Retina Image Quality

A Literature Review

2008-10-20

Jörg Meier

Chair of Pattern Recognition (CS 5) Friedrich-Alexander-University Erlangen-Nuremberg International Max Planck Research School Optics and Imaging

- Motivation for retina image quality considerations
- Existing methods in literature
 - Automated image quality assessment in general
 - For retinal images
 - CFDM
 - ISC

Page 4

Motivation for automated quality scores

Objective measure for image processing algorithms

- Compression
- Transmission

Measure quality of acquired image

- If bad, acquire again
- Provide only good images to next process (human/algorithm)
- Improve acquisition protocol/technique
- Objective score which images to include in a study

Evaluation of classification algorithms

Correlate image quality to classification accuracy

Jörg	Meier
2008-	10-20

Retina Image Quality

Literature

- [1] H. R. Sheikh et al.: No-Reference Quality Assessment Using Natural Scene Statistics JPEG2000
 IEEE Transactions on Image Processing, 14/,12, December 2005, p. 1918-1927
- [2] G. Ginesu et al.:
 A multi-factors approach for image quality assessment based on a human visual system model
 J Signal Processing: Image Comm., 21/4, April 2006, p. 316-333
- [3] R. Janssen: *Computational Image Quality* Book, SPIE Society of Photo-Optical Instrumentation Engineers, July 2001
- [4] A. D. Flemming et al.: Automated Assessment of Diabetic Retinal Image Quality Based on Clarity and Field Definition J Invest. Ophthalmol. Vis. Sci., 2006, 47/3, p. 1120f
- [5] M. Niemeijer et al.: Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening
 J Medical Image Analysis, 2006, 10, p. 888f

reference and processed image (Full-reference, FR)

Only processed image (No-reference, NR)

Methods to measure image quality [1,2]

Objective

Full-reference (FR)

Comparison between

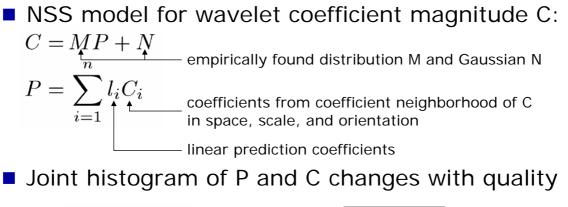
- No-reference (NR, "blind measure")
- Subjective
 - Double stimulus Continuous Qualtiy Scale (DS-CQS)
 - Single Stimuls Continuous Qualtiy Scale (SS-CQS)

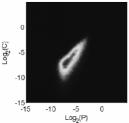
Jörg Meier 2008-10-20

Retina Image Quality

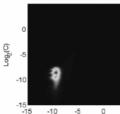
General methods [3]

- Mean squared error (MSE)
- Peak signal-to-noise ratio (PSNR)
- Visual Differences Predictor (VDM)
- Square-root integral (SQRI)
- Impairment measures
- Color measures


Quality assessment using NSS [1]


- Natural scene statistics (NSS) describe subset in image space showing natural scenes
- NR method, measures distortions in NSS
- Used to measure quality of JPEG2000 compressed images
- Uses NSS in wavelet domain
 - Model of E. P. Simoncelli 1997 and R.W. Buccigrossi 1999
 - Statistics of wavelet coefficients of natural images in given subband and their correlations with other coefficients across scales and orientations

Jörg Meier	
2008-10-20	Retina Image Quality


Quality assessment using NSS [1] – method 1/2

uncompressed image, diagonal subband at finest scale

Log₂(P)

compressed image (worse quality), certain subband and scale

Jörg Meier 2008-10-20

Quality assessment using NSS [1] - method 2/2

thresholds for each subband is computed

(learned in training phase; treshold is lower for

smooth images and higher for textured images)

Simplified values for feature computation

Computed in six subbands

Significant P

Significant C

(p_{ss})

Significant P

Insignificant

С

(p_{si})

- Non-linear transformation "normalizes" the six p_{ss} to six q_{ss}
- Final feature vector consists of 4 values (horiz., vertical subbands averaged)

Jörg Meier

Log(C)

Insignificant P

Significant C

(p_{is})

