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Abstract

Cardiovascular diseases such as stroke, stenosis, peripheral or renal artery di-
sease require accurate angiographic visualization techniques both for diagnosis
and treatment planning. Beside the morphological imaging, the in-vivo acqui-
sition of blood flow information gained increasing clinical importance in recent
years. Non-contrast-enhanced Magnetic Resonance Angiography (nceMRA) pro-
vides techniques for both fields. For morphological imaging, Time of Flight (TOF)
and magnetization-prepared balanced Steady State Free Precession (mp-bSSFP)
offer non-invasive, ionizing-radiation free and user independent alternatives to
clinically established methods such as Digital Subtraction Angiography, Com-
puted Tomography or Ultrasound. In the field of functional imaging, unique novel
possibilities are given with three-directional velocity fields, acquired simultane-
ously to the morphological information using Phase Contrast Imaging (PCI). But
the wider clinical use of nceMRA is still hampered by long acquisition times. Thus,
accelerating nceMRA is a problem of high relevance and with great potential clin-
ical impact. In this thesis, acceleration strategies based on k-space sampling below
the Nyquist limit and adapted reconstruction techniques, combining parallel MRI
(pMRI) methods with Compressed Sensing (CS), are developed for both types of
nceMRA methods. This includes contributions to all relevant parts of the recon-
struction algorithms, the sampling strategy, the regularization technique and the
optimization method.

For morphological imaging, a novel analytical pattern combining aspects of
pMRI and CS, called the MICCS pattern, is proposed in combination with an
adapted Split Bregman algorithm. This allows for a reduction in the acquisition
time for peripheral TOF imaging of the entire lower vasculature from over 30 min-
utes to less than 8 minutes. Further acceleration is achieved for 3-D free-breathing
renal angiography using mp-bSSFP, where the entire volume can be acquired in
less than 1 minute instead of over 8 minutes. In addition, organ based evaluations
including the vessel sharpness at important positions show the diagnostic usabi-
lity and the increased accuracy over clinically established acceleration methods.

For PCI, advances are achieved with a dedicated novel sampling strategy,
called I-VT sampling, including interleaved variations for all dimensions. Fur-
thermore, two novel regularization techniques for PCI are developed in this the-
sis. First, a novel temporally masked and weighted strategy focusing on enhanced
temporal fidelity, referred to as TMW, is developed. This fully automatic approach
uses dynamic and static vessel masks to guide the influence specifically to the
static areas. Second, the low rank and sparse decomposition model, is extended
to PCI, combined with adapted sparsity assumptions and the unconstrained Split
Bregman algorithm. These methods are successfully applied to the carotid bifurca-
tion, a region with a huge demand of significant acceleration as well high spatial
and temporal accuracy of the flow values. But all algorithmic contributions ex-
ploit inherent properties of the acquisition technique, and thus can be applied for
further applications.

In summary, the main contribution of this thesis is significant acceleration
of nceMRA achieved with novel sampling, regularization and optimization ele-
ments.



Kurzübersicht

Kardiovaskuläre Erkrankungen wie Schlaganfall, Gefäßverengungen und Gefäß-
erkrankungen erfordern sowohl für die Diagnose als auch die Planung oper-
ativer Eingriffe akkurate angiographische Bildgebung. Neben den morpholo-
gischen Techniken gewinnen Techniken, die die Aufnahme von Flussinforma-
tionen ermöglichen, zunehmend an klinischer Bedeutung. Kontrastmittelfreie
Magnetresonanzangiographie bietet für beide Bereiche Techniken. Für morpho-
logische Bildgebung stehen mit Time of Flight und magnetization-prepared balanced
Steady State Free Precession nicht invasive strahlungsfreie Alternativen zu klinisch
etablierten Verfahren wie Digitale Subtraktionsangiographie, Computer Tomogra-
phie und Ultraschall zur Verfügung. Im Bereich der funktionellen bildgebenden
Verfahren ermöglicht Phasenkontrastbildgebung die gleichzeitige Aufnahme drei-
dimensionaler Geschwindigkeitsfelder und morphologischer Information. Ein
Nachteil kontrastmittelfreier Verfahren sind lange Aufnahmezeiten, die noch im-
mer ihre weitere klinische Nutzung verhindern. Deswegen ist die Beschleuni-
gung dieser Methoden ein Problem mit hoher Bedeutung und großem klinischen
Nutzen. In dieser Arbeit werden für beide Arten kontrastmittelfreier Angiogra-
phie Strategien zur Beschleunigung entwickelt, die auf einer Unterabtastung des
k-Raums und geeigneten Rekonstruktionsverfahren (parallele MR Bildgebung-
stechniken und Compressed Sensing) basieren.

Für die morphologische Bildgebung wird ein neuartiges analytisches Abtast-
muster (MICCS), das Aspekte der parallelen MR Bildgebung mit den Anforderun-
gen von Compressed Sensing vereint, in Verbindung mit einem angepassten Split
Bregman Algorithmus vorgestellt. Diese Methode erlaubt die Reduktion der Auf-
nahmezeit für eine TOF basierte Darstellung der Beingefäße von 30 zu weniger als
acht Minuten. Weiterhin wurde bei 3D Nierenbildgebung unter freier Atmung für
das gesamte Volumen eine Aufnahmezeit von unter einer statt über acht Minuten
erzielt. Darüber hinaus zeigen organbasierte Auswertemethoden wie die Schärfe
der Gefäs̈ränder eine erhöhte Genauigkeit im Vergleich zu klinische etablierten
Methoden.

Im Bereich der Phasenkontrastbildgebung wurden Fortschritte erzielt mit einer
neuartigen Abtaststrategie, die Variation in alle vorhandenen Dimensionen er-
laubt. Weitergehend wurden zwei neuartige Regularisierungsstrategien entwick-
elt. Erstens wurde eine neue zeitlich maskierte und gewichtete Strategie, mit dem
Fokus die zeitliche Datentreue zu erhalten, entwickelt. Dieser komplett automa-
tisierte Ansatz verwendet dynamische und statische Adermasken um den Ein-
fluss der Regularisierung auf die statischen Bereiche zu beschränken. Die zweite
Methode erweitert das sogenannte low rank-sparse model auf Phasenkontrastdaten
und verwendet den Split Bregman Algorithmus zur Lösung. Diese Methoden wur-
den erfolgreich auf Aufnahmen der Halsschlagadern angewandt. Dieser Bere-
ich erfordert hohe Beschleunigung sowie räumliche und zeitliche Genauigkeit der
Flussgeschwindigkeiten. Alle algorithmischen Beiträge beruhen auf intrinsischen
Eigenschaften von Phasenkontrast und können somit auf weitere Körperregionen
angewandt werden. Zusammenfassend ist der Hauptbeitrag dieser Arbeit die sig-
nifikante Beschleunigung kontrastmittelfreier Magnetresonanzangiographie mit-
tels neuartigen Abtast-, Regularisierungs- und Optimierungselementen.
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Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This thesis develops novel reconstruction methods for different applications in
the field of non-contrast enhanced Magnetic Resonance Angiography (nceMRA)
based on parallel MRI (pMRI) and Compressed Sensing (CS) . The clinical back-
ground and the commonly used diagnostic angiographic methods are presented
in this chapter, along with their advantages and disadvantages. Furthermore, the
contributions of this thesis are introduced and an overview of the following chap-
ters is given.

1.1 Motivation

The blood vessels as part of cardiovascular system are essential for maintaining
human life as they ensure the vital supply of cells and organs with nutrients and
oxygen. The high prevalence of diseases and malformations associated with the
vascular system and their mortality explains the importance of diagnosis and treat-
ment options and consequently the availability of fast angiographic imaging.
NceMRA provides an excellent and non-invasive imaging modality to asses both
the morphology and functionality of the blood vessels. Furthermore, it offers a
wide range of options to influence the image contrast, allowing to emphasize on
different features and to visualize physiological parameters, e.g the blood flow
velocities. In contrast to other imaging modalities, the patient is not exposed to
ionizing radiation or invasive procedures such as the injection of contrast agents.
But despite those unique advantages, its clinical use is still limited due to its rather
long acquisition times. A scan for of the lower peripheral vasculature could take
for example about 30 minutes, a scan of the renal arteries over 8 minutes, always
depending also on the heart cycle, breathing pattern, required imaging volume
and the chosen acquisition technique. First of all, the slow imaging process is in-
convenient for patients, particularly in combination with the limited space within
the Magnetic Resonance (MR) scanner bore. But the long acquisition also limits
the clinically desirable and technically achievable spatial and temporal resolution.
Furthermore, motion-affected examinations, such as the assessment of aortic flow
or the visualization of renal arteries, often require breath holds or specific phys-
iological triggering and would highly profit from shorter scan times. Therefore,
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there is an important clinical need for reducing the MR scan time in a wide range
of angiographic nceMRA examinations to provide faster diagnostic imaging. As
a consequence, acceleration is an important research focus in Magnetic Resonance
Imaging (MRI) since its invention. Hardware-based improvements, which facil-
itate the acquisition of more image information in a shorter time, improved the
imaging speed to a point where physiological and physical limitations such as
nerve stimulation, maximal slew rate, and gradient strength play an important
role for future technological advanced [Wrig 97]. Another option are MR scan
sequence-based improvements, which focus on reducing the amount of acquired
data without compromising the image quality after reconstruction. These meth-
ods, relying heavily on prior knowledge and redundancies in the data, include
partial Fourier techniques and parallel acquisition methods. While partial Fourier
techniques exploit the symmetry of the k-space, pMRI methods accelerate by ac-
quiring only a subset of k-space points simultaneously with spatially separated
coils. The sub-sampled data is then reconstructed by adding prior knowledge of
the spatial coil sensitivity distribution.

A new development made in the last decade was the use of CS techniques
for MRI. CS methods were originally developed for domains such as video com-
pression, but rapidly showed its applicability to a wide range of fields. Here, the
principles of sparsity, incoherent sampling, and iterative non-linear reconstruction
are combined to achieve faster acquisitions. Combinations of pMRI and CS tech-
niques have been proposed [Cand 08, Lust 10] and led to a significant acceleration
in MRI. Currently, CS based MRI is an active research field, still awaiting its clini-
cal acceptance. Over the last five years, numerous concepts and novel techniques
were proposed for a growing range of possible applications. Important steps in-
clude the data acquisition, the iterative reconstruction, and the modelling of spar-
sity assumptions for individual applications. The present thesis features advances
in the iterative reconstruction algorithms, the accelerated sampling and in the de-
velopment and the modelling process of sparsity in different, both morphological
and functional, nceMRA examinations.

1.1.1 Clinical Background

The human vascular system is a closed system with the vessels acting as pathways.
Blood is circulated around the body through the pumping action of the heart. The
blood vessels are categorized by their respective function within the system into
arteries, veins, and capillaries. The function of the arterial system is the transport
of oxygenated blood from the lung to the entire body and the maintenance of the
pressure-driven blood flow. Exceptions are the pulmonary arteries carrying de-
oxygenated blood and the pulmonary veins, where the blood arrives oxygenated
from the lungs. Arteries experience high pressure values and variations over the
cardiac cycle as they experience the direct action of the beating heart [Ufla 06].
The ventricular contraction and the successive ejection of blood into the aorta in
systole leads to a sharp rise in arterial blood pressure and to an expansion of the
arterial walls. They contract almost immediately when the ventricles relax, imply-
ing a pressure drop during diastole. These pressure variations result in a highly
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pulsatile arterial blood flow. Veins differ from arteries regarding their function
and, in consequence, structure. They carry de-oxygenated blood back towards the
heart and are therefore less influenced by the heart contractions. Unlike arteries,
they do not use muscular action to maintain the lumen diameter but rather col-
lapse in the absence of blood. Valves are used to maintain the blood flow direction
within the veins. Capillaries assure the connection between arteries and veins and
ensure the exchange between the vascular system and the body tissues through
the capillary walls. The most important parts of the vascular system are shown in
Figure 1.1, where the regions of interest for this work are highlighted. The carotid
arteries (a) ensure the supply of the neck and head with oxygenated blood. After
originating from the brachiocephalic trunk on the right side and the aortic arch on
the left, the common carotid artery (CCA) bifurcates into the internal and external
carotid arteries (ICA/ECA) [Ufla 06, Gray 01]. A further region of interest for this
thesis are the renal arteries (b), originating from the abdominal aorta and branch-
ing into typically three to five branches to supply the entire kidneys with blood.
Finally, the arteries in the legs (c) are typically summarized under peripheral arter-
ies [Kand 08]. After emerging from the aorta, the common iliac arteries bifurcate
into internal and external iliac, the latter leading into the femoral arteries. These
extend until becoming the popliteal arteries, which then bifurcate into the anterior
and posterior tibial arteries, supplying the crus and foot with blood.

1.1.2 Diagnostic Angiography

The importance of the cardiovascular system correlates with its leading position
within the causes of global mortality. Cardiovascular diseases and acute events
such as stroke or heart attack originating within the cardiovascular system account
for about 30% of the annual deaths. These diseases include, specifically for the
vascular system, peripheral artery disease, coronary artery disease, thrombosis,
embolism and aneurysms. A common vascular diagnosis is arterial stenosis, often
causing peripheral or coronary artery disease and known to be one of the main
origins of strokes [Orga 13, U Ki 09]. While possible reasons include congenital or
inflammatory diseases, most stenoses result from atherosclerosis, the formation
of plaque within the arteries. Most common are carotid, coronary, aortic, renal
or peripheral artery stenosis. The collection of plaque in the arteries is a slow
continuous process. Occurring in all humans over their lives, it is dramatically
influenced by behavioural factors such as the consumption of tobacco and alcohol,
a fat and unhealthy diet as well as the lack of physical activity [Rubi 12]. The earlier
the plaque formation is detected, the earlier appropriate actions can be taken.

Most common treatment possibilities for vascular lesions are operative proce-
dures such as angioplasty, atherectomy and revascularization, all aiming to re-
establish the blood supply and to expand the lumen [Gonz 11]. The invasiveness
and the associated risks demand a careful evaluation of risks and benefits and
give raise to the need for precise diagnostic imaging, able to evaluate the stage
and degree of vascular lesions and diseases. Vascular imaging can be divided into
morphological and functional imaging. While morphological imaging focuses on
the anatomy of the vascular system, the vessel lumen and vessel walls, functional
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Figure 1.1: The human vascular system, highlighting the (a) carotid arteries, (b) renal
arteries and (c) the peripheral arteries. Image adapted from [Gray 01].

imaging assesses the main functionalities of the vascular system, blood pressure
and blood flow. The latter two are often referred to as hemodynamics.

At present, vascular imaging is still mainly restricted to morphological imaging
but functional imaging gains more and more importance. Three important aspects
of functional imaging need to be considered. First, knowledge about flow veloci-
ties and patterns within aneurysms and stenosis can impact the evaluation of the
state and progress of diseases. The assessment of the peak velocity or the turbu-
lences within the aneurysmic bulb helps to estimate rupture probabilities and the
need for invasive treatment. A significant velocity rise within a low grade carotid
artery stenosis can be an indicator for a substantial stroke risk [Chen 06]. Second,
treatment planning benefits due to hemodynamics evaluation were reported for
transcatheter aortic valve implantation [Sher 11] and for the risk of re-stenosis af-
ter stenting [Rich 04]. The last aspect is the influence of the hemodynamics on the
formation of plaque. The etiology of atherosclerosis is not fully understood, but
a tendency to amplified deposition in bifurcations or curved arteries shows the
influence of hemodynamics [Chen 06]. Recently, research has identified elevated
wall shear stress as one of the promoting factors [Stal 08]. Hence, vascular imag-
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ing could greatly benefit from the combination of morphological and functional
imaging.

Morphological imaging modalities include Digital Subtraction Angiography
(DSA), Computed Tomography Angiography (CTA), Ultrasound (US) and MRA.
DSA is a computer-assisted X-ray technique involving the injection of a contrast
agent to visualize the vessel tree. The generated contrast relies on the subtraction
of two images, one acquired before and one after the contrast agent is adminis-
trated. Newer developments include 3-D DSA and rotational angiography (Dy-
naCT) [Al Q 09]. However, 2-D DSA [Rubi 12] is still the gold standard for most
pathologies such as carotid artery stenosis [U Ki 09] and peripheral artery disease
[Al Q 09]. Its main benefits are high spatial and temporal resolution images and a
large field of view paired with a relatively quick acquisition protocol. However,
significant drawbacks need to be taken into account. These include the highly in-
vasive intra-arterial injection of nephrotoxic contrast agent requiring experienced
staff, the exposition to ionizing radiation for both the medical team and the patient
as well as a risk for neurological complications, especially in the case of carotid
artery DSA.

CTA is an X-Ray-based technique generating vascular contrast through periph-
eral injection of a iodine-based contrast agent. It is quick, widely available and
offers an excellent 3-D resolution. Multi-center studies reported its high accuracy
compared to DSA as a reference for the carotid arteries [U Ki 09, McKi 05, Bart 06]
and the peripheral arteries [Rubi 12]. The drawbacks are, however, the injection of
contrast agent and the use of ionizing radiation. Furthermore, signal problems in
the presence of calcified plaque or metal fragments may lead to overestimation of
a stenosis [Al Q 09].

US is widely accepted as a non-invasive, inexpensive, and portable imaging
modality for a wide range of vascular diseases. Based on sound waves produced
by piezoelectric transducers, no ionizing radiation or invasive procedure is re-
quired, which makes US an ideal screening modality. However, its high inter-user
variability, the restriction to a local assessment rather than a visualization of the
entire region of interest and its dependence on a good acoustic window limit its
clinical use. In addition, the image acquisition is often hampered by the presence
of bowel gas, calcification or post-operational dressings [Coll 07].

A non-invasive alternative is MRA, offering visualization of the vascular struc-
ture without the drawbacks of ionizing radiation, user dependency or the need
for highly invasive procedures. In addition to the established contrast-enhanced
MRA techniques (ceMRA) [Lein 05], involving gadolinium-based agents, nceMRA
techniques have emerged. The occurrence of gadolinium induced nephrotoxic sys-
temic fibrosis [Prin 09] and a significant patient population with contraindications
to the injection of gadolinium-based contrast agents limit the use of ceMRA. The
commonly used nceMRA acquisition methods include Time of Flight (TOF) and
magnetization-prepared balanced Steady State Free Precession (mp-bSSFP).

Functional imaging modalities measuring hemodynamic information in-vivo
include Doppler Ultrasound (DUS), nceMRA and Fractional Flow Reserve (FFR).
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DUS is an US-based technique, relying on the Doppler effect to measure blood ve-
locities [Gibs 94]. In addition to the mentioned disadvantages of US, the accuracy
of flow measurements with DUS is very sensitive to the transducer angle and the
exact positioning on the narrowest location within the stenosis [U Ki 09].

NceMRA provides alternatives to DUS with Fourier velocity encoding and
velocity-encoded Phase Contrast Imaging (PCI). PCI offers a larger anatomical
coverage, the encoding of velocity in all three directions as well as the simulta-
neous acquisition of morphological and functional imaging. However, important
drawbacks are long acquisition times limiting both the spatial and temporal res-
olution as well as physical limitations such as partial volume effects, registration
artefacts, and eddy current effects.

Fractional Flow Reserve (FFR) describes the measurement of pressure gradi-
ents, mainly in the coronary arteries, using a catheter-mounted sensor [Toni 09].
Further techniques such as laser Doppler and laser speckle are not suited for diag-
nostic in-vivo imaging [Daly 13]. Another direction of research in hemodynamics
are computational fluid dynamics simulations. These include either models or
patient specific information, such as vessel geometries, the heart rate as well as
blood pressure as input parameters. They generate, however, only simulations
rather than actual in-vivo velocity information.

1.2 Thesis Overview

This thesis reports several methodological developments in the field of CS and
multiple applications for nceMRA and blood flow imaging.

1.2.1 Focus of Research and Scientific Contributions

The main scientific focus of this work was to develop algorithms which signifi-
cantly reduce the acquisition time for different applications in the field of morpho-
logical and functional nceMRA. The developed algorithms are applied to three
major types of angiographic examinations, but are not by any means restricted to
those. This thesis provides scientific contributions regarding all three steps of the
CS-pMRI reconstruction pipeline, sampling, sparsity transform and the optimiza-
tion algorithm as shown in Figure 1.2. It provides contributions to the community
of MRI reconstruction. In the following section, the major scientific contributions
are summarized.

Sampling and coil
sensitivities

Objective function and
regularization terms

Reconstruction algorithms

Figure 1.2: Reconstruction algorithm pipeline.

Morphological imaging

• A novel MultI-Coil Compressed Sensing (MICCS) sampling strategy,
combining the ideas of pMRI and CS in the Cartesian case was designed
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to achieve high acceleration factors. Its benefits were shown compared
to state of the art approaches when applied to both 2-D and 3-D prob-
lems. This approach has been published in [Hutt 11a], [Hutt 13d] and is also
used in [Hutt 14d, Hutt 11b, Hutt 13b, Hutt 12a, Hutt 12b, Hutt 13a, Hutt 13e,
Hutt 14c, Hutt 14b].

• Split Bregman-based optimization schemes were adapted to the pMRI-CS
reconstruction problem, combined with different sparsity assumptions and
evaluated in comparison to gradient-based optimization methods.

• Multi-slice regularization strategies for peripheral TOF were developed, in-
cluding the vessel prior knowledge strategy presented in [Hutt 11b]
and [Hutt 12b] and different TV based variants as published in [Hutt 13c].
These are not within the scope of this thesis.

• 2-D peripheral Time of Flight angiography was accelerated significantly us-
ing the MICCS k-space under sampling pattern and pMRI-CS algorithm re-
ducing scan times from about 30 min to under 3 minutes for a scan of the
entire lower peripheral vasculature. The results with evaluation of the pat-
tern were presented in [Hutt 14a].

• 3-D renal free-breathing balanced steady state free precession angiogra-
phy were accelerated significantly using the described MICCS k-space sam-
pling strategy and the Split Bregman-based pMRI-CS algorithm reducing
scan times from over 8 minutes to below 1 minute for a fully non-invasive
free-breathing renal scan. The results and comparison to clinical methods
were presented in [Hutt 12a] and [Hutt 14b].

• A fully automatic segmentation algorithm was presented for Time of Flight
data from the carotid arteries. One of the major problems in this nceMRA
application, signal voids in areas of irregular flow patterns, was addressed
by proposing a novel 3-D level set based method. The algorithm for com-
pletely automatically vessel tree segmentation was presented at [Hutt 12c].
It was shown that this algorithm provided a segmentation with significantly
increased accuracy and sensitivity compared to state of the art level set algo-
rithms. However, this work is not in the scope of this thesis.

Blood flow imaging

• Multi-dimensional interleaved velocity encoding temporal sampling for
Phase Contrast Imaging was proposed, taking all available dimensions into
account including the temporal and particularly the velocity encoding di-
mension. This new approach goes beyond conventional and state of the art
implementations, allows to enlarge incoherence, extends the benefits of tem-
poral regularization and enables a fully internal coil sensitivity calculation
scheme. Both the pattern and the coil profile sampling strategy were pro-
posed and used in [Hutt 14c], [Hutt 14d], [Hutt 13e] and [Hutt 13b].
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• Anatomical vessel maps as prior knowledge for temporal regularization
were combined with temporal weighting and a static-dynamic map calcula-
tion approach to a novel regularization, which proved to be capable of pre-
serving flow dynamics. This was presented in [Hutt 13b], [Hutt 13a] and in
[Hutt 14d]. Evaluation against state of the art methods showed significant
improvements regarding the flow profile accuracy and the image quality.

• The low-rank sparse decomposition model, previously proposed for time
resolved MRI was extended to 4-D PCI by tensor unfolding. The emerg-
ing reconstruction problem was solved with a novel version of the uncon-
strained Split Bregman algorithm. Results were presented in [Hutt 13e] and
[Hutt 14c].

• Comprehensive evaluation and comparison using different regularization
terms and optimizers for PCI was presented, including image based and
physiological parameters.

1.2.2 Organization of the Thesis

This section details the structure of the thesis and presents the individual chap-
ters. A graphical overview is given in Figure 1.3. Three main parts divide the
thesis into content-based entities. The first part focuses on the background and
lays the foundations for the second and third part. These parts are formed based
on the targeted application, static nceMRA techniques in Part II and blood flow
imaging in Part III. In the following, the chapters will be individually presented.
The background Part I consists of two chapters. Chapter 2 introduces the physical
bases of MRI, focusing on spins, echo generation and contrast mechanisms as well
as the spatial localization in k-space and specifically the contrast mechanisms of
the used nceMRA acquisition techniques TOF, bSSFP and PCI. In its first section,
Chapter 3 presents the basics of MRI data sampling including the limits leading
to aliasing or resolution losses. Second, the principles of pMRI and CS are intro-
duced. Finally, the combined reconstruction problem is formulated and important
state of the art techniques are reviewed.
Part II, presenting reconstruction techniques for static nceMRA, is divided into
three chapters. Chapter 4 details the developed MICCS sampling strategy and for-
mulates both gradient-based optimization and the Split Bregman algorithm for the
given reconstruction algorithm. Implementation details, including the developed
framework, are presented.
Chapter 5 presents the first application for the developed algorithm, 2-D periph-
eral TOF, where the novel MICCS pattern and the Split Bregman-based method
were applied in order to decrease the acquisition time and improve reconstruction
quality. The image- and organ based evaluation strategy and experiment design
are given. Finally, the results for different patterns and algorithms are presented
and discussed for both high resolution data sets and data from the entire lower
vasculature.
Finally, Chapter 6 reports the achieved acceleration results for 3-D free-breathing
mp-bSSFP renal angiography. The image- and organ based evaluation strategy
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and experiment design are given. The results of an acceleration study, the algo-
rithm evaluation and comparison against clinically used methods are presented
and discussed.
Part III focuses on reconstruction techniques for PCI. It consists of five chapters,
with Chapter 7 detailing the specific properties of PCI reconstruction and post
processing. Chapter 8 presents the acquired data including the volunteer and
phantom study as well as the considered patient cases and the strategy devel-
oped for evaluation. The joint iterative reconstruction for PCI as well as the novel
I-VT data sampling strategy is developed in Chapter 9. The remaining two Chap-
ters present dedicated reconstruction algorithms, combining novel regularization
strategies with the presented methodological elements of Chapter 9.
The first algorithm, called MuFloCoS, is introduced in Chapter 10. Its main parts
are the use of an anatomically motivated sub-division using adaptively calculated
vessel masks to guide the regularization and the temporal weighted regulariza-
tion strategy. These elements are motivated and derived, the experiments are in-
troduced, the results are presented and discussed.
Finally, the second developed algorithm for PCI reconstruction, entitled LoSDe-
CoS, is explained in Chapter 11. The decomposition of the image matrix into
a low rank and a sparse part is developed here for multi-dimensional PCI data.
Firstly, the construction of the joint vector space is motivated and demonstrated,
and the used sparsity and low rank assumptions are explained. Secondly, the un-
constrained Split Bregman algorithm is extended to incorporate the sparsity and
low rank assumptions for PCI and the used proximal operators are developed.
The experimental setup is explained and the results are presented and discussed.
The thesis is concluded with Part IV, consisting of the summary in Chapter 12 and
the outlook in Chapter 13 presenting future possible directions of research.



10 Introduction

Chapter 1:
Introduction

Chapter 3: Compressed
Sensing Parallel MRI
Reconstruction

MRI reconstruction

Chapter 6:
Free-Breathing Renal
bSSFP

Chapter 12: Summary

Chapter 8: Experiments
and Evaluation

Chapter 9: Joint
Iterative
Reconstruction

Chapter 5: 2-D
Reripherall TOF

Data and evaluation

Parallel MRI as a
linear problem

Compressed Sensing

MRI basics

NceMRA methods

Pattern comparison

Algorithm experiments

Data and evaluation

Acceleration study

Comparison to clinical
methods

I-VT sampling strategy

Joint reconstruction end
regularization

Implementation

Chapter 4: Highly
Accelerated Static
NceMRA

MICCS sampling

Gradient-based
optimization & Split
Bregman

Implementation

Processing pipeline
State of the art

PCI data (Volunteer,
phantom, patient)

Evaluation strategies

Chapter 11: LoSDeCoS

Low rank sparse model

Adapted Split Bregman

Comparison to sparse
methods

Chapter 10:
MuFloCoS

TMW regularization

Vessel masks

Comparison to state of
the art methods

Chapter 2: Magnetic
Resonance Angiography

Chapter 7: Accelerated
PCI

Chapter 13: Outlook

Figure 1.3: Organization of the thesis



Part I

Background

11





C H A P T E R 2

Magnetic Resonance
Angiography

2.1 From Spin to Image - MRI in a Nutshell . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Non-contrast-enhanced MRA Methods . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

This chapter presents the bases of MRI imaging, detailing the required steps
from spin to image including the spin properties, echo generation and spatial lo-
calization. In the second part, the used nceMRA acquisition techniques are de-
tailed, focusing on the respective contrast generation methods.

2.1 From Spin to Image - MRI in a Nutshell

The principle of nuclear magnetic resonance, investigated first in bulk matter by
Bloch and Purcell in 1946, is based on the alignment and precession of atomic
nuclei when exposed to an external static magnetic field and describes the phe-
nomenon occuring when exposed to a second oscillating field. The spin of nuclei
is considered as a small magnetic moment on the microscopic scale, precessing
with frequency f , which is related to the spatially dependent static field B(r) and
the proton-specific gyromagnetic ratio γ by the Larmor equation:

f (r) = γB(r). (2.1)

Thereby, r denotes the 3-D spatial position and B the three-dimensional field. For
hydrogen protons 1H with γ1H = 42.6MHz/T and a homogeneous B0 field of 3
Tesla, the Larmor frequency equals to 127.8MHz. The high water content of the
human body, and therefore the high density of hydrogen protons, leads to their
frequent use in human MRI.

2.1.1 Spins and Magnetization

The B0 field leads to precession with constant z-component either parallel or anti-
parallel along the field. The favourable lower energy-state of the parallel align-
ment leads to a slight extent of parallel aligned spins, approximately in the ra-
tio of 10 to 1 million, and to a measurable parallel magnetic moment of the spin

13
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Figure 2.1: The concept of spins is illustrated. (a) Representation of a spin, rotating with
frequency f . While random orientation and frequency can be observed (b) without the
influence of the magnetic field, the spins are aligned along the main axis either parallel or
anti-parallel (c) under the influence of the field.

ensemble. The spins can be represented by 3-D vectors in a standard reference
frame. Figure 2.1(a) illustrates a spin rotating with frequency f around the z-axis,
by convention the direction of the main magnetic field. Figure 2.1(b) illustrates an
ensemble of spins without, Figure 2.1(c) with the influence of the external field.
MRI is described on the macroscopic rather than microscopic level, considering
an ensemble of spins, represented by a magnetization vector, which corresponds
to the vector of the individual magnetic moments. In the thermal equilibrium, the
observed magnetization in the main field is longitudinal, as the transversal compo-
nents of the individual magnetic moments cancel out for the ensemble due to the
phase incoherence. An additional influence from specific fields, as detailed below,
can transform the longitudinal magnetization Mz(r, t) into transversal magnetiza-
tion Mxy(r, t) = Mx(r, t)ex + My(r, t)ey. The magnitude of Mxy will be referred to
by Mxy =

∣∣Mxy
∣∣. The general description of the magnetization equals

M(r, t) =

Mx(r, t)
My(r, t)
Mz(r, t)

 = Mx(r, t)ex + My(r, t)ey + Mz(r, t)ez. (2.2)

Another important variable is the phase, which is described by the angle Φ be-
tween the y-axis and the Mxy magnetization vector. The frequency describes the
rate of change of phase. Different frequencies will lead to changes of phase dif-
fering over time, but also spins precessing with the same frequency can be out-of-
phase.

The generation of a measurable signal in the receiver coils relies on electromag-
netic induction and requires transversal magnetization, which is originates from
phase-coherent spins and is achieved in MRI by radio frequency (RF) pulses. RF
pulses are time-dependent magnetic fields. The MR-relevant B1 field can be seen
as a rotating field in the xy plane, perpendicular to the B0 field. Important pulse
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Figure 2.2: Illustration of the influence of a 90◦ pulse on the magnetization vector in dif-
ferent representations. (a) The spin precesses around the z-axis when visualized in the
laboratory frame. (b) The rotating frame is introduced to omit visualization of precession
around the z-axis. (c) The phase is typically studied in the xy-plane rather than the 3-D
representation.

parameters are the amplitude B1 of the pulse, the time t during which the RF pulse
is applied and the frequency ω0:

B1(t) = B1

 cos(ω0t)
− sin(ω0t)

0

 . (2.3)

Due to the resonance condition, only protons precessing at the frequency ω0 are
affected by the RF pulse. The excitation leads to a forced precession of the magneti-
zation around the field B(r, t) = B0(r, t)+B1(t). The time and the pulse amplitude
define the tilt angle of the magnetization, referred to as flip angle α. The precession
during an RF pulse that tilts the magnetization into the transverse plane (α = 90◦)
in a laboratory frame is illustrated in Figure 2.2(a). The magnetization vector spi-
rals down into the xy-plane. Precession is, however, more frequently studied in a
rotating frame, rotating at frequency ω0, in which the precession around the z-axis
is not present. In the rotating frame, the B1 field strength equals

B1(t) =

B1
0
0

 . (2.4)

The RF pulse tips the magnetization by the flip angle α, depending on the time t
and the strength B1, as illustrated in Figure 2.2(b). The phase of the magnetiza-
tion is often described using the xy-plane representation as shown in Figure 2.2(c)
because the longitudinal magnetization does not influence it.

The mathematical connection between the applied B-field and the magnetiza-
tion M is given through the Bloch equation:

d
dt

M(r, t) = M(r, t)× γB(r, t) (2.5)

After an RF pulse with flip angle α, resulting in a net magnetization of Mz(r, 0) =
M(r, 0) cos(α) and Mxy(r, 0) = M(r, 0) sin(α) the spins are freely precessing and
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Parameter Muscle Fat Arterial blood

T1 900 250 1200

T2 50 60 200

Table 2.1: T1 and T2 values for muscle, fat and arterial blood

returning to equilibrium. The corresponding period is called free induction delay
(FID) . This phenomenon is referred to as relaxation. Interactions between the
spins and the surrounding lattice allow recovery of the longitudinal relaxation at
a rate proportional to the difference. This is formulated as

dMz

dt
(r, t) =

1
T1

(Mz(r, 0)−M(r, 0)), (2.6)

where T1 is referred to as longitudinal relaxation time. The evolution of the mag-
netization towards equilibrium is described by

Mz(r, t) = M(r, 0) cos(α)e−t/T1 + M(r, 0)(1− e−t/T1). (2.7)

The transversal magnetization is influenced by tissue properties, the spin-spin in-
teraction and magnetic field inhomogeneities, leading to a loss of phase coherence
between spins over time with Mxy = M0 sin(α)e−(t/T2) and with the characteristic
tissue-specific T2 relaxation constant.

The modified Bloch equation taking relaxation into account equals

d
dt

M(r, t) = M(r, t)× γB(r, t)−
Mx(r, t)ex + My(r, t)ey

T2
− (Mz(r, t)−Mz(r, 0))ez

T1
.

(2.8)
Both mechanisms are extremely important in the contrast generation as they al-
low to differentiate between tissues by their distinct T1 and T2 values. Table 2.1
illustrates typical values for muscle, fat and arterial blood [Haac 99]. Furthermore,
to generate vascular contrast in ceMRA techniques, the T1 values of blood can
be altered using contrast agents. The T1 value of blood is influences most fre-
quently with contrast agents containing Gadolinium (Gd3+). After injection and
propagating though the vascular system, neighbour protons are influenced by the
paramagnetic properties of the contrast agent.

The spatial dependency of the frequency on the magnetic field in the Larmor
equation Eq. (2.1) can be exploited to vary the magnetization locally by influencing
the B(r, t) field using gradient coils. This is employed both in the signal generation
process and for spatial localization. A field BG, varying linearly in x-direction is
added to the main field, resulting in

B(r, t) = B0(r) + BG = B0(r) +

xG(t)
0
0

 . (2.9)
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(a) Spin echo
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Mxy
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(b) Spoiled gradient echo
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TE
TR

α α

(c) Balanced gradient echo

Figure 2.3: Sequence diagrams illustrating the main echo generation mechanisms. (a)
The principle of a spin echo is shown with the excitation and refocusing pulse and the
resulting echo. (b) A spoiled gradient echo sequence, consisting of the RF pulse, the pre-
and rephasing gradients and the spoiler gradient is illustrated. (c) The balanced gradient
echo sequence, using a balanced gradient scheme instead of a spoiler, is shown.

G(t) equals the gradient ∂B/∂x(r, t). The frequency changes results in ωG(x, t) =
γxG(t). Gradients are time-dependent and vary typically during an MR experi-
ment for a fixed time interval [0, T]. The gradient leads to a phase of

ΦG(r, t) = −
∫ T

0
ωG(r, τ)dτ = γx

∫ T

0
G(τ)dτ. (2.10)

2.1.2 Echo Generation

Both gradient fields and RF pulses are employed for signal generation. The two
most fundamental principles, those of gradient and spin echo sequences are briefly
explained here.

Spin Echo sequences influence the magnetization with a 90◦ excitation RF pulse,
followed by a 180◦ refocusing RF pulse. The decay of transverse magnetization in
the FID resulting from the first pulse is recovered partly by the second. The ef-
fect of spatial field inhomogeneities on the spins, accounting for T′2 losses in phase
coherence, is reversed by the refocusing pulse. The phases of magnetization at
different frequencies in the xy plane is reverted and the subsequent inverse influ-
ence of the inhomogeneities lead to recovery of phase coherence, see Figure 2.3(a).
The transverse magnetization, however, does not reach its original value as the
tissue-dependent T2-induced signal losses are not restored.

The image contrast mainly depends on the echo time (TE), referring to the time
between the RF pulse and the echo, and the repetition time(TR), which denotes the
time between subsequent 90◦ pulses. The combination of both influences the final
image contrast and allows to generate either T1-weighted contrast with short TE
of < 20ms and short TR of 500− 800ms or T2-weighted contrast with long TE of
> 80ms and long TR of > 1200ms. The acquisition time in spin echo sequences
is determined by the TR. Methods to reduce the time are fast spin echos (FSE)
or multi-slice techniques. FSE sequences capture multiple echos using repeated
180◦ pulses after the initial 90◦ pulse. Multi-slice sequences fill the TR needed for
recovery with the acquisition of multiple, separate slices.
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RF

Mxy

Mz
Mss

α αα αα α

t

Figure 2.4: The generation of the steady state is shown based on a basic sequence diagram
considering only the FID magnetization. The transversal magnetization is shown in blue,
the longitudinal in red. The steady state magnetization Mss is obtained after a sufficiently
high number of consecutive RF pulses.

Gradient Echo sequences do, in contrast to spin echo techniques, not employ
90◦/180◦ RF pulse sequences, but rather de- and rephasing gradients to recover
the signal. The accelerated dