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PURPOSE. Clustering by unsupervised learning with machine learn-
ing classifiers was shown to segment clusters of patterns in stan-
dard automated perimetry (SAP) for glaucoma in previous publi-
cations. In this study, unsupervised learning by independent
component analysis decomposed SAP field patterns into axes, and
the information represented by these axes was evaluated.

METHODS. SAP fields were used that were obtained with the
Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Dublin,
CA) from 189 normal eyes and 156 eyes with glaucomatous
optic neuropathy (GON) determined by masked review with
stereoscopic optic disc photographs. The variational Bayesian
independent component analysis mixture model (vB-ICA-mm)
partitioned the SAP fields into the most informative number of
clusters. Simultaneously, the model learned an optimal number
of maximally independent axes for each cluster.

RESULTS. The most informative number of clusters in the SAP set
was two. vB-ICA-mm placed 68.6% of the eyes with GON in a
cluster labeled G and 98.4% of the eyes with normal optic discs in
a cluster labeled N. Cluster G optimally contained six axes. Post
hoc analysis of patterns generated at �1 SD and �2 SD from the
cluster G mean on the six axes revealed defects similar to those
identified by experts as indicative of glaucoma. SAP fields associ-
ated with an axis showed increasing severity, as they were located
farther in the positive direction from the cluster G mean.

CONCLUSIONS. vB-ICA-mm represented the SAP fields with pat-
terns that were meaningful for glaucoma experts. This process
also captured severity in the patterns uncovered. These find-
ings should validate vB-ICA-mm as a data-mining technique for
new and unfamiliar complex tests. (Invest Ophthalmol Vis Sci.
2005;46:3676–3683) DOI:10.1167/iovs.04-1167

This study focuses on the problem faced by physicians in
interpreting tests for the diagnosis and management of dis-

eases. The discipline of glaucoma diagnosis is particularly rich
with data-intense tests that are currently being applied or devel-
oped to determine the status of glaucoma in an eye. Diagnosing
and staging glaucoma both necessitate the use of several tests,
including structural and functional assessment of the optic nerve.
One of these, visual field testing, has been used by experts for
several decades as the prime indicator for both diagnosis of
glaucoma and the detection of progression. This wide expertise
can be used to evaluate the ability of machine learning classifiers
to find information that can be valuable in clinical practice. The
hypothesis proposed is that machine learning classifiers can learn
useful information about visual field patterns. This information
can be validated against the prevailing experience of experts.
Such validation would give credence to the application of the
same process to new and unfamiliar tests.

Visual fields have been used to diagnose glaucoma since
1856.1 In 1889 Bjerrum began to uncover patterns of visual field
defects, such as a comet-shaped arcuate scotoma or a nasal step
scotoma, with quantitative perimetry.2 Consequently, for more
than 110 years, generations of experts in glaucoma have accumu-
lated knowledge to recognize patterns of visual field defects that
indicate glaucoma. With the advent of standard automated perim-
etry (SAP) and the development of statistical field analysis pack-
ages such as Statpac (Carl Zeiss Meditec, Inc., Dublin, CA), the
depth of defect within the patterns of loss and the relationship of
adjacent test locations to each other could be quantified. We
applied machine-learning data-mining techniques to uncover vi-
sual field patterns associated with glaucoma and to compare these
patterns with the subjective qualitative and semiquantitative pat-
terns evolved from experience by human experts.

There are two ways that classifiers can learn from data
concerning medical conditions. One way is to learn to diag-
nose disease, predict outcomes, and look for change.3–8 An-
other way is by finding useful patterns in large groups of
patients. In the present study, we applied a variational Bayesian
independent component analysis mixture model (vB-ICA-mm)
to subdivide the results of SAP field tests performed in a cohort
of normal subjects and patients with glaucomatous optic neu-
ropathy (GON), to find patterns of interest in the SAP fields,
and to propose how this knowledge can improve medical care.

A classifier may learn from training examples the knowl-
edge it needs to make decisions. Specifically, a classifier may
learn to diagnose glaucoma by distinguishing abnormal SAP
fields from normal fields after being trained with a set of SAP
fields labeled with the correct diagnosis. This process is called
learning with a teacher or supervised learning.

When the diagnosis is not supplied with each of the training
samples, the objective of the learning algorithm no longer is
classification or diagnosis. The goal can be to organize the
input data into meaningful structures or groups of patterns.
This process is called learning without a teacher or unsuper-
vised learning. For our purposes, the goal can be to organize
data, such as the set of visual fields, into differing clusters of
patterns with similar members. Hence, another name given to
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the process is clustering, and the investigation of the clusters
segmented from the data is cluster analysis.

Machine learning classifiers impose fewer constraints on
the data than do statistical classifiers, permitting better adap-
tation to the data and thus better organization. Unsupervised
learning with these newer classifiers has the potential of group-
ing the patterns in the data in a manner that is more useful than
that achieved by statistical methods.

The decomposition of the data by different types of unsu-
pervised learning yields different structures. Instead of clusters,
in the present study we evaluated a different structure that
relies on axes. Component analysis projects the data within
each cluster located in multidimensional space onto axes that
meaningfully represent the data. Although the axes do not
produce clusters, representation of the data with axes still
yields useful information about the patterns in the data. A
further refinement, principal component analysis (PCA)
projects d-dimensional data on a lower dimension subspace of
s-orthogonal axes. Though the expectation is that the orthog-
onal axes are independent, in reality, the axes may not be
independent. We chose independent component analysis
(ICA), because it incorporates a measure of independence to
produce axes that are maximally independent.9,10 There may
be data distributions in which components are nonlinearly
related or clustered so that they are difficult to describe by one
ICA model. The ICA mixture model9 is a nonlinear ICA tech-
nique that extends the linear ICA method by learning multiple
ICA models and weighting them in a probabilistic manner. The
ICA mixture model settles on the optimal number of axis sets
simultaneously with the generation of the axes (Figs. 1A, 1B).

Representing all the data (e.g., normal and glaucomatous eyes
together) with a single set of axes may produce suboptimal
representation of the data. Multiple sets of axes are more likely to
match the local conditions (which, in this study, turned out to be
a set mostly of normal eyes and a set mostly of eyes with glau-
coma). Instead of relying on a chosen number of clusters with
fixed dimensionality, the ICA mixture model learns the dimen-
sionality and number of classes. The exact computation of the
marginal likelihood is computationally intractable; thus, we used
variational Bayesian approximation techniques.11 The variational
Bayesian framework helps to capture the number of axes in the
local axis set and reduces the computational complexity (by
bounding intractable integrals). The amalgamation of all these
processes is the variational Bayesian ICA mixture model (vB-
ICA-mm)6 that we applied in this study to fields in healthy eyes
and glaucomatous eyes to identify patterns of field loss associated
with this diagnosis.

METHODS

Participant Selection and Testing

Participants. We used the visual field set from the first 12 years of
the ongoing National Eye Institute–sponsored longitudinal Diagnostic In-
novations in Glaucoma Study (DIGS) of visual function in glaucoma.
Normal participants in this study were recruited from the community,
staff, and spouses or friends of patients. Patients with primary open-angle
glaucoma were recruited from the Hamilton Glaucoma Center. Informed
consent was obtained from all participants. The study was approved by
the Institutional Review Board of the University of California at San Diego,
and it adhered to the tenets of the Declaration of Helsinki.

FIGURE 1. (A) Two-dimensional scatterplot of participants with (�)
and without (�) GON. Units are in standard deviations away from the
mean of cluster G. (B) Two-dimensional projection of 53-dimensional
space. vB-ICA-mm converged to two clusters: named from post hoc
analysis the glaucoma cluster (cluster G) and normal cluster (cluster
N). The glaucoma cluster decomposed into six axes through the
glaucoma mean. Axes 1 to 3 are shown; axes 4 to 6 are not depicted,
to avoid cluttering. The positive direction of each axis moves farther
from the normal mean. (C) Relationship of points on axes in cluster G
to the mean of the normal cluster. Large arrows: vectors from the
cluster N mean to a point on the negative side and a point on the
positive side of axis 2. Grayscales at the tips of these vectors simulate

the grayscale of TD plots. Increasing severity away from the normal
mean most closely matches increasing deviation from the glaucoma
mean on the positive side of the glaucoma mean.
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Exclusion criteria for both groups included unreliable visual fields
(defined as a value more than 33% for fixation loss, false-negative
errors, or false-positive errors),12 angle abnormalities on gonioscopy,
diseases other than glaucoma that could affect the visual fields, and
medications known to affect visual field sensitivity. Subjects with a
best-corrected visual acuity worse than 20/40, spherical equivalent
outside �5.0 D, and cylinder correction greater than 3.0 D were
excluded. Poor quality stereoscopic photographs of the optic nerve
head also served as an exclusion for the glaucoma category. A family
history of glaucoma was not an exclusion criterion.

Inclusion criteria for the normal category required that subjects have
normal findings in dilated eye examinations, open angles, and no evidence
of visible GON. Normal optic discs had a cup-to-disc ratio asymmetry
�0.2; intact rims without hemorrhages, notches, or excavation; and an
absence of nerve fiber layer defects in the adjacent retina. Normal subjects
had intraocular pressures (IOP) �22 mm Hg and no history of elevated
IOP. If both of the eyes met the inclusion criteria, one of the eyes was
selected at random, to ensure independence between eyes.

GON as an Indicator of Glaucoma. Because the goal was to
analyze SAP visual fields, visual fields were not used to determine whether
an eye was glaucomatous. The classification of an eye as glaucomatous or
normal and the labeling of its visual field for the post hoc analysis of the
results were based on the appearance of the optic disc. The designation of
the optic disc as glaucomatous or normal was accomplished with masked
evaluations by two independent graders of a stereoscopic disc photo-
graph taken within 6 months of the visual field test. Inconsistencies
between the graders’ evaluations were resolved by consensus or through
adjudication by a third masked evaluator. Color simultaneous stereoscopic
photographs were obtained (TRC-SS camera; Topcon Instrument Corp. of
American, Paramus, NJ) after maximal pupillary dilation. Stereoscopic disc
photographs were evaluated for all eyes, with the exception of a subset of
normal subjects (95 eyes) in whom photography had not been performed
early in the collection of the normal database. All normal subjects had no
evidence of optic disc damage during dilated slit lamp indirect ophthal-
moscopy with a hand-held 78-D lens. The final selection of eyes totaled
345, including 189 normal eyes (mean age, 50.0 � 6.7 years [SD]) and 156
eyes with GON (mean age, 62.3 � 12.4 years).

