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Pattern Recognition Pipeline 

  The goal of pre-processing is to transform a signal 
to another signal      so that the resulting signal  
  makes subsequent processing easier 
  makes subsequent processing better (more accurate)  
  makes subsequent processing faster 

  Already studied histogram equalization, thresholding 
and smoothing. 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 

€ 

f

€ 

h

€ 

h



 Page 3  Page 3 

Filtering - revisited 

  There is a family of techniques that we can apply to 
images, where both the input and the output to 
these transformations are images: 

      Imagein                   Filter             Imageout 

  We already saw one set of such filtering techniques 
that focus on noise reduction. 

    Noisy Imagein            Filter           Clean Imageout 

  We also said that mathematically, a filter H can be 
treated as a function on an input image I: 

€ 

H(I) = R
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Convolution 

  If a transformation (or filter) is linear shift-invariant 
(LSI) then one can apply it in a systematic manner 
over every pixel in the image. 

  Convolution is the process through which we 
apply linear shift-invariant filters on an image. 

               I             LSI Filter H             R 

  Convolution is defined as: 

    and is denoted as: 
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LSI Filtering and Convolution - Review 

  We try to develop LSI filters, because we can apply 
them to an image through convolution. 

  We have fast implementations of convolution via: 
  Its application in the frequency domain  

                                             FT         Multiplication          IFT 

  Specially designed hardware that performs convolutions very fast. 

  In practice, convolution can be seen as computing the 
weighted sum of a (2k+1)x(2k+1) neighborhood 
centered around pixel (x,y), where the filter H contains 
the applied weights. 

€ 

R(x,y) = I(x − i,y − j)H(i, j)
j=−k

k

∑
i=−k

k

∑

€ 

F(H * I) = F(H)F(I)
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  Important Properties of Convolution: 
  commutativity, 
  associativity, 
  distributivity, 

  A very common application of filtering is for noise removal. 

  Two LSI smoothing filters are: 
  Mean filter 
  Gaussian filter 

  They are also known as low-pass filters, because in the 
frequency domain, they allow only the transfer of the low 
frequency information in the output image. 

LSI Filtering and Convolution - Review 
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Edges 

  An edge is: 
  A significant change in intensity values. 
  Related to object boundaries, patterns (brick wall), shadows, etc. 
  A property attached to each pixel. 
  Calculated using the image intensities of neighboring pixels.  

  Examples of 1D Edges 

50  50  50  50  100  100  100  100     step edge


50  50  50  50  100  100    50    50      roof edge


50  50  60  70    80    90  100  100     ramp edge
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Edges 

  A 2D example of an edge. 
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Edge Detection Example 

Original images Images after edge detection 
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Edge Detection Steps 

1.  Noise Smoothing 
•  Suppress as much noise as possible without destroying edge 

information.  

2.  Edge Detection 
•  Design a filter that gives high responses at edges and low 

response at non-edge pixels. 

3.  Edge Localization 
•  Decide which high responses of the edge filter are responses to 

true edges and which ones are caused by noise or other artifacts. 
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Types of Edge Detection 

  Detecting edges is equivalent to detecting changes 
in intensity values. 

  How do we detect change? 
          Differentiation 
  Image is a 2D function 
     => partial derivative in x 
       & partial derivative in y 
  If we take the 1st derivative  we have Gradient-

based edge detectors. 
  If we take the 2nd derivative we have Laplacian 

edge detectors (look for zero-crossings). 
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Stripes and Edges 

  Notice that if we 
have a stripe or a 
band of distinct 
value we get a 
double response. 

zero-crossings 



 Page 13  Page 13 

Gradient-Based Edge Detection 

  The gradient vector G(x,y), at an image pixel I(x,y) is: 

  The gradient vector points in the direction of maximum change. 

  Its orientation (its angle with the x-axis) is given by: 

  Its magnitude is given by: 

    or its approximations: 
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Gradient Vector Image 

  An image showing 
the gradient 
vectors 
themselves. 

  The length of the 
gradient vector 
corresponds to its 
magnitude. 
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Implementation 

  By definition: 

  In the discrete world differentiation is approximated by finite 
differencing: 

  But since our smallest step is           : 

€ 

∂I(x,y) /∂x = lim
ε→0

I(x,y)
ε

−
I(x −ε,y)

ε

 

 
 

 

 
 

€ 

Ix (x,y) = ∂I(x,y) /∂x ≈ I[x,y]− I[x −Δx,y]
Δx

€ 

Δx =1
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Implementation (continued) 

  We can express this operation in a kernel form: 

  To make it less susceptible to noise we use the values of two 
consecutive rows or columns. 

  These kernels, however, evaluate an approximation of the 
derivative at half-pixel locations,                    and 

€ 

Hy = Iy =
−1
+1
 

 
 

 

 
 

€ 

Hx = Ix = −1 +1[ ]

€ 

Hx = Ix =
−1 +1
−1 +1
 

 
 

 

 
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Hy = Iy =
−1 −1
+1 +1
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Common Edge Masks 

  Prewitt edge detection masks 

  Sobel edge detection masks 
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Px =

−1 0 +1
−1 0 +1
−1 0 +1

 

 

 
 
 

 

 

 
 
 

€ 

Py =

−1 −1 −1
0 0 0
+1 +1 +1
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Sx =

−1 0 +1
−2 0 +2
−1 0 +1
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Sy =

−1 −2 −1
0 0 0
+1 +2 +1
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Gradient Edge Detection Process 

  Given an input image I, the gradient-based edges 
are computed as follows: 

1.  Compute  

2.  Compute 

3.  Compute                using your favorite method 

4.  If                    

    then pixel (x,y) is an edge-pixel (edgel) 

           compute the angle θ for that pixel.
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Gradient Edge Detector Example 

Original image Image after edge detection 
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Canny Edge Detector 

  After a a gradient-based edge image is created, the Canny 
method uses optimization to systematically clean noise 
effects. It uses two separate optimization processes: 
1.  Non-maximum suppression 

A single real edge may appear as having wide ridges around it. 
Non-maximum suppression thins such ridges downto 1-pixel wide edges. 

2.  Hysteresis thresholding 
Use a pair of threshold values. The high threshold is used as a first 

rough screening. For the edge pixels that survive this first screening,  

follow chains (contours) of edges. Use those edgels on the chain which 

are above the second, lower, threshold.    

  Canny proved that this is the optimal edge detection method. 

  Due to the optimization post-processing, it is slower than the 
basic gradient-based edge detectors. 
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Sobel versus Canny 

Sobel
 Canny
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Roberts vs. Sobel  

Roberts
 Sobel
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Roberts vs. Canny 

Roberts
 Canny

σ = 1, tl=1 , th= 255
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Canny Edge Detector 

Canny

σ = 2, tl=1 , th= 128


Canny

σ = 1, tl=220 , th= 255


Canny

σ = 1, tl=1 , th= 128
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Gradient-Based Edge Detector Example 

Original image Step 1: Conversion to grayscale and smoothing with 5x5 Gaussian 

Step 2: Sobel edge detector – edge magnitude image Step 2: Sobel edge detector – edge orientation image 
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Second Order Derivative 

  Another way to detect an extremal first derivative is 
to look for a zero-valued 2nd derivative. 

  A popular calculus tool that gives the magnitude of 
change in a bivariate function without direction 
information is the Laplacian. 

  Note that the result of the Laplacian is a scalar. 
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Laplacian Implementation 

  Again differentiation is approximated by finite differencing. 

  Written as a mask, we get: 

€ 

Hx=
2Ix =

0 0 0
1 −2 1
0 0 0

 

 

 
 
 

 

 

 
 
 



 Page 28  Page 28 

Laplacian Implementation 

  Similarly, for the 2nd partial 
derivative with respect to y, 
we get: 

  By adding the two together, 
we get the Laplacian mask: 

  If we want to use all 8 
neighbors, we can use: € 

HLap=2Ix+
2Iy =

0 1 0
1 −4 1
0 1 0
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Hy=
2Iy =

0 +1 0
0 −2 0
0 +1 0
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HLap =

1 4 1
4 −20 4
1 4 1
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Simple Laplacian Example 

  When we convolve an image that contains a significant change in 
values (i.e. edge) with a Laplacian kernel, we get a new image with 
negative values on one side of the edge and positive values on the 
other side of the edge. 

  For example: 
            Input image                                Image after the Laplacian 

zero crossing 
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Laplacian of Gaussian 

  The computation of 2nd order derivatives is very sensitive to 
noise. 

