

Precision Learning: Reconstruction Filter Kernel Discretization

Christopher Syben Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg September 28, 2018

Reconstruction Pipeline as a Neural Network

Already proposed

- Filtered back-projection (FBP) algorithm as Neural Network¹
- Compensation weights to reduce limited angle artifacts²

Benefits

- data-driven knowledge-enhancing abilities³
- allows to exchange heuristically method

Question

ightarrow Can we learn the reconstruction filter ?

³Ge Wang, "A perspective on deep imaging", IEEE Access, vol.4, pp. 8914-8924, 2016.

¹Tobias W/"urfl, Florin Cristian Ghesu, Vincent Christlein, and Andreas Maier, "Deep Learning Computed Tomography", in MICCAI 2016: 19th International Conference, Proceedings, Part III, 2016, vol. 3, pp. 432-440..

²Kerstin Hammernik, Tobias W\"urfl, Thomas Pock, and Andreas Maier,

[&]quot;A deep learning architecture for limited-angle computed tomography reconstruction", in BVM 2017 Heidelberg, 2017, pp. 92-97, Springer Berlin Heidelberg.

Recap: CT Reconstruction

Cupping Artifacts

Discrete reconstruction problem:

substituting the inverse:

 $\mathbf{x} = \mathbf{A}^{\top} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p}$

where

A is the system matrix

x is the object

p is the sinogram

 $\mathbf{F}, \mathbf{F}^{\mathbf{H}}$ is the Fourier and inverse Fourier-transform

K is the filter in Fourier domain

Objective function:

$$f(\mathbf{K}) = \frac{1}{2} \|\mathbf{A}^{\top} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p} - \mathbf{x}\|_{2}^{2}$$

Derivative:

$$\frac{\partial f(\mathbf{K})}{\partial \mathbf{K}} = \mathbf{F} \mathbf{A} (\mathbf{A}^{\mathsf{T}} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p} - \mathbf{x}) (\mathbf{F} \mathbf{p})^{\mathsf{T}}$$

Objective function:

$$f(\mathbf{K}) = \frac{1}{2} \|\mathbf{A}^{\top} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p} - \mathbf{x}\|_{2}^{2}$$

Derivative:

$$\frac{\partial f(\mathbf{K})}{\partial \mathbf{K}} = \mathbf{F} \mathbf{A} (\mathbf{A}^{\mathsf{T}} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p} - \mathbf{x}) (\mathbf{F} \mathbf{p})^{\top}$$

Objective function:

$$f(\mathbf{K}) = \frac{1}{2} \|\mathbf{A}^{\top} \mathbf{F}^{\mathsf{H}} \mathbf{K} \mathbf{F} \mathbf{p} - \mathbf{x}\|_{2}^{2}$$

Experimental Setup

- K is initialized with the Ramp
- For training 10 numerical disc phantoms (increasing radii)
- Evaluation on real CT-dataset

Results: Phantoms

200 400 Distance (pixels)

Line profile through

Learned-reco.

Results: CT data

Results: Quantitative Evaluation

Phantom data (absolute difference):

	mean	std. dev.	min	max
Ramp-reco	0.235	0.07	0.001	0.596
Ram-Lak-reco	0.01	0.031	0	0.41
Learned-reco	0.023	0.03	6.76E-09	0.409

CT data:

	mean	std. dev.	min	max
Ram-Lak-reco	66.99	61.401	6.10E-5	1634.82
Learned-reco	83.53	68.06	8.39E-5	1685.70

Conclusion

Outlook:

- Apply noise models to the training data
- Setup a complete CT Reconstruction pipeline

Take home message:

- Derive the network topology from the continuous analytical problem description
- Neural network intrinsically compensate for discretization errors
- Interesting link between neural network techniques and signal processing

Thanks for listening. Any questions?