Visual Field Testing. All subjects had automated full-threshold
standard visual field testing with the Humphrey Visual Field Analyzer
(HFA; Carl Zeiss Meditec, Inc.) with program 24-2 or 30-2. Though most
clinicians use the 24° 24-2 program to test for glaucoma, some of the
subjects were in other studies that required field testing to be performed
with the 30° 30-2 program. The visual field locations in the 30-2 fields that
are not in 24-2 fields are at the edge of the field and do not contribute
much to the accurate diagnosis of glaucoma. These locations were deleted
from the 30-2 field data and displays, to make the SAP data consistent.

Representation of Data

Input for the Classifier. The absolute sensitivity (in decibels)
of the 52 visual field locations (L) plus age formed a vector in 53-
dimensional input space for each of the 345 SAP fields of normal and
glaucomatous eyes. The 52 threshold values were extracted from the
HFA by computer (Peridata ver. 6.2; Peridata Software GmbH, Hürth,
Germany). Each feature vector was x � (L1, . . . , L54, age), excluding
locations L18 and L31, because they fell in the normal blind spot. Age
was included because both normal and glaucomatous SAP fields are
affected by age, and age had been used in some studies that incorpo-
rated supervised learning.3–5,7,8

Partitioning Data into Clusters and Adjusting Axes. The
unsupervised learning was performed with the vB-ICA-mm. This method
is the core of the new direction in data exploration we propose. A
detailed, mathematically rigorous description of this method is available in
the Appendix. A general description follows. Starting with 345 subjects
evenly distributed in c clusters and with random initialization of axes, the
axes and the probability of each cluster were learned. The number of
clusters, c, was increased from c � 1 until c � 5, seeking the value beyond
which no further gain in information would be obtained. Subjects belong-

ing to the same cluster defined the mean and templates for that cluster.
For each SAP field, its cluster assignment was then recomputed according
to its likelihood value given by ICA. ICA alone would have sought one set
of axes. The mixture model of ICA created clusters and sought an optimal
set of axes for each cluster. Bayesian learning was applied to overcome
overfitting by maximum-likelihood estimation. The cluster assignments
and axis adjustments were iterated until no further change occurred in the
cluster assignment.6,9 The possibility of ending up in a high local mini-
mum of the error surface was minimized by selecting the model with the
best marginal likelihood value from 100 different random initializations,
thus ending up as close to the global minimum as possible.

Post Hoc Analysis

Validation of Structure. The process was validated by observ-
ing whether the structure obtained by vB-ICA-mm was appropriate for
the data. As described in the Results section, the data were best
represented by two clusters. Because the data contained visual fields
from normal and glaucomatous eyes, we first evaluated the two clus-
ters, created without knowledge of the diagnosis, for their proportion
of normal and glaucomatous eyes. The second validation came from
evaluation of the SAP patterns in each cluster represented by the axes
uncovered by ICA. The representation by these axes of patterns similar
to those identified by generations of glaucoma experts through more
than a century of accumulated experience would validate the structure
uncovered by unsupervised learning with machine learning classifiers.

Placing Fields around an Axis. Experience with cluster anal-
ysis methods that perform only clustering demonstrates that analysis of
members inside the clusters gives us some understanding of the data
organization achieved by unsupervised learning.13 Instead of creating
subclusters, as was reported with the variational Bayesian mixture of
factor analysis mixture model,13 vB-ICA-mm creates axes within the clus-
ters. The axes were analyzed by generating patterns in SAP field input
space at specific points along the axes created by the vB-ICA-mm. We did
not want to ignore potential information in the SAP fields. Information
was also sought by examining the SAP fields in addition to examining
patterns generated at points on the axes. The SAP fields in a cluster
generated by the vB-ICA-mm were thus organized into clouds around the
axes created by the vB-ICA-mm, and these clouds were analyzed.

To analyze the individual SAP fields in cluster c, each field was assigned
to an axis. In 53-dimensional space, the angle was calculated at the cluster
c centroid between the vector for any individual SAP field and the vector
of each of the axes. The individual field was assigned to the axis with
which the SAP field vector had the smallest angle. This created a cloud of
points in space around each axis, with the axis running up the center of
the cloud (Fig. 2). One can imagine the shape of each cloud to approxi-
mate a “hypercone” (multidimensional manifestation of a cone in three-
dimensional space) expanding away from the glaucoma mean. Each axis
had a positive cloud and a negative cloud. Each field was assigned to one
axis in one direction, and there was no overlap in the clouds. This allowed

FIGURE 2. Distribution of SAP fields assigned to an axis. Each axis has
a cloud around the positive axis and a cloud around the negative axis.
The broken lines indicate the boundary surface for the cloud. Individ-
ual absolute sensitivity plots are distributed around the axis they are
closest to, inside the cloud on either side of the glaucoma cluster
mean. The vector that connects the normal cluster mean with an
individual field simulates the TD plot (shown in Fig. 1C).
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us to look at the fields falling within each cloud and, we hoped, to
determine what was similar about those fields in one cloud and how they
differed from fields falling within the other clouds.

Visual Field Interpretation. To determine whether the struc-
ture disclosed by the unsupervised learning was meaningful to the
study of visual fields in glaucoma, we performed a post hoc classifica-
tion of fields. Two visual field experts (PAS, CB) were masked to the
mean patterns generated by the vB-ICA-mm along the positive and
negative directions of each of the resultant axes. They were then asked
to review the actual grayscale printouts from the SAP visual fields
arranged along each axis according to the distance in standard devia-
tion from the mean of cluster c, to discern whether a consistent pattern
of field loss was shown in each cloud, and if so, to describe the pattern
within each of the resultant groups of fields. Disagreements were
resolved by consensus.

RESULTS

Post Hoc Analysis

After convergence with unsupervised learning, post hoc anal-
ysis found cluster 1 to contain 107 eyes with GON and 3 eyes
that had normal optic discs. Cluster 2 contained 186 eyes with
normal optic discs and 49 eyes with GON. Without knowing
the diagnosis during the learning phase, vB-ICA-mm placed
68.6% of the eyes with GON in cluster 1 and 98.4% of the eyes
with normal optic discs in cluster 2. For ease of reading, from
this point on, cluster 1 will be called cluster G, and cluster 2
will be called cluster N.

Clusters and Axes Created by the vB-ICA-mm

With a data set of 345 eyes containing SAP fields of 189 normal
eyes or 156 eyes with GON, the model that performed best was
that with two clusters of one and six axes. To determine the
optimal number of axes within each global cluster, the contri-
bution of each axis for reconstructing the input was plotted
against the axis number of choices provided by the vB-ICA-mm.
In cluster G, the contribution value dropped to near zero after
6 axes and was zero after 12 axes (Fig. 3). Examination of axes
7 through 12 provided little additional information; these axes
may have represented noise. Hence, the most informative
number of axes in cluster G was six, which meant that most of
the information in the visual field data could be described using
six maximally independent axes. In cluster N, the contribution
of the axis declined to zero after one axis; hence, only one axis
was necessary to represent cluster N.

Figure 1B shows in a two-dimensional projection the distribu-
tion of clusters G and N collapsed from the 53 dimensions, with
the vB-ICA-mm-derived axes superimposed. The two clusters
overlapped, and each cluster appeared to have an ellipsoidal
distribution. Each axis in cluster G passed through the centroid of
that cluster in 53-dimensional space. We related the findings of
the vB-ICA-mm to clinical practice by examining specific points
along each axis, at �1 and �2 SD away from the centroid (Fig. 4).
The mean pattern generated at the centroid of clusters G is also
displayed in Figure 4. A similar examination of the axis in cluster
N was not conducted, because it was the only axis.

Pattern Display

Simulation of the Total Deviation Plot in Generated
Patterns. Patterns generated at a particular point in the 53-
dimensional space are equivalent to absolute sensitivity patterns.
Visual field experts do not evaluate the absolute sensitivities
plotted in the visual field printout. Instead, they typically rely on
the total deviation (TD) or pattern deviation (PD) plots supplied
by the Statpac analysis (Carl Zeiss Meditec, Inc.), which take into
account the deviation from age-matched healthy eyes (TD) and
the effect on the fields of global factors such as cataract (PD).

Thus, the numerical TD plot was simulated by subtracting these
generated absolute sensitivity patterns from the mean absolute
sensitivity pattern at the centroid of cluster N, the cluster holding
nearly all the normal eyes. Then, the simulated numerical TD
pattern was converted into a grayscale pattern. Another way to
consider these derived plots is as 53-dimensional vectors originat-
ing at the centroid of the mainly normal cluster N and ending at
specified points along any of the six axes in cluster G. Figure 1C
shows graphically how the generated patterns on the axes are
made to simulate the TD plot of Statpac.

Pattern Shift along Each Axis. The centroid of cluster G
from the vB-ICA-mm result could be considered the mean
glaucoma visual field (Fig. 4), and the centroid of cluster N
could be considered the mean normal visual field. Although
cluster N contained 49 eyes with GON along with 98.4% of the
normal eyes, neither the two visual field experts nor super-
vised and unsupervised learning algorithms noted field abnor-
malities in most of these 49 eyes.4,13 The mean glaucoma field
was not quite uniformly depressed, with greater depression
than average at the nasal step zone, a slightly greater depres-
sion than average in the superior hemifield, and the least
depression just inferior to fixation (Fig. 4).

Each axis passed through the mean glaucoma visual field at
the centroid of cluster G. The six axes were, by definition,
maximally independent. Hence, the patterns represented by
each axis were maximally different: the farther along the axis
away from the glaucoma mean, the greater the deviation from
the glaucoma mean. The axis direction was considered to be
positive if the distance from the normal mean field always
increased as the shift from the glaucoma mean increased along
the axis. As the distance from the glaucoma mean increased in
the negative direction, the distance of a point on the axis to the
normal mean initially decreased until the minimum distance of
the axis to the normal mean was reached (Fig. 1B). Thereafter,
the distance from a point on the axis to the normal mean
increased as the distance from the glaucoma mean increased.

Analysis of Generated Patterns and SAP Fields in Axis-
Derived Clouds. Extraction of Information from Vectors.
The information collected from each axis in cluster G was the gen-
erated field pattern on the axis at 0 SD, �1 SD, and �2 SD displayed
as TD-like plots along with the actual printed Statpac grayscale plots
for each of the SAP fields assigned to the axis (Fig. 4). The generated
plot at 0 SD, being the mean pattern at the centroid of cluster G, was
common to all axes. There were no individual SAP fields placed at or

FIGURE 3. Contribution of axis versus axis number. The norm of Am,
on the y-axis represents the contribution of axis m in reconstructing
the input. Note the small contribution of axes 7 through 12. There was
no contribution after 12 axes.
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near the centroid, with the closest fields being 0.4 to 0.5 SD from the
centroid on the negative side of axes 1 to 5. (There were no fields on
the negative side of axis 6.)

On the negative side of the axis, the mean distance from the
centroid for all axes was �0.75 SD. Hence, we rounded up and
analyzed the generated pattern in this direction at �1 SD. On

FIGURE 4. Generated patterns on
axes. Patterns generated at cluster
G (mostly GON) mean, �1 SD on
each axis in cluster G, and �2 SD
on each axis in cluster G, with the
plots displayed as if they were gray-
scale images of TD plots of the left
eye.
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the positive side, the mean distance from the centroid was 2.50
SD. Thus, we rounded down to analyze the generated pattern
on the axis at �2 SD.

Table 1 shows the average, minimum, and maximum dis-
tance in standard deviation in the positive and negative direc-
tions along each axis from the cluster G mean of the 110 SAP
fields assigned to the axes.

Visual Fields Associated with Each Axis. We labeled the
printed Statpac TD plot for each study eye in cluster G with the
axis to which that visual field was assigned (see the Methods
section: Placing Fields around an Axis) and with the distance of
that field from the glaucoma mean in units of standard deviation.
For each axis, the visual field experts evaluated the printed fields
ranked from most minus to most plus and looked for the common
pattern elements in the fields assigned to that axis.

Axis 1: At �1 SD, the vB-ICA-mm-generated field had a mild
generalized depression that was slightly deeper superiorly and
nasally (Fig. 4). The negative side of this axis had the least
correlation between the generated fields and the SAP fields and
the least in common among the SAP fields. The 16 SAP fields
ranged from �1.5 to �0.5 SD. The common feature of the 16
SAP fields was the tendency to have a single small depression,
but that depression varied in location among the fields (supe-
rior nasal step, superior paracentral focus, superior arcuate,
enlarged blind spot, and temporal wedge). The generalized
depression in the generated field represented an average of all
the spot depressions in the individual SAP fields on the nega-
tive side. At �2 SD, the generated field had a greater general-
ized depression deepest in both superior and inferior nasal
steps and a slightly greater than average depression in the
inferior hemifield. The seven SAP fields on the positive side
ranged from �0.8 to �6.4 SD. They had multiple deep defects
involving three or four quadrants with no consistent patterns.
The field defects became larger or deeper as the distance of the
field increased from the glaucoma mean. The farthest SAP field
at �6.4 SD was too advanced to show a pattern other than
severe depression everywhere.

Axis 2: The generated field at �1 SD had mild inferior
hemifield depression with the greatest depression at the nasal
steps (Fig. 4). The six SAP fields ranged from �0.9 to �0.5 SD.
They also had mild arcuate defects inferiorly or a focus of
depression at a nasal step. The generated field at �2 SD
revealed a strong superior hemifield defect augmented nasally.
The nine SAP fields ranged from �1.0 to �4.5 SD. They also
displayed mostly superior nasal arcuate and hemifield defects.
The defects became more severe as the distance from glau-
coma mean increased (Fig. 5).

Axis 3: The generated field at �1 SD showed a nasal hemi-
field depression greater along the nasal edge and a little exag-
gerated at the superior nasal step (Fig. 4). The eight SAP fields
ranged from �1.0 to �0.4 SD. The common pattern elements
in TD plots of the fields in the negative direction were nasal

step depressions and arcuate depressions at the nasal edge of
the 24° SAP field. The generated field at �2 SD revealed
superior hemifield with superior temporal arcuate (wedge)
depression combined with a superior nasal step. The 10 SAP
fields ranged from �0.6 to �4.9 SD. The fields in the positive
direction also tended to combine a superior temporal wedge or
a superior outer arcuate depression with a depression at the
superior temporal wedge. The defects became more severe as
the distance from the glaucoma mean increased.

Axis 4: The generated field at �1 SD showed peripheral
depression somewhat greater than central depression (Fig. 4).
The SAP fields in general had a peripheral ring of defect or focal
defects scattered about the periphery. The generated field at
�2 SD had a line of depression extending from the blind spot
to the nasal step, passing just superior to fixation. To contrast
this pattern with the positive pattern on axis five, we call this
pattern the arrow shaft. The central depression was greater
than the peripheral depression. The SAP fields on the positive
side ranged from �1.2 to �2.8 SD. The depression pattern was
horizontal linear from the blind spot to the nasal step, passing
just superior to fixation. The defects became deeper or larger
as the SAP field was located farther from the glaucoma mean.