  Solution: Smooth first the image I with a Gaussian HGauss and 
then apply the Laplacian HLap on the image. 

  Convolution is associative. 

  The combined filter (HLap * HGauss) is nothing more than 
computing the Laplacian of the Gaussian (LoG):  
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  The  LoG function,                       looks like a “mexican hat”. 

LoG Kernel 

                         can also 
be approximated by a 
convolution kernel:  

€ 

HLoG =

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0
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σ = 2


contrast=1
 contrast=4


Examples of LoG Zero Crossings 

σ = 4
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Smoothing and Differentiation 

  The concepts of first smoothing and then differentiating 
generalizes to all edge detection methods (both 1st and 
2nd order derivative methods). 

  Convolution is associative, so we can always create a 
combined filter and convolve (filter) the image only once. 

                             where 

  By using different degrees of smoothing (Gaussian with 
different σ values or mean filters of different sizes, i.e. 
3x3, 5x5, 7x7, etc.) we can obtain a hierarchy, a 
pyramid, of images with different levels of detail. 
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Different Scales 

  The scale of the smoothing filter affects the 
derivative estimates as well as the semantics of the 
recovered edges 

No smoothing 3x3  filter 7x7  filter 
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Different Scales 

Original image Fine scale, high threshold 

Coarse scale, high threshold Coarse scale, low  threshold 
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Comments on Filtering 

  Design Decisions: 
  Size of filter. There is no single good size. It depends on he size of 

the objects in the image. 
  Speed versus accuracy: (Gaussian vs. Median, Gradient-based vs. 

Laplacian-based, Canny vs. Sobel) 

  Systematic approach: try different resolutions 
  Either create a formal model for each resolution and study the 

change of the model at different resolutions. 
  Or maintain a tree (pyramid) of images at different resolutions. 

  Multi-resolution example: 
Apply an edge detector at different resolutions of Gaussians.  
Perform numerical optimization to find the best response for the 
particular image. 
Optimal for edges corrupted by white noise. 
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Gaussian Pyramid Example 
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Sharpening 

  A very common filtering operation for contrast 
enhancement in images is image sharpening. 

  The goal of image sharpening is to produce a more 
visually pleasing image: 
  Texture and finer details are made more prominent 
  The image looks sharper, crisper. 
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Sharpening - continued 

  Image sharpening almost always involves improving 
the parts of the image where a sudden change in 
intensity or color occur, since this is where 
inaccuracies are introduced by the digital data 
capturing process. 

  What filtering operation do we know that gives a high 
response at sudden changes in intensity or color? 

  Edge Detector, Hedge 

€ 

R = I + c(I *Hedge )

  A simple way to achieve sharpening is to superimpose 
the original image with the magnitude of the edge 
image. 
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UnSharp Mask 

  Most image processing software packets perform 
sharpening using the UnSharp Mask (USM). 

  It is based on an old photographic film technique. 

  It is called unsharp masking, because it first blurs 
the image (unsharpens it) 

  An unsharp mask, UM, for the entire image is 
created by thresholding the absolute difference of  
the original and the blurred image. 

€ 

UM(x,y) =
1   if  I(x,y) − R1(x,y) > θ

0  otherwise                     
 
 
 

€ 

R1 = I *Hsmooth
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UnSharp Mask - continued 

  The unsharp mask is then scaled (to 
achieve the desired visual effect) and 
added to the original image. The scaling 
factor c is often called amount.  

€ 

R2 = I + cUM
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Image Sources 

1.  “Image with salt & pepper noise”, Marko Meza. 
2.  “Set of images of Roberts vs. Canny vs. Sobel”, Hypermedia Image Processing Reference at the University of Edinburgh. 
3.  “LoG plots”, Simon Yu Ming, http://hi.baidu.com/simonyuee/blog/item/446a911bf43cc91c8618bf8f.html 
4.  Many of the smoothing and edge detection images are from the slides by D.A. Forsyth, University of California at Urbana-

Champaign. 
5.  The bird sharpening example was done using Adobe Photoshop Lightroom, 

http://mansurovs.com/how-to-properly-sharpen-images-in-lightroom. 
6.  The unsharp mask example is copyrighted by Sean T. McHugh, 

http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm 


