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Reconstruction Pipeline as a Neural Network

Already proposed
e Filtered back-projection (FBP) algorithm as Neural Network'
e Compensation weights to reduce limited angle artifacts?
Benefits
e data-driven knowledge-enhancing abilities®
e allows to exchange heuristically method
Question
— Can we learn the reconstruction filter ?

"Tobias W\"urfl, Florin Cristian Ghesu, Vincent Christlein, and Andreas Maier, "Deep Learning Computed Tomography",
in MICCAI 2016: 19th International Conference, Proceedings, Part lll, 2016, vol. 3, pp. 432-440..

2Kerstin Hammernik, Tobias W\"urfl, Thomas Pock, and Andreas Maier,
"A deep learning architecture for limited-angle computed tomography reconstruction”, in BVM 2017 Heidelberg, 2017, pp. 92-97,
Springer Berlin Heidelberg.

3Ge Wang, "A perspective on deep imaging”, IEEE Access, vol.4, pp. 8914-8924, 2016.
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Recap: CT Reconstruction
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where h(s) is the Ramp-Filter
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Cupping Artifacts
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Deriving the Network Topology
Discrete reconstruction problem:
I Ax=p

X = A"

~—~
Back-projection

(AAT)"p
Filter
substituting the inverse:
x = A'F'KFp

where

A is the system matrix

X is the object

p is the sinogram

F, F" is the Fourier and inverse Fourier-transform
K is the filter in Fourier domain
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Deriving the Network Topology

Objective function:
1
f(K) = 5 |7 FKFp —x2
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Deriving the Network Topology

Objective function:
1
f(K) = 5 |7 FKFp —x2

Derivative: 5
f(K
a(K) = FA(ATF'KFp — x)(Fp) "
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Deriving the Network Topology

Objective function:
1
f(K) = 5 |7 FKFp —x2

Derivative: 3
f(K
IMK) _ pa (ATFPKFp —x)( Fp )"
JK —————
Error I—1
Back-propagation
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Experimental Setup

e Kiis initialized with the Ramp
e For training 10 numerical disc phantoms (increasing radii)
e Evaluation on real CT-dataset
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Results: Phantoms
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Line profile through
Learned-reco.
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Results: CT data
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Results: Quantitative Evaluation

Phantom data (absolute difference):

mean std. dev. min max
Ramp-reco 0.235 0.07 0.001 0.596
Ram-Lak-reco  0.01 0.031 0 0.41

Learned-reco 0.023

0.03 6.76E-09 0.409

CT data:

mean

std. dev. min max

Ram-Lak-reco 66.99

61.401 6.10E-5 1634.82

Learned-reco  83.53

68.06  8.39E-5 1685.70

Christopher Syben | Pattern Recognition Lab | PL: Ramp Filter Discretization September 28, 2018



Conclusion

Outlook:

e Apply noise models to the training data

e Setup a complete CT Reconstruction pipeline
Take home message:

® Derive the network topology from the continuous analytical problem
description

e Neural network intrinsically compensate for discretization errors
e Interesting link between neural network techniques and signal processing
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Thanks for listening.
Any questions?




