Introduction to Pattern Recognition

WS 12/13

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

Overview

Seite 2

- Administrative information
- A short journey through

Introduction to Pattern Recognition

Pattern Recognition in practice

Lecture (3 SWS - 5 ECTS)

- Tue 10:15 11:45 (00.151-113)
- Wed 12:15 13:45 (0.68)
- Elli Angelopoulou
- elli@i5.cs.fau.de

Exercises (1 SWS - 2.5 ECTS)

- Wed 16:15 17:45 (09.150)
- Thu 10:15 11:45 (E 1.12)
- Christian Riess
- riess@i5.cs.fau.de
- Exercises are application oriented

There are no exercises the first week of classes.

Intro PR - Exams

Certificates

- Oral exam at the end of the semester
- Graded certificate (benoteter Schein) or exam through the Prüfungsamt
 - 7.5 ECTS 30 min. oral exam on lecture **and** exercises
 - 5 ECTS 30 min. oral exam on lecture material only
- Pass/Fail certificate (unbenoteter Schein)
 - 7.5 ECTS 20 min. oral exam on lecture **and** exercises
 - 5 ECTS 20 min. oral exam on lecture material only

Additional Material for IntroPR

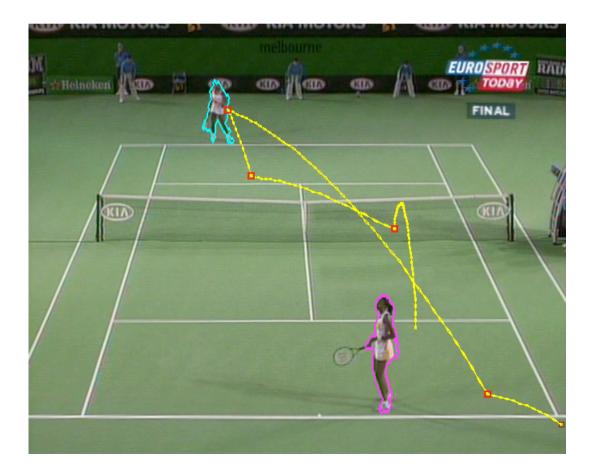
- When applicable, printed slides will be made available through the web.
- The videotapes of the lectures are available at StudOn under Inf5 (Mustererkennung).
- You are still expected to take notes yourself.
- Slides and notes do not replace the textbooks (see next slide).
- Most of the slides can be understood only with the additional explanation provided during the lecture and through the use of additional material from textbooks.

PR Reading Material:

Recommended Textbooks:

 [1] H. Niemann. Klassifikation von Mustern. Springer, Berlin, Heidelberg, 1983.
Second expanded edition available via Internet: <u>http://www5.informatik.uni-erlangen.de/en/our-team/niemann-heinrich</u>

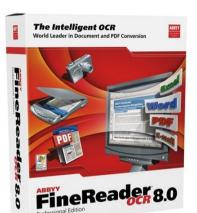
- [2] S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, 4th ed. Academic Press, 2009.
- [3] R. Duda, P. Hart, D. Stork, *Pattern Classification*, 2nd ed., Wiley Interscience, 2001.


Seite 6

What is Pattern Recognition?

Seite 7

Pattern Recognition involves the design of systems which (semi) automatically recognize patterns in sensed data.



Pattern Recognition in Everyday Life

Components of a Pattern Recognition System

Sensor

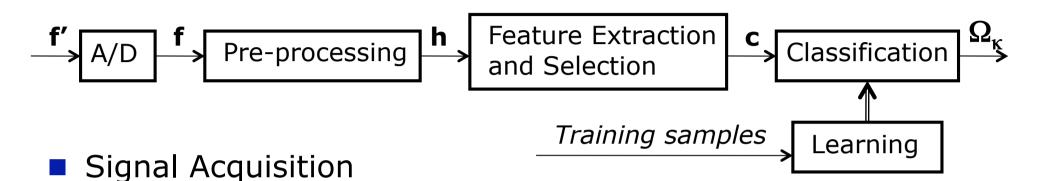
- Collect information
- Camera, microphone, sonar, X-ray machine

Preprocessing

- Remove noise from the collected information
- Bring data in a standardized format

Extract Features

- Compute numeric or symbolic information from the "raw" collected data
- Selection of appropriate features has great impact on the success of a PR system


Classification

- Main recognition step
- Machine learning (supervised or unsupervised)

Pattern Recognition Topics

- Preprocessing
- Feature Extraction
- Feature Reduction
- Classification (continued in PR and PA)
- Pattern recognition is at the borderline between computer science and electrical engineering.
- Topics of pattern recognition in Erlangen: medical image processing, computer vision, speech recognition and digital sports.

Signal Acquisition

Seite 11

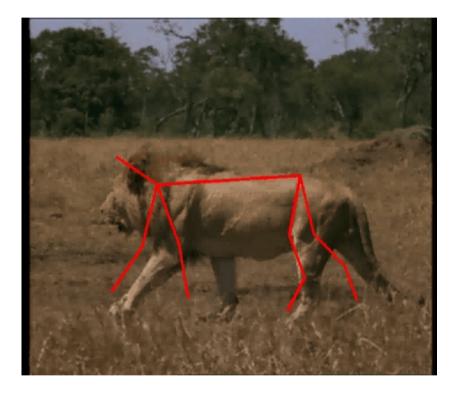
- Depending on the application we can use different types of sensors to acquire data:
 - microphones
 - cameras
 - Xrays, MRIs, CTs, ultrasound
 - GPS sensors, gyroscopes
 - heartrate monitors, perspiration sensors, blood pressure sensors

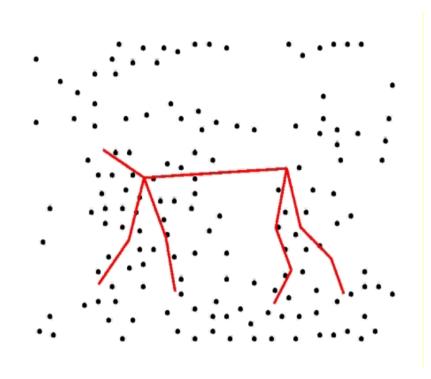
•

- Once the type of sensor is selected, choosing a particular model can have a significant impact on the overall performance of our PR system:
 - noise levels
 - data acquisition speed
 - amount of collected information
 - built-in preprocessing

•

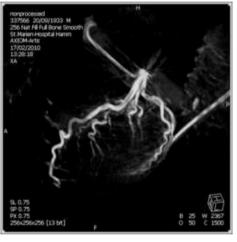
Feature Extraction/Selection

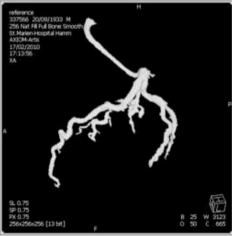



Are point features sufficient for object recognition?

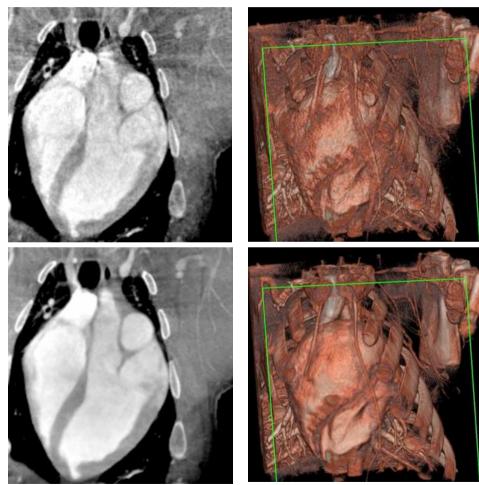
Seite 13

Recognition based on Point Features


Videoclips courtesy of Ruixuan Wang, Wee Kheng Leow and Hon Wai Leong, "3D-2D Spatiotemporal Registration for Sports Motion Analysis", CVPR 2008



Challenges – Medical Image Processing


Need for accuracy

Thorough evaluation

Coronary tree extraction

Correction for heartbeat motion using ECG (top) and just image data (bottom)

Challenges – Speech Recognition

Why is speech recognition so difficult:

- Ambiguities (here vs. hear)
- Emotions
- Non-distinctive articulation
- Accents/Dialects
- Technical problems (microphones, encoding, ...)

Also:

Diseases of the oral apparatus

Cleft Palate

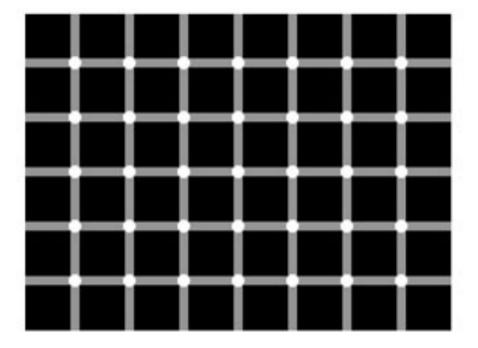
Spontaneous Child Speech

geradeaus Aibolein ja M fein M gut M machst M du M *da M | *tz läufst du mal bitte nach links | stopp E Aibo stopp | nach links E umdrehen | nein M <*ne> nein M <*ne> nein M <*ne> so M weit M *simma M noch M nicht M aufstehen M Schlafmütze M komm M hoch M | ja M so M ist M es M <*is> guter M Hund M lauf mal jetzt nach links | nach links Aibo | Aibolein M aufstehen M *son M sonst M werd' M ich M böse M hoch E | nach A links A | Aibo A nach A links A | Aibolein A ganz A böser A Hund A jetzt A stehst A du A auf A | hoch A | dreh dich ein bisschen | ja M so ist es <*is> qut stopp Aibo stopp | *tz lauf g'radeaus

Challenges – Computer Vision

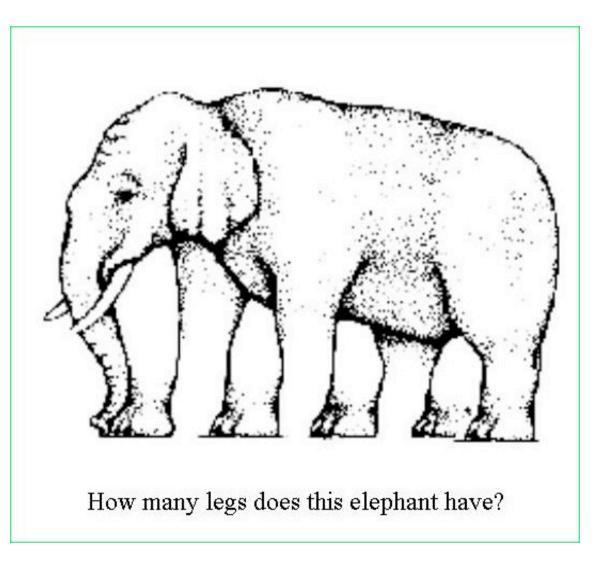
Why is computer vision so difficult:

- Ambiguities
- Implicit knowledge
- Prior information
- Technical problems (noise, limited data, encoding...)


BEFORE 6 BEERS

AFTER 6 BEERS

Influence of Entire Image



Implicit Knowledge

Seite 20

- We have a structured way of processing incoming signals (sound, light, etc.) in order to identify what is being conveyed by that signal.
- This framework (the Pattern Recognition pipeline) is general and can be applied to a variety of situations.
- There are many challenges.
- Can such a general framework be effective?

DARPA Grand Challenge

- A prize competition for driverless (autonomous) cars organized by DARPA (Defense Advanced Research Project Agency), the research oprganization of the USA Department of Defense.
- "DARPA Grand Challenge" of 2004 Mojave Desert, CA, 240km
 - No competitor of the 21 participants finished the race
 - CMU won for completing the longest distance 11.78km
- "DARPA Grand Challenge" of 2005 Mojave Desert, CA, 212km on a wider road with fewer curves
 - 5 out of the 23 (22%) participants finished the race
 - 22 out of the 23 participants surpassed the 11.78km distance.
 - 1st place: Stanford's "Stanley" (VW Touareg) after 6:54hrs of driving
 - 2nd place: CMU's "Sandstorm" at 7:05hrs
 - 3rd place: CMU's "Highlander" at 7:14hrs

Seite 23

DARPA Grand Challenge

Seite 24

DARPA Grand Challenge Bloopers

DARPA Urban Challenge Event

Goal: Autonomous driving in an city setup

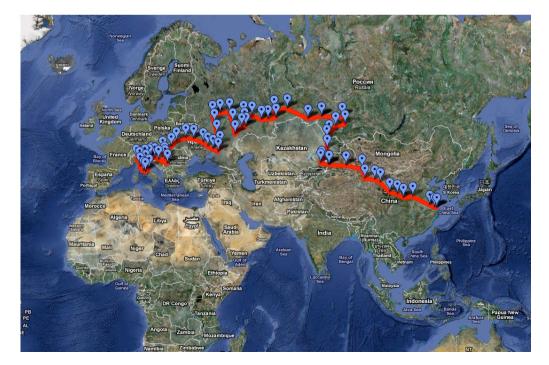
Course:

- 96km to be completed in less than 6hrs
- Obey all traffic regulations
- Handle obstacles and other cars on the road
- Merge into traffic
- Day of Final Event: November 3, 2007

Results:

- 35 participants, 11 passed to the finals
- 6 out of 11 finalists (55% of finalists, 17% of participants) completed the course
- 1st place: CMU (Chevy Tahoe) after 4:10hrs of driving
- 2nd place: Stanford (Volkswagen Passat) at 4:29hrs
- 3rd place: Virginia Tech at 4:36hrs
- Followed by MIT, UPenn and Cornell

DARPA Urban Challenge Event


VisLab Intercontinental Challenge

Goal: Autonomous driving from Parma, Italy to Shanghai, China

Course:

- 13,000km of regular roads
- Estimated travel time approx. 3 months (20. Jul 2010, 26 Oct. 2010)
- 4 electric vehicles powered by solar energy

Leader-Follower Model

- First car drives autonomously most of the time. It collects a significant amount of data and performs tests on sensing, decision and control systems. Human intervention is needed for route selection and in critical situations.
- The 2nd car automatically follows the route defined by the preceding vehicle. It is **100% autonomous**.
- If the leader is visible, it follows it.
- If the leader is not visible, it uses the GPS coordinates that the leader has determined as part of the route.
- The follower uses local sensing to refine its position on the road, avoid obstacles and determine speed.

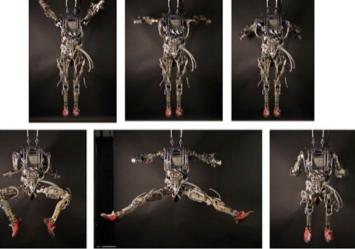
Seite 29

VisLab Intercontinental Challenge (3)

Seite 30

VisLab Intercontinental Challenge (3)

Latest DARPA Grand Challenge



- On April 2012 DARPA announced ist new Grand Challenge. It is on Humanoid Robots.
- Goal: Evaluate designs of humanoid robots that can be used on rough terrain and for industrial disasters
- Official details have not yet been announced.
- So far, there is only a test scenario for evaluating the robots.

Test of New DARPA Grand Challenge

The humanoid robot should be able to:

- Maneuver itself into and out of a car seat.
- Drive a tractor-like vehicle.
- Once out of the vehicle, unlock a locked door using a key.
- Walk through the open door.
- Walk down a 100m long hallway with rubble obstacles.
- Climb a ladder at the end of the hallway.
- Locate a leaky pipe.
- Stop the leak by turning a nearby valve.
- Replace a pump.

So at the end the facility can resume normal operations.

The robot should perform this semi-autonomously with at most tele-operation from a supervising person.