Axis 5: The generated field at �1 SD on the negative axis had
generalized depression greater in the superior hemifield, cen-
trally, and at the superior nasal step (Fig. 4). The four SAP fields
ranged from �0.6 to �0.4 SD. The patterns were not uniform,
with a tendency for more depressions superiorly and at the supe-
rior nasal step. The generated field at �2 SD on the positive axis
was weighted along the inferior (more) and superior (less) nasal
arcuate edge. To contrast this pattern with that on the positive
side of axis 4, we called this the arrowhead. The five SAP fields
ranged from �1.3 to �6.1 SD. The defects had the arrowhead at
the nasal periphery or were inferior nasal. Except for one field,

TABLE 1. The Average, Minimum, and Maximum Distance in Standard Deviation in the Positive and Negative Directions along Each Axis from
the Glaucoma Mean of the 110 SAP Fields Assigned to the Axes in the Glaucoma Cluster

Axis

Total1 2 3 4 5 6

Negative side of glaucoma mean
n 18 7 8 15 4 0 52
Average �0.93 �0.75 �0.72 �0.79 �0.56
Min; max �1.5; �0.5 �1.0; �0.5 �1.0; �0.4 �1.3; �0.4 �0.6; �0.4

Positive side of glaucoma mean
n 7 9 10 16 5 11 58
Average �1.76 �2.63 �2.50 �1.78 �3.86 �2.49
Min; max �0.8; �6.4 �1.0; �4.5 �0.6; �4.9 �1.2; �2.9 �1.4; �6.1 �1.4; �4.1

Total 25 16 18 31 9 11 110

FIGURE 5. Demonstration of severity along an axis. Representative
grayscale of two SAP fields from axis 2 showing increasing defect as the
distance from cluster G mean increases in the positive direction.
Notice that the SAP field grayscale matches the pattern of the gener-
ated field at �2 SD in Figure 4 and that the �4.2-SD pattern is deeper
but not different in shape from the �1.0-SD pattern.
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there was a sense of increasing defect as the distance increased
from the glaucoma mean.

Axis 6: The generated field at �1 SD combined mildly
greater defects at the superior edge, superior nasal, and supe-
rior temporal central (Fig. 4). There were no SAP fields on the
negative side of axis 6. It is not known whether a larger or
different data set would have fields in the space defined by the
negative side of axis 6 or whether no real fields would ever
exist in this region. As with the other axes, the pattern on the
negative sides of the axis tended to be the inverse of the
pattern on the positive side. The generated pattern at �2 SD on
the axis had a linear depression from inferior to fixation to the
inferior nasal step. The 11 SAP fields ranged from �1.4 to 4.1
SD. The defects were linear from inferior to fixation to the
inferior nasal step or were mostly inferior nasal quadrant. The
defects tended to broaden or deepen as the distance increased
from the glaucoma mean.

In summary, the axis patterns generated by the vB-ICA-mm
in general were in good agreement with the pattern types
identified by experts in this set of fields.

DISCUSSION

Representation of Data Structure

vB-ICA-mm settled on two clusters. Without knowing the diagno-
sis during the learning phase, vB-ICA-mm placed 68.6% of the eyes
with GON in cluster G (true-positive rate) and 98.4% of the eyes
with normal optic discs in cluster N (true-negative rate). In a
previous report,4 mixture of Gaussian, a comparable classifier that
had knowledge of the correct diagnosis during the learning phase
(supervised learning), had a sensitivity of 67% when specificity
was restricted to 100%. Consequently, the cluster structure ob-
tained with unsupervised learning by vB-ICA-mm correlated well
with that obtained by supervised learning.

In cluster G, most of the information in the visual field data
from patients with glaucoma could be described using six
maximally independent axes. The need for six axes means that
there were several patterns. In cluster N, one axis was suffi-
cient to describe all the data, indicating that the normal-appear-
ing fields were essentially uniform.

Change along an Axis

Why should we be interested in generating axes to represent the
data when we can generate clusters of patterns that are internally
similar but differ from each other?11,14 The generated field pat-
terns and the analyzed SAP fields each had 52 dimensions; with
the addition of age, they were in 53-dimensional space. We will
discuss the shapes in three-dimensional space, because it is easier
to grasp cognitively. Cluster G can itself be segmented into
clouds. The elongated clouds that are created around axes within
cluster G are likely to have a different type of similarity of its
members than clusters close to spherical in shape. Clusters of
glaucoma fields created by unsupervised learning with variational
Bayesian mixture of factor analysis were somewhat spherical.13

With that type of clustering, it is possible for one spherical cluster
to have mostly mild defects and another cluster to have mostly
advanced defects.

Representing the data with axes can give us different in-
sights. The generated patterns represented by the axes differed
from each other. The patterns resembled classic glaucoma
patterns, such as altitudinal hemifield depression, defects in
the arcuate region, reduced sensitivity adjacent to fixation, and
temporal wedge. Frequently, there was a combination of clas-
sic defects in an axis. The pattern on the negative side of an
axis tended to be the inverse of the pattern on the positive
side—for example, central versus peripheral, superior versus
inferior, or temporal versus nasal. Another observation was for

each axis in general to capture not only a unique pattern but
also mild and severe forms of that pattern.

The axes in the glaucoma cluster pass through the glaucoma
mean, but an increase in the severity of a field pattern with
respect to the normal mean should more closely match the pro-
gression of glaucoma away from normal. It is difficult to model the
data in a way that captures severity along axes coming out of the
normal mean. The severity along ICA axes in relation to the
glaucoma mean serves as a surrogate for the sense of severity of a
field from normal. Axes that are close to perpendicular to the
vector from the normal mean to the glaucoma mean capture the
sense of severity the least, and axes that are close to parallel to the
vector from the normal mean to the glaucoma mean capture the
sense of severity the most. A question arises of whether moving in
the positive direction along an axis represents increasing severity
of the same pattern, or whether moving in the positive direction
shows increasing severity by adding new patterns. This issue is
addressed in a separate report that detects worsening of disease
by tracking the position of serial fields different from those used
in this study. Those fields were tracked within the vB-ICA-mm
space developed in this study.15 That report describes increasing
severity as worsening of the same pattern rather than the addition
of new patterns. Another question is the effect of the age differ-
ence between the normal and glaucoma participants. In cluster
analysis performed on the same participants, the age difference
was found not to influence the patterns.13 Because severity,
which is incorporated in each axis, is not a factor that distin-
guishes the axes, the age difference between the normal and
glaucoma participants also does not affect the representation of
data created with vB-ICA-mm. The representation of patterns is
based on glaucoma and not age.

Validation of Method

vB-ICA-mm produces both clusters and representative axes
within the clusters. Without knowing the goals of the analysis
of the glaucoma and normal fields, and without the fields being
labeled with an indication of glaucoma, the clustering accom-
plished with vB-ICA-mm separated the SAP fields into two
clusters. Cluster N had 98.4% of the SAP fields from normal
eyes, and cluster G had 68.6% of the fields from eyes with
GON. If the goal had been classification instead of data orga-
nization, these values would have represented specificity and
sensitivity, respectively. The cluster structure obtained with
unsupervised learning by vB-ICA-mm correlated well with that
obtained by supervised learning.

The patterns generated along the ICA axes matched the
descriptions of the SAP fields provided by the two visual field
experts in this study. More important, the patterns generated
along the ICA axes were similar to those discovered by gener-
ations of human experts with decades of experience analyzing
visual fields in eyes with glaucoma. This finding validates the
vB-ICA-mm as a method of separating out patterns of defects
consistent with glaucoma.

In summary, the vB-ICA-mm process can be relied on to
analyze a complex test for glaucoma in a meaningful way. The
data were separated with unsupervised learning by vB-ICA-mm
into normal and glaucoma clusters as well as could be accom-
plished with machine learning classifiers trained with super-
vised learning on the diagnosis and by glaucoma experts. The
patterns disclosed by the axes representing the glaucoma clus-
ter correlated to patterns discovered by years of human expe-
rience with glaucomatous visual fields. The validation of vB-
ICA-mm on tests we understand indicates that this approach to
data mining should teach us the patterns of significance in tests
we do not yet understand. Last, the type of data representation
achieved by ICA axes captures the sense of severity, giving this
type of analysis the potential of detecting increasing severity of
disease in a quantitative manner.15
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APPENDIX

The application of the variational Bayesian ICA mixture model
in this project is adapted from the formal presentation in
Chan.6 vB-ICA-mm automatically determines the number of
clusters and dimensions (axes) of each cluster. The input data
(52 field locations plus age for each eye) are denoted by x, in
53-dimensional space, and vB-ICA-mm models the data density
by clusters, p(x) � ¥

c
P�c�p�x�c�, where P(c) is the probability

mass of cluster c and p(x�c) is the probability density of x
within cluster c. Within each cluster c, the data are modeled by
the linear combination of independent sources, xc � Acsc � �c

� �c, where Ac � (A1
c, A2

c, . . . , An
c ) is the mixing matrix of the

independent axes (A1
c, . . . , An

c ), sc � (s1
c, . . . , sn

c )T are the
activation coefficients along the axes, and �c is the centroid, � c

the noise, and n the dimensionality (number of axes) of cluster
c. The noise is modeled by Gaussian distribution with zero
mean and covariance � c. So the distribution of x in any cluster
can be written as p(x�c) � p(x�Ac,�c,� c) � �N(x�Acsc �
�c,� c)p(sc)dsc, where N denotes Gaussian distribution, the
activation coefficients sc are assumed to be independent, and
the density of each source, sm

c , is modeled by k mixtures of
Gaussian, p(sm

c ) �¥
k
�mk

c N�sm
c ��mk

c , �mk
c �, where each �mk

c is a

mixture weight and N denotes Gaussian distribution whose
mean is �mk

c and variance is �mk
c . The prior for mixing matrix Ac

is also Gaussian with zero mean and covariance �: p�Anm
c ��m

c �
� N�Anm

c �0,�m
c �.

Often, maximum likelihood estimation overfits data, and
Bayesian learning overcomes overfitting by introducing priors.
The priors introduced for the parameters �, �, �, �, �, �, P(c)
are D, N, �, �, N, �, D, respectively, where N, �, and D are
Gaussian, Gamma, and Dirichlet distributions, respectively.

To illustrate variational Bayesian learning, it is convenient to
collect all the parameters and call them � � {�, 	, �, �, �, �,
P(c)}. Given all priors for these parameters, denoted by p(�),
the marginal likelihood is given by p(x) � �p(x��)p(�)d�.
This Bayesian approach automatically performs model selec-
tion, but exact Bayesian learning is rarely computationally
tractable, because it is hard to obtain the posterior distribu-
tion of parameters p(��x). We need a simpler function, q(�),
to approximate the true posterior of parameters, and the log
marginal likelihood is lower bounded by

log p�x� ��q���log p�x���d� ��q���log
p���

q���
d�.

We introduced separable distribution over the parameters, and
the closed form of q��� was obtained, but with different param-
eters. The learning of vB-ICA-mm was accomplished as follows.

For each number of clusters, c (c � 1,2,. . . 5), each number
of axes, m (m � up to 20), vB-ICA-mm did the following:

Step 1: initialize the parameters of q���.
Step 2: Derive the new axes by re-estimating the parameters

of q��� with q��� fixed.
Step 3: Based on the new axes, recalculate the cluster

probability of each datum and update the parameters of q���.
The vB-ICA-mm is then iterated between steps 2 and 3 until

the axes and the cluster probability stop changing (convergence).
Readers are referred to Chan et al.6 for further details of the

functional form for priors, close functional form of q(�), and
the learning rules.

As a local method, vB-ICA-mm is likely to get stuck at local
minima. Random initialization is a way to overcome the local
minima problem by permitting selection of the best local
minimum. Consequently, the vB-ICA-mm was set to repeat the
initial randomization, as in step 1, 100 times, so that for each c
and m, we had 100 models. All the steps were repeated while

simultaneously varying the number of clusters and the number
of axes. We chose the final model by comparing all the models
based on their marginal likelihood values (the larger the value,
the better) and the classification accuracy.

As described in the results section, the best model we got for
this analysis was with two clusters: one cluster with only one axis
and the other cluster with six axes. vB-ICA-mm assigned a poste-
rior probability, p�c�x� 	 p�x�c�P�c�, to each SAP field, which en-
abled the program to determined the class of SAP with maximum
posterior probability. Each cluster was then examined and labeled
according to most of the GON and normal data points (eyes)
within. The cluster with one axis that contained mostly normal
eyes was called cluster N, and the cluster with six axes that
contained mostly eyes with GON was called cluster G. Within
cluster G, each data point was projected onto the six axes and
was assigned into the cloud of the axis with which the vector for
that data point had the smallest angle at the centroid of cluster G.

On a desktop computer with 2GH Pentium 4 processor
(Intel, Mountain View, CA) running MatLab (The MathWorks,
Natick, MA) using the ICA code, training time was approxi-
mately 15 minutes for generating clusters and axes.
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gelse samt om synsfeltet ved glaukom. Nord Ophthalmol Tidsskr.
1889;2:141–185.

3. Goldbaum MH, Sample PA, White H, et al. Interpretation of auto-
mated perimetry for glaucoma by neural network. Invest Ophthal-
mol Vis Sci. 1994;35:3362–3373.

4. Goldbaum MH, Sample PA, Chan K, et al. Comparing machine
learning classifiers for diagnosing glaucoma from standard auto-
mated perimetry. Invest Ophthalmol Vis Sci. 2002;43:162–169.

5. Sample PA, Goldbaum MH, Chan K, et al. Using machine learning
classifiers to identify glaucomatous change earlier in standard vi-
sual fields (published correction Invest Ophthalmol Vis Sci. 2003;
44:1813). Invest Ophthalmol Vis Sci. 2002;43:2660–2665.

6. Chan K, Lee T-W, Sejnowski TJ. Variational learning of clusters of
undercomplete nonsymmetric independent components. J Mach
Learn Res. 2002;3:99–114.

7. Brigatti L, Hoffman BA, Caprioli J. Neural networks to identify
glaucoma with structural and functional measurements. Am J Oph-
thalmol. 1996;121:511–521.

8. Bowd C, Chan K, Zangwill LM, et al. Comparing neural networks
and linear discriminant functions for glaucoma detection using
confocal scanning laser ophthalmoscopy of the optic disc. Invest
Ophthalmol Vis Sci. 2002;43:3444–3454.

9. Lee T-W, Lewicki MS, Sejnowski TJ. ICA mixture models for unsu-
pervised classification of non-Gaussian sources and automatic con-
text switching in blind signal separation. IEEE Trans PAMI. 2000;
22:1078–1089.

10. Hyvarinen A, Karhunen J, Erkki O. Independent Component Anal-
ysis. New York: NY: J. Wiley-Interscience; 2001.

11. MacKay DJC. Probable networks and plausible predictions: a re-
view of practical Bayesian methods for supervised neural net-
works. Network: Comput Neural Syst. 1995;6:469–505.

12. Bickler-Bluth M, Trick GL, Kolker AE, Cooper DG. Assessing the
utility of reliability indices for automated visual fields: testing
ocular hypertensives. Ophthalmology. 1989;96:616–619.

13. Sample PA, Chan K, Boden C, et al. Using unsupervised learning
with variational Bayesian mixture of factor analysis to identify
patterns of glaucomatous visual field defects. Invest Ophthalmol
Vis Sci. 2004;45:2596–2605.

14. Henson DB, Spenceley SE, Bull DR. Spatial classification of glauco-
matous visual field loss. Br J Ophthalmol. 1996;80:526–531.

15. Sample PA, Boden C, Zhang Z, et al. Using unsupervised machine
learning with independent component analysis to identify areas of
progression in glaucomatous visual fields. Invest Ophthalmol Vis
Sci. 2005;46:3684–3692.

IOVS, October 2005, Vol. 46, No. 10 Unsupervised Learning to Identify Patterns of Visual Field Defects 3683