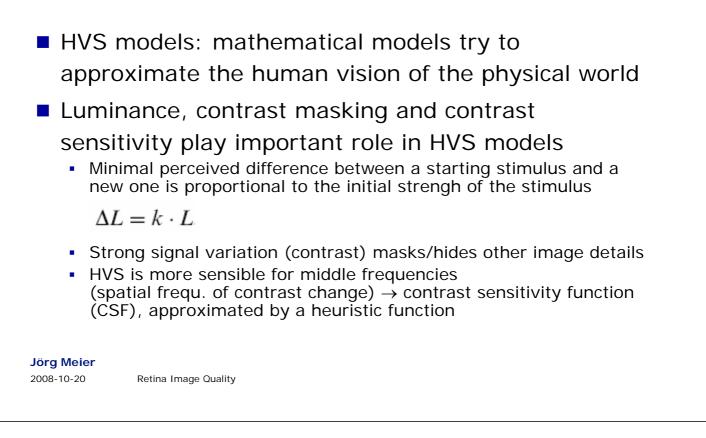
Insignificant P

Insignificant C

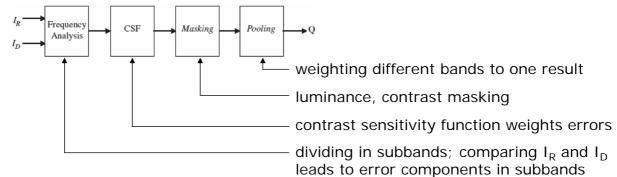
(p_{ii})

2008-10-20

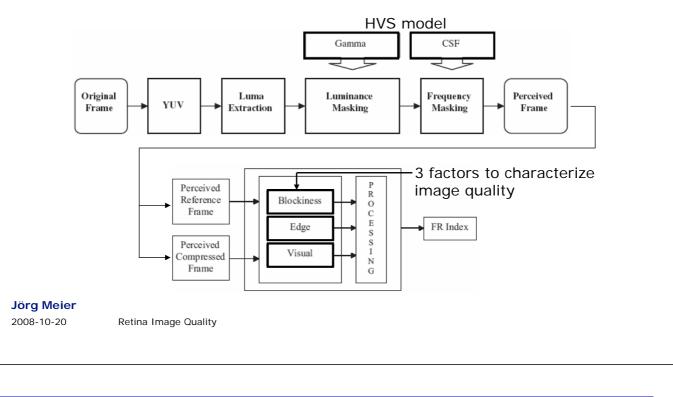
Retina Image Quality

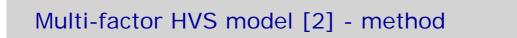

Quality assessment using NSS [1] – evaluation

- LIVE database: <u>http://live.ece.utexas.edu/research/quality</u>
 29 images and their distorted versions (JPEG2000 compressed at different levels); 198 images total
 - Randomly split in test/training set (15/14 images)
 - Algorithm run on luminance component of images only
- 25 Observers assessed perceived quality in 5 categories: bad, poor, fair, good, excellent
 - Scores scaled to values from 1-100
 - Mean opinion score (MOS) computed for each image
 - Root mean-squared error (RMSE) was 7.04 (on scale 1-100)
 - Correlation coefficient 0.92
- Results: RMSE=8.54; correlation 0.91
- Compared to PSNR: RMSE=7.63; correlation 0.93



Using Human visual system (HVS) models [2]




Generic scheme for FR metrics with HVS models

Page 14

In [2] the following method is proposed:

- F1: Blockiness
- F2: Edge
- F3: Visual impairment
- Combination of the 3 factors to final quality score Q

$$Q = 5 \cdot \left[1 - k \cdot \frac{w_1 F_1 + w_2 F_2 + w_3 F_3}{w_1 + w_2 + w_3} \right]$$

Gaussian

Blurring

Multi-factor HVS model [2] - evaluation

- LIVE database used (JPEG and JPEG2000 images)
 - 29 input images, distorted by JPEG compression; blurring; gaussian, speckle, and salt&pepper noise; streching; shifting
 - 168 images for training, 176 for test

Method compared with

- PSNR
- SSIM (Structural SIMilarity [Wang, Bovik 2004])
- VQM (ITU-T J.144 standard, 1998, video quality for digital cable transmission)
- Mean opinion score (MOS from 1-100) and Difference-MOS (DMOS) used from the manual assessments
- Criteria and used metric
 - Prediction accuracy: RMSE as difference between DMOS and DMOS_{predicted}
 - Monotonicity: Pearson's and Spearman's linear correlation index R_P and R_S
 - Consistency: outlier ratio (OR): ration between outlier and normal points

Jörg Meier

2008-10-20

0.3

0.25

0.2

0.15

0.1

0.05

0 JPEG

F1, F2, F3 indexes

Retina Image Quality

Multi-factor HVS model [2] - results

4.91

2

0

Shifting

 Distortion factors and final metric for an example image

Blockiness
 Edge error

Visual impa
 Global index

Speckle

Salt&Pepper

Stretching

Result after non-linear correction of score to subjective quality assessment

Models	Complete verification data set				
	Pearson	Spearman	RMSE*	OR	
FRI	0.9331	0.9268	0.2340	0.0398	
PSNR	0.8417	0.8395	0.3513	0.1364	
SSIM	0.9371	0.9289	0.2270	0.0227	
VOM	0.8369	0.8342	0.3565	0.1379	

Page 15

Retina Image Quality

Not very much publications in this special field

- Two interesting papers are summarzied in the following
 - [4] A. D. Flemming et al.: CFDM method, IOVS, March 2006
 - [5] M. Niemeijer et al.: ISC method, MIA, Sept. 2006

Additionally referenced works

- S. Lee et al.: SPIE conference paper, 1999
 - Global image intensity histogram analysis; one mean histogram of some high quality images as reference
- M. Lalonde et al.: conference paper, 2001
 - Global edge histogram combined with local intensity histogr.; one mean histogram of some high quality images as reference
- J. Lowell et al.: conference paper, 2005
 - Similar idea as in [4]; segmenation of vessel tree

Jörg Meier

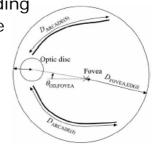
2008-10-20

Retina Image Quality

Clarity and field definition metric (CFDM) [4]

Clarity

- Image shows sufficient detail for automated grading
- Four categories: excellent, good, fair, inadequate with definitions what each category means


Field

Jörg Meier 2008-10-20

- Image shows the desired field of view
- Three categories: excellent, good, inadequate

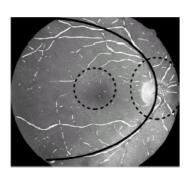
Segmentation-based technique

- Analysis of the vessels around the macula
- Presence of small vessels there is indicator of high image quality

CFDM [4] – segmentation 1/2

Find temporal arcades

- Detect large-scale vessels with width between 10-30 pixels (details described in a conference paper 2004)
- Generalized Hough transform for semielliptical shapes (on subsampled image, factor 32)


Find optic disc

- Disc diameter (DD) empirically set to 246 pixels
- Search space restricted: box (2.4DDx2.0DD) around rightmost point of arcade
- Detect circular outline of disc by Hough transform (search from 0.7DD to 1.25DD)
- Find fovea
 - Maximize correlation coefficient between image and fovea model in circular region (1.6DD diameter, 2.4 DD from disc)

Jörg Meier

2008-10-20

Retina Image Quality

CFDM [4] – segmentation 2/2

- Clarity
 - Measure total length of micro-vessels in fovea area
 - Two alternative measures
 - A: Fovea well detected (high correlation to model)
 - B: Fovea not well detected refinement of circular search region
 - Threshold for total vessel length for *clarity=ok* derived in training
- Field
 - Certain thresholds for measured distances set
 - Empirically
 - and by looking at the ROC (optimizing sensit./select.)

Description Optic disc Doprovea Doprovea Doprovea Description Desc

в

 $4.5 \times DD$

3.5×DD

Jörg Meier 2008-10-20

CFDM [4] - evaluation, results

395 training, 1039 test images

- Canon CR5-45NM and CR6-45NM devices with a D30 camera
- 1600x1440 image size, disc-macula imaging protocol
- Green channel of images used

Results of finding the bad images

	Data Set	Sensitivity (CI)	Specificity (CI)
Image clarity	Training	100% = 50/50 (92.9% - 100%)	89.9% = 310/345 (86.2%-92.6%)
	Test	100% = 57/57 (93.7% - 100%)	90.9% = 893/982 (89.0%-92.6%)
Field definition	Training	91.7% = 33/36 (78.2% - 97.1%)	97.5% = 350/359 (95.3% - 98.7%)
	Test	95.3% = 82/86 (88.6%-98.2%)	96.4% = 919/953 (95.1% - 97.4%)
Overall quality	Training	98.7% = 73/74 (92.8%-99.8%)	90.0% = 288/320 (86.2%-92.8%)
1 7	Test	99.1% = 116/117 (95.3% - 99.8%)	89.4% = 824/922 (87.2%-91.2%)

Jörg Meier

2008-10-20

Retina Image Quality

ISC [5] - overview

Image structure clustering

- Not segmentation-based, but uses
- Image filter for looking at different scales and edge directions
- Unsupervised clustering of feature vector

Color information is also used

- ISC performed only on green channel, but
- Histograms of the color channels finally included in feature vector

ISC [5] - method

- Filter bank applied to image
 - Gauge coordinates: local coordinate system (v, w) in each point of an image L:

$$\vec{w} = (\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}) \qquad \vec{v} \perp \vec{w}$$

- Filter set: Gaussian derivative applied at five different scales σ on L, L_{w} , L_{vv} , L_{vw} , L_{vw} , L_{ww} (subscripts indicate certain direction)
- Feature vectors selected from filter responses (25 dim per pixel)
 - Scaled to zero mean, unit variance
- Clustered by k-means clustering
 - Clustering should find similar image structures
 - Each pixel is assigned to one of the *k* clusters
- Histogram of cluster image taken as feature for quality classification

Jörg Meier

2008-10-20

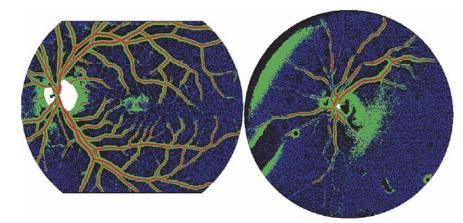
Retina Image Quality

ISC [5] – filter response

Example

		σ=1	σ= 2	σ=4	σ=8	σ =16
е	L	X	X	X		
	Lw	- A)»	2	-
	L _{vv}		No. of the second secon		X	×
	L _{vw}	Ser.	No.			4
	L _{ww}	N.S.	X	X	Ser and a ser a se	7

Jörg Meier 2008-10-20



Page 26

ISC [5] – clustered images

Cluster number of k=5 experimentally chosen

black: background

blue: background, bright to dark transitions

green: borders of high contrast

red: vessels

white: optic disc

Jörg Meier

2008-10-20

Retina Image Quality

ISC [5] – features

Features finally used (20 dim.)

- 5 bins of image structured clusters
- 5 bins of each color channel histogram
 - Red
 - Green
 - Blue

Feature selection was applied

- On a subset of the training set (balanced split)
- AROC used as criterion (called A_z)
- Different classifiers evaluated, SVM was best
 - Non-linear SVM (parameters optimized with cross-validation on training set by grid search)
 - For SVM no feature selection applied!

Jörg Meier 2008-10-20

2000 images from DR screening (from 20 centers) Image sizes from 768x576 (35° FOV) to 2048x1536 (45° FOV)

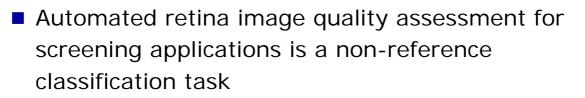
JPEG compressed

ISC [5] - evaluation

- Cameras: Topcon NW 100, NW 200, Canon CR5-45NM
- Images resampled for "equal FOV", 530 pixel diameter
- 3 readers (ophthalmologists)
- "low quality": reader unable to judge absence/presence of DR
 - otherwise "normal" quality
- Training and test set (1000/1000), 10% contained pathologies
- Additional grading of test set by one doctor: four categories

Retina Image Quality

ISC [5] – results

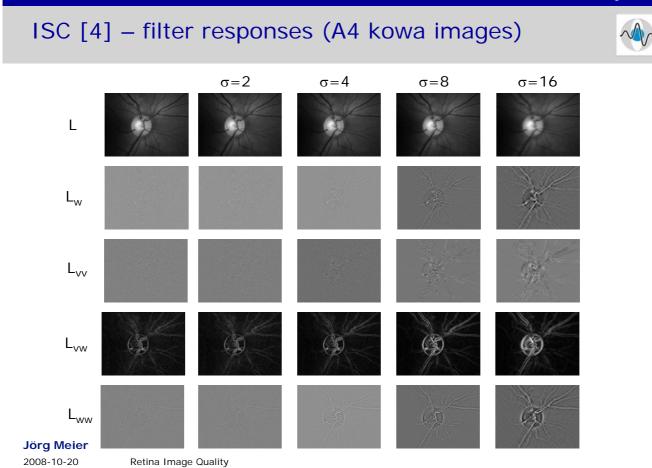

Classification results

A_z	95% CI	Acc.
0.9968(0.0013)	(0.9934, 0.9985)	0.974
0.9944(0.0014)	(0.9909, 0.9967)	0.963
0.9901(0.0021)	(0.9851, 0.9936)	0.951
0.9932(0.0019)	(0.9885, 0.9961)	0.958
	0.9968(0.0013) 0.9944(0.0014) 0.9901(0.0021)	0.9968(0.0013) (0.9934, 0.9985) 0.9944(0.0014) (0.9909, 0.9967) 0.9901(0.0021) (0.9851, 0.9936)

System outperformed second observer

But almost equal to each other (AROC values)

- Important part in processing pipeline
- Non-segmentation-based techniques are promising


Jörg Meier

2008-10-20

Retina Image Quality

