
Dr. Elli Angelopoulou
Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Pre-processing
Filtering: edge detection

 Page 2 Page 2

Pattern Recognition Pipeline

  The goal of pre-processing is to transform a signal
to another signal so that the resulting signal
  makes subsequent processing easier
  makes subsequent processing better (more accurate)
  makes subsequent processing faster

  Already studied histogram equalization, thresholding
and smoothing.

A/D Pre-processing
Feature Extraction
and Selection Classification f’ f h c Ωκ

Learning Training samples

€

f

€

h

€

h

 Page 3 Page 3

Filtering - revisited

  There is a family of techniques that we can apply to
images, where both the input and the output to
these transformations are images:

 Imagein Filter Imageout

  We already saw one set of such filtering techniques
that focus on noise reduction.

 Noisy Imagein Filter Clean Imageout

  We also said that mathematically, a filter H can be
treated as a function on an input image I:

€

H(I) = R

 Page 4 Page 4

Convolution

  If a transformation (or filter) is linear shift-invariant
(LSI) then one can apply it in a systematic manner
over every pixel in the image.

  Convolution is the process through which we
apply linear shift-invariant filters on an image.

 I LSI Filter H R

  Convolution is defined as:

 and is denoted as:

 Page 5 Page 5

LSI Filtering and Convolution - Review

  We try to develop LSI filters, because we can apply
them to an image through convolution.

  We have fast implementations of convolution via:
  Its application in the frequency domain

 FT Multiplication IFT

  Specially designed hardware that performs convolutions very fast.

  In practice, convolution can be seen as computing the
weighted sum of a (2k+1)x(2k+1) neighborhood
centered around pixel (x,y), where the filter H contains
the applied weights.

€

R(x,y) = I(x − i,y − j)H(i, j)
j=−k

k

∑
i=−k

k

∑

€

F(H * I) = F(H)F(I)

 Page 6 Page 6

  Important Properties of Convolution:
  commutativity,
  associativity,
  distributivity,

  A very common application of filtering is for noise removal.

  Two LSI smoothing filters are:
  Mean filter
  Gaussian filter

  They are also known as low-pass filters, because in the
frequency domain, they allow only the transfer of the low
frequency information in the output image.

LSI Filtering and Convolution - Review

 Page 7 Page 7

Edges

  An edge is:
  A significant change in intensity values.
  Related to object boundaries, patterns (brick wall), shadows, etc.
  A property attached to each pixel.
  Calculated using the image intensities of neighboring pixels.

  Examples of 1D Edges

50 50 50 50 100 100 100 100 step edge

50 50 50 50 100 100 50 50 roof edge

50 50 60 70 80 90 100 100 ramp edge

 Page 8 Page 8

Edges

  A 2D example of an edge.

 Page 9 Page 9

Edge Detection Example

Original images Images after edge detection

 Page 10 Page 10

Edge Detection Steps

1.  Noise Smoothing
•  Suppress as much noise as possible without destroying edge

information.

2.  Edge Detection
•  Design a filter that gives high responses at edges and low

response at non-edge pixels.

3.  Edge Localization
•  Decide which high responses of the edge filter are responses to

true edges and which ones are caused by noise or other artifacts.

 Page 11 Page 11

Types of Edge Detection

  Detecting edges is equivalent to detecting changes
in intensity values.

  How do we detect change?
 Differentiation
  Image is a 2D function
 => partial derivative in x
 & partial derivative in y
  If we take the 1st derivative we have Gradient-

based edge detectors.
  If we take the 2nd derivative we have Laplacian

edge detectors (look for zero-crossings).

 Page 12 Page 12

Stripes and Edges

  Notice that if we
have a stripe or a
band of distinct
value we get a
double response.

zero-crossings

 Page 13 Page 13

Gradient-Based Edge Detection

  The gradient vector G(x,y), at an image pixel I(x,y) is:

  The gradient vector points in the direction of maximum change.

  Its orientation (its angle with the x-axis) is given by:

  Its magnitude is given by:

 or its approximations:

 Page 14 Page 14

Gradient Vector Image

  An image showing
the gradient
vectors
themselves.

  The length of the
gradient vector
corresponds to its
magnitude.

 Page 15 Page 15

Implementation

  By definition:

  In the discrete world differentiation is approximated by finite
differencing:

  But since our smallest step is :

€

∂I(x,y) /∂x = lim
ε→0

I(x,y)
ε

−
I(x −ε,y)

ε

€

Ix (x,y) = ∂I(x,y) /∂x ≈ I[x,y]− I[x −Δx,y]
Δx

€

Δx =1

 Page 16 Page 16

Implementation (continued)

  We can express this operation in a kernel form:

  To make it less susceptible to noise we use the values of two
consecutive rows or columns.

  These kernels, however, evaluate an approximation of the
derivative at half-pixel locations, and

€

Hy = Iy =
−1
+1

€

Hx = Ix = −1 +1[]

€

Hx = Ix =
−1 +1
−1 +1

€

Hy = Iy =
−1 −1
+1 +1

 Page 17 Page 17

Common Edge Masks

  Prewitt edge detection masks

  Sobel edge detection masks

€

Px =

−1 0 +1
−1 0 +1
−1 0 +1

€

Py =

−1 −1 −1
0 0 0
+1 +1 +1

€

Sx =

−1 0 +1
−2 0 +2
−1 0 +1

€

Sy =

−1 −2 −1
0 0 0
+1 +2 +1

 Page 18 Page 18

Gradient Edge Detection Process

  Given an input image I, the gradient-based edges
are computed as follows:

1.  Compute

2.  Compute

3.  Compute using your favorite method

4.  If

 then pixel (x,y) is an edge-pixel (edgel)

 compute the angle θ for that pixel.

 Page 19 Page 19

Gradient Edge Detector Example

Original image Image after edge detection

 Page 20 Page 20

Canny Edge Detector

  After a a gradient-based edge image is created, the Canny
method uses optimization to systematically clean noise
effects. It uses two separate optimization processes:
1.  Non-maximum suppression

A single real edge may appear as having wide ridges around it.
Non-maximum suppression thins such ridges downto 1-pixel wide edges.

2.  Hysteresis thresholding
Use a pair of threshold values. The high threshold is used as a first

rough screening. For the edge pixels that survive this first screening,

follow chains (contours) of edges. Use those edgels on the chain which

are above the second, lower, threshold.

  Canny proved that this is the optimal edge detection method.

  Due to the optimization post-processing, it is slower than the
basic gradient-based edge detectors.

 Page 21 Page 21

Sobel versus Canny

Sobel Canny

 Page 22 Page 22

Roberts vs. Sobel

Roberts Sobel

 Page 23 Page 23

Roberts vs. Canny

Roberts Canny
σ = 1, tl=1 , th= 255

 Page 24 Page 24

Canny Edge Detector

Canny
σ = 2, tl=1 , th= 128

Canny
σ = 1, tl=220 , th= 255

Canny
σ = 1, tl=1 , th= 128

 Page 25 Page 25

Gradient-Based Edge Detector Example

Original image Step 1: Conversion to grayscale and smoothing with 5x5 Gaussian

Step 2: Sobel edge detector – edge magnitude image Step 2: Sobel edge detector – edge orientation image

 Page 26 Page 26

Second Order Derivative

  Another way to detect an extremal first derivative is
to look for a zero-valued 2nd derivative.

  A popular calculus tool that gives the magnitude of
change in a bivariate function without direction
information is the Laplacian.

  Note that the result of the Laplacian is a scalar.

 Page 27 Page 27

Laplacian Implementation

  Again differentiation is approximated by finite differencing.

  Written as a mask, we get:

€

Hx=
2Ix =

0 0 0
1 −2 1
0 0 0

 Page 28 Page 28

Laplacian Implementation

  Similarly, for the 2nd partial
derivative with respect to y,
we get:

  By adding the two together,
we get the Laplacian mask:

  If we want to use all 8
neighbors, we can use: €

HLap=2Ix+
2Iy =

0 1 0
1 −4 1
0 1 0

€

Hy=
2Iy =

0 +1 0
0 −2 0
0 +1 0

€

HLap =

1 4 1
4 −20 4
1 4 1

 Page 29 Page 29

Simple Laplacian Example

  When we convolve an image that contains a significant change in
values (i.e. edge) with a Laplacian kernel, we get a new image with
negative values on one side of the edge and positive values on the
other side of the edge.

  For example:
 Input image Image after the Laplacian

zero crossing

 Page 30 Page 30

Laplacian of Gaussian

  The computation of 2nd order derivatives is very sensitive to
noise.

  Solution: Smooth first the image I with a Gaussian HGauss and
then apply the Laplacian HLap on the image.

  Convolution is associative.

  The combined filter (HLap * HGauss) is nothing more than
computing the Laplacian of the Gaussian (LoG):

 Page 31 Page 31

  The LoG function, looks like a “mexican hat”.

LoG Kernel

  can also
be approximated by a
convolution kernel:

€

HLoG =

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

 Page 32 Page 32

σ = 2

contrast=1 contrast=4

Examples of LoG Zero Crossings

σ = 4

 Page 33 Page 33

Smoothing and Differentiation

  The concepts of first smoothing and then differentiating
generalizes to all edge detection methods (both 1st and
2nd order derivative methods).

  Convolution is associative, so we can always create a
combined filter and convolve (filter) the image only once.

 where

  By using different degrees of smoothing (Gaussian with
different σ values or mean filters of different sizes, i.e.
3x3, 5x5, 7x7, etc.) we can obtain a hierarchy, a
pyramid, of images with different levels of detail.

 Page 34 Page 34

Different Scales

  The scale of the smoothing filter affects the
derivative estimates as well as the semantics of the
recovered edges

No smoothing 3x3 filter 7x7 filter

 Page 35 Page 35

Different Scales

Original image Fine scale, high threshold

Coarse scale, high threshold Coarse scale, low threshold

 Page 36 Page 36

Comments on Filtering

  Design Decisions:
  Size of filter. There is no single good size. It depends on he size of

the objects in the image.
  Speed versus accuracy: (Gaussian vs. Median, Gradient-based vs.

Laplacian-based, Canny vs. Sobel)

  Systematic approach: try different resolutions
  Either create a formal model for each resolution and study the

change of the model at different resolutions.
  Or maintain a tree (pyramid) of images at different resolutions.

  Multi-resolution example:
Apply an edge detector at different resolutions of Gaussians.
Perform numerical optimization to find the best response for the
particular image.
Optimal for edges corrupted by white noise.

 Page 37 Page 37

Gaussian Pyramid Example

 Page 38 Page 38

Sharpening

  A very common filtering operation for contrast
enhancement in images is image sharpening.

  The goal of image sharpening is to produce a more
visually pleasing image:
  Texture and finer details are made more prominent
  The image looks sharper, crisper.

 Page 39 Page 39

Sharpening - continued

  Image sharpening almost always involves improving
the parts of the image where a sudden change in
intensity or color occur, since this is where
inaccuracies are introduced by the digital data
capturing process.

  What filtering operation do we know that gives a high
response at sudden changes in intensity or color?

  Edge Detector, Hedge

€

R = I + c(I *Hedge)

  A simple way to achieve sharpening is to superimpose
the original image with the magnitude of the edge
image.

 Page 40 Page 40

UnSharp Mask

  Most image processing software packets perform
sharpening using the UnSharp Mask (USM).

  It is based on an old photographic film technique.

  It is called unsharp masking, because it first blurs
the image (unsharpens it)

  An unsharp mask, UM, for the entire image is
created by thresholding the absolute difference of
the original and the blurred image.

€

UM(x,y) =
1 if I(x,y) − R1(x,y) > θ

0 otherwise

€

R1 = I *Hsmooth

 Page 41 Page 41

UnSharp Mask - continued

  The unsharp mask is then scaled (to
achieve the desired visual effect) and
added to the original image. The scaling
factor c is often called amount.

€

R2 = I + cUM

 Page 42 Page 42

Image Sources

1.  “Image with salt & pepper noise”, Marko Meza.
2.  “Set of images of Roberts vs. Canny vs. Sobel”, Hypermedia Image Processing Reference at the University of Edinburgh.
3.  “LoG plots”, Simon Yu Ming, http://hi.baidu.com/simonyuee/blog/item/446a911bf43cc91c8618bf8f.html
4.  Many of the smoothing and edge detection images are from the slides by D.A. Forsyth, University of California at Urbana-

Champaign.
5.  The bird sharpening example was done using Adobe Photoshop Lightroom,

http://mansurovs.com/how-to-properly-sharpen-images-in-lightroom.
6.  The unsharp mask example is copyrighted by Sean T. McHugh,

http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm

