. 
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Histogram Equalization - Clarifications 

  The redistributed values in the tessellation of  the 
vertical axis correspond to the histogram of the 
equalized image. 

  A grey value     is mapped from the cumulative 
distribution function          to a new “equalized” grey 
value as follows:  

 where         is the smallest non-zero value in the cdf 
and     is the number of levels in the new image. 
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  We studied various methods for 
selecting    .  
  Intersection of 2 Gaussians  

  Optimal binary thresholding 

  Otsu’s thresholding criterion 

  A heuristic approach which is best suited for 
unimodal distributions. 

  Entropy-based binarization. 

Thresholding 

  Thresholding transformation            for           :  
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Filtering 

  A wide range of transformations can be applied to 
to images in a form of a filter. 

        Imagein                 Filter             Imageout 

  Mathematically, a filter H can be treated as a 
function on an input image I: 

  There are two main categories of filtering 
transformations: 
  Linear shift-invariant transformations 
  Non-linear transformations 

  Homomorphic mapping allows the transformation 
of non-linear domains to linear domains (e.g. log, 
FT, cepstrum). 
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H(I) = R
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Linear Shift Invariant (LSI) Transformations 

  LSI transformations can be applied to signal using 
convolution. 

  We studied a variety of widely used LSI 
transformations. 

1.  Smoothing or low-pass filtering. 
  Its goal is to remove noise 
  Mean filtering 
  Gaussian filtering 

Original image 

Mean filtering Gaussian filtering 
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LSI Transformations - continued 

2.  Edge Detection or high pass filtering 
  Its goal is to detect pixels where a significant change in 

intensity occurs. 
  Gradient-based edge detection 

  Laplacian-based edge detection 

  Smoothing almost always precedes edge detection 

  Low-pass and high-pass filtering can be applied on 
the same signal at different scales for a multi-
resolution analysis. 
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Different Scales 

Original image Fine scale, high threshold 

Coarse scale, high threshold Coarse scale, low  threshold 
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Non-Linear Transformations 

  In non-linear transformations we focused on: 

1.  Mathematical Morphology 
  Images are treated as sets. 
  Different set operations can be defined for both binary and 

gray-scale images: 
  Erosion 
  Dilation 
  Opening 
  Closing 

2.  Rank Operations 
  Minimum (maps to erosion) 
  Maximum (maps to dilation) 
  Median 

Original image 

Image after opening 
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Pattern Normalization 

  The goal of normalization is to map the signal to 
some normalized representation with respect to: 
  position        -> moments (0th and 1st order) 
  size              -> bounding box 
  pose             -> moments (0th, 1st and 2nd order) 
  energy level 
  duration 
  Illumination 

  Geometric moments are very often used as part 
of the normalization process: 
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Pattern Recognition Pipeline – Step 3 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Feature Extraction 

  In feature extraction we compute a numerical 
characteristic vector           , on which the 
subsequent classification task is performed. 

  There are two distinct methods for extracting 
features: 

1.  Heuristic methods 

 Typically involve a change in representation via 
methods like projection to new orthogonal bases.   

2.  Analytic methods 

 The feature vector is derived as part of the solution 
to an explicit optimization problem.  
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Heuristic Methods 

  The heuristic feature extraction methods that we studied: 

1.  Projection to orthogonal bases 
  Fourier Transform 
  Walsh/Hadamard Transform 
  Haar Transform 

2.  Spectrogram 

3.  Linear Predictive Coding 

4.  Geometric Moments 

5.  Feature Extraction via Filtering 

6.  Wavelets 
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Walsh-Hadamard Transform 

  The Walsh Functions are 
used as an orthogonal 
basis. 

  There are many 
different ways of 
ordering the Walsh 
functions into a basis. 

  One way of arranging 
the Walsh functions is 
via the Hadamard 
matrix. 

Hadamard In sequence Paley or dyadic 
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Haar Transform 

h00 h01 h11 h12 

h21 h22 h23 h24 

  Haar functions: A more 
intuitive set of 
orthogonal “square-
wave” functions that can 
be used as a new 
feature space.  

  It is a 2-parameter 
recursive function, 
where p specifies the 
magnitude and width of 
the shape and q 
specifies its position  
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Linear Predictive Coding 

  This representation is widely used in sound/speech 
processing. 

  It assumes a buzzer-tube model. 

  The glottis (the space between the vocal cords) 
produces the buzz, which is characterized by its 
intensity (loudness) and frequency (pitch). 

  The pharynx forms the tube, which is characterized 
by its resonances, which are called formants.  

  Key idea: The present sample      of the speech is 
predicted by the past m speech samples so that: 
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Wavelet 

  Used for multi-resolution analysis. 

  It uses a sliding scalable window. 

  The building block of the wavelet transform, its 
window, is a small wave, a wavelet, which is given 
by a function ψ(t).  

  A wavelet transform is the representation of a signal 
f(t) by wavelets. 
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Discrete Wavelet Transform 

Image courtesy of Robi Polikar http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html 

where g[n] is a half-
band highpass filter, 
h[n] is a half-band 
lowpass filter and 
x[n] is the input 
signal with frequency 
between 0 and π.   
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Different Types of Wavelets 

Haar wavelets Daubechies wavelets Biorthogonal wavelets 

Original image 
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Analytic Feature Extraction 

  Idea: Compute a matrix     , so that the resulting 
features     optimize a quality criterion. 

  Depending on the optimization criterion we have 
different analytic feature extraction methods: 

  PCA - maximizes the spread of features 
 Eigenfaces 

  Minimize intraclass distance 
  Maximize interclass distance 
  LDA - mimimize intraclass and maximize interclass distance 

 Fisherfaces 
  Optimal feature transform – minimize misclassification rate. 
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Feature Selection 

  Due to the curse of dimensionality we want to select 
a subset of features from our feature vector that 
best preserve the discriminating power of the 
feature vector.  
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Feature Selection Algorithms 

  Algorithms for feature selection are characterized by: 

1.  The objective function (a.k.a. criterion function) 
used in evaluating the “goodness” of a subset. 

2.  The optimization method used in searching the 
space of possible subsets for the best subset.  

  Widely used criterion functions for feature selection: 
1.  Error-rate (minimize) 
2.  Bayesian distance (maximize) 
3.  Conditional entropy (minimize) 
4.  Mutual information (maximize) 
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Search Strategies for Feature Selection 

1.  Random Selection. 

2.  Exhaustive Search. 

3.  Greedy 

4.  Hardest Pair 

5.  (l,r)-search. 

6.  Branch and Bound. 

 Key assumption: Monotonic objective function 
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Pattern Recognition Pipeline – Step 4 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Classification  

  Goal of a classifier: Map the computed feature 

vector     to a class Ωκ. 

  The classification task can be viewed as a decision 
function δ(): 

  In some classifier the mapping to a class is 
determined via a discriminant function: 
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Different Classifiers 

  Classification 
  Statistical classifiers 

  Bayesian classifier 
  Gaussian classifier 

  Polynomial classifiers 
  Non-Parametric classifiers 

  k-Nearest-Neighbor density estimation 
  Parzen windows 
  Artificial neural networks 

  Radial basis function networks 
  Multilayer perceptron 
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Statistical Classifiers 

  Bayes classifier  

 A Bayes classifier with a (0,1)-cost function is an 
optimal classifier. 

  Gaussian classifier 

 It is a Bayesian classifier where we have normally 
distributed class-conditional feature vectors            .  
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Polynomial Classifiers 

  The classification decision is based on K parametric 
discriminant functions: 

  Deriving the discriminant functions is equivalent to 
deriving the coefficients    . 

  Given a labelled training set the coefficients can be 
derived by solving a system of linear equations. 

  Beware of overfitting!!  
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Non-Parametric Density Estimation 

  When we have no information about the model of the 
underlying probability density function, we can 
approximate it via non-parametric methods. 

  A common framework is the use of relative frequencies: 
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p( c ) =
K

NV
  Option 1: Use a fixed value for K and find the 

corresponding V from the data 

=> K-nearest-neighbor (fix K, look for a V) 

  Option 2: Use a fixed volume V and find the corresponding 
value of K  from the data 

=> kernel-based density estimation (fix V, look for a K) 
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Artificial Neural Networks 

  In general an ANN operates as a function             . 

  There can be multiple layers, some of which may be 
hidden.  

  A widely used form of composition is: 

     is often referred to as an activation function. 
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Two Types of ANN 

  Radial Basis Function Networks 

 Each neuron computes a RBF. 

  Multilayer Perceptron 

 Each node performs a thresholding operation via a 
sigmoid function. 
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