
Deep Learning Basics



Overview
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Artificial Intelligence
• Well-known example: computer beats chess world champion (DeepBlue, 1997)
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Machine learning
• Invention of neural networks

• Input: pattern represented by low-dimensional vectors or short strings of symbols
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Traditional pattern recognition
• hand-crafted feature extraction

• combined with automatic learning techniques
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Deep Learning
• No extraction of features

• Usually more hidden layers (bigger capacity)
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Overview (cont.) 
• Machine learning

• Feed-forward neural networks

• Activation functions

• Backpropagation

• Convolutional neural networks

• Fully connected layers

• Convolutional layers

• Sub-sampling layers

• Architectures
• LeNet5

• AlexNet

• Learning process

• Overfitting

• Examples (AlexNet)
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Machine Learning

Neural Networks



Machine learning
• Feed-forward neural networks

• Activation functions

• Backpropagation
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Feed-forward neural networks
• Neurons form an acyclic graph

• Opposite: Recurrent neural networks
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Feed-forward neural networks
• Neurons form an acyclic graph

• Opposite: Recurrent neural networks
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Activation function
• Function that computes the output of a neuron based on the inputs (neurons from previous layer 

* trainable weights + trainable bias)

• 𝑤𝑖 : weights

• 𝑥𝑖 : neurons from previous layer

• b : bias

• f : activation function
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Common activation functions
• Logistic function (Sigmoid)

• Hyperbolic tangent (tanh)

• Rectified Linear Unit (ReLU)
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Logistic function (Sigmoid)
• S-shaped function

• Range [0;1]
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Hyperbolic tangent (tanh)
• Reshaped Sigmoid function

• Range [-1;1]
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Rectified Linear Unit (ReLU)
• Range [0;∞)

• Very efficient for large neural networks
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Backpropagation
• Algorithm to train a neural net

• Supervised learning (a target output vector must exist)

• Idea: Calculate the difference between the actual out and the target output and try to minimize it 

by adjusting the weights of the neurons
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Backpropagation algorithm
1. Initialize weight vector (𝑤0) with random values

2. Calculate the output vector (𝑦𝑖) by using the activation function: 

𝑦𝑖 = f(𝑤𝑖 , 𝑥𝑖)

1. Computer the difference between the actual output vector (𝑦𝑖) and the target output vector 

(𝑦′𝑖) by using the error/ loss/ cost function, usually squared Euclidian distance:

2. Update the weights and biases by applying gradient descent

3. Repeat steps 2-4, starting with i = 1
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Gradient descent
• Algorithm for finding the minimum of a function by “following” the negative gradient of the 

current point.

• Analogy: Finding the valley by following the steepest descent

• Problem: Possible to get “stuck” in local minima
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Convolutional Neural Networks (CNN)

Deep Learning in Image Recognition
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Convolutional neural networks
• Fully connected layers

• Convolutional layers

• Sub-sampling layers

• Architectures

• LeNet5

• AlexNet

• Learning process

• Overfitting

• Examples (AlexNet)
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Fully connected layers
• Every neuron is connected to every neuron from the previous layer.



Problems of fully connected layers
• Image size

• Ignoring topology
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Image size
• 1000x1000 image -> 1 million input units for each neuron

• Increased capacity requires a larger training set

• Memory requirement -> hardware limitation

• No invariance with respect to translation/ local distortions (i.e. the neural net has to learn how to 

recognize distinctive features at very possible location)
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Ignoring topology
• Images have a strong local structure

• Pixels that are spatially nearby are highly correlated

• Extract and combine local features before recognizing objects
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Problems of fully connected layers
• Image size

• Ignoring topology

-> Convolutional layers
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Convolutional layers
• Each neuron receives input only from a set of units located in a small neighborhood (receptive 

field) in the previous layer

• The same filter/ kernel is applied to every location (shared weights)
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Convolutional layers (cont.)
• A 3x3 filter applied to a 7x7 input (5x5 output)

• A 3x3 filter applied to a 7x7 input with stride 2 (3x3 output)
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Convolutional layers (cont.)
• Convolutional layers are composed of several feature/activation maps, so that multiple features 

can be extracted at each location
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Convolutional layers (cont.)
• Example: 96 convolutional kernels of size 11x11x3 learned by the first convolutional layer on 

the 224x224x3 input images.
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Sub-sampling layers
• Perform local averaging

• Reduce the resolution of the feature map

• Reduce the sensitivity of the output to shifts/ distortions

• Pooling (+ multiply with coefficient + add bias + activation function)
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Architecture
• Yann LeCun (LeNet-5), 1998 (!)

• Alex Krizhevsky (AlexNet), 2012
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LeNet-5
• Designed for character recognition

• 7 layers (3 convolutional, 2 sub-Sampling, 2 fully-connected)

• Subsampling: average pooling with trainable coefficient and bias

• At each layer, the number of feature maps is increased as the spatial 

resolution is decreased
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LeNet-5 (cont.)
• Not every S2 feature map is connected to every C3 feature map

• Reasons:

• Keeps numbers of connections low

• Break of symmetry (extract different features)
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LeNet-5 (cont.)
• Output layer is composed of Euclidian Radial Basis Function units (RBF):

• Each RBF unit computes the distance between input and parameter vector (penalty)

• Especially useful for recognizing strings (0/O/o, 1/l/I) 
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LeNet-5 Misclassifications



AlexNet
• Designed for ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), 2012

• 11 layers (5 convolutional, 3 sub-sampling, 3 fully connected)

• Implementation on 2 GPUs

• Subsampling is done by overlapping max pooling

• Training set: 1.2 million labeled images
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AlexNet: Local response normalization
• Activity of a neuron is normalized by running over n “adjacent” kernel 

maps at the same position

• 𝑏𝑥,𝑦
𝑖 : response-normalized activity by applying kernel i at position (x,y)

• 𝑎𝑥,𝑦
𝑖 : activity of a neuron by applying kernel i at position (x,y)

• k, n, α, β: hyper-parameters (k=2, n=5, α=10−4, β=0.75)
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AlexNet: Overlapping pooling
• Stride is smaller than the size of the pooling unit

• Increase of accuracy
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Non-overlapping pooling



AlexNet: Overlapping pooling (cont.)
• Stride is smaller than the size of the pooling unit

• Increase of accuracy
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Overlapping pooling



Learning process
• Perform multiple iterations on the training set

• More training data improves the accuracy

• In this case: 60,000 training examples
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Overfitting
• Test error increases (while the training error decreases) because the 

neural net adapts too closely to the training set.
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Reducing overfitting
• Reducing capacity

• Data augmentation

• Dropout
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Reducing capacity
• Reduces the degree of the function

• Problem: Risk of underfitting
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Reducing capacity (cont.)
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Data augmentation
• Idea: Artificially generate more training examples by randomly distorting the original training 

images

• Also improves overall accuracy
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Data augmentation (cont.)
• E.g. translation, scaling, squeezing, horizontal shearing
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Data augmentation (cont.)
• For RGB images: change in color
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Dropout
• Set the output of each hidden neuron to zero with probability 0.5

• Alternating architecture reduce co-adaptions of neurons

• More robust features that are useful in conjunction with many different 

random subsets
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Examples (AlexNet)

26.09.2018 50


