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Visual field test A

B Prime indicator for functional defects due

to glaucoma
= Detection of progression
= Diagnosis

RN

= Expert knowlegde
= Grown over “generations”

B Application of machine learning

= Classification by supervised learning
—» = (Clustering by unsupervised learning

= Organize input data to meaningful structure
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Assumption -> Goal of the study Ay

Unsupervised learning techniques
can explore
relevant and meaningful, but hidden patterns
from
(visual field defect) data !
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Variational Bayesian ICA mixture model A

B Component Analysis:

= Project data onto axes that meaningful represent
the data

B Principal Component Analysis:
= Projection maximizes data variance
= Dimension reduction

B |[ndependent Component Analysis:

" Produce axes the are maximally independent S
= Components are statistically independent A %ig%
| ++ o®
B One single model may represent data + o @
suboptimal @
Q0
@
>
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Variational Bayesian ICA mixture model A

B |CA mixture model
= Non linear ICA technique
= Learning multiple ICA models for each cluster
= Weight each instance probabilistically

= Optimizes
= Axes
* Number of clusters <+
A &QE!
= Optimization via variational Bayesian approx.
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Data A\

B Visual field test

B 345 eyes -
= 156 GON
= 189 normal o TR

B Feature vector ot Reont s

= 52 visual field locations e [t
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Result: Clusters A

B Two separate clusters found

B Cluster “Glaucoma’:
= 107 glaucomatous, 3 normal

B Cluster “Normal”:
= 186 normal, 49 glaucomatous
= Represented by only one axis

B Discussion:

= Cluster structure correlate well with structure obtained by supervised
technique
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Seite 8

Cluster: “Glaucoma” A

B 6 axes (i) were selected glaucoma’ mean

" criteria: reconstruction error
B Pattern Shift Along each Axis . 3
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Cluster: “Glaucoma” A

B Generated patterns T —
represented by axis differ
from each other

B Patterns resemble classic 18D

glaucoma patterns .-
" Represent medical knowledge e Axis 1
overgeneranons :
B Patterns on one axis can be .=
considered as - - Axis 2
complementary L

Axis 3
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Cluster: “Glaucoma” Ay

B AXis capture degree of severity

Axis 2

+ 42 SD
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Summary and conclusion N

B Unsupervised cluster and component analysis

B Extraction of meaningful
= Clusters
= Patterns

B |CA axes capture the sense of severity

B Conclusion:

* (Un)supervised learning has the potential of grouping patterns that
are more useful than achieved by statistical methods.

= Unsupervised techniques might extract information still hidden to
humans.

= e.g. DTI? GRI'?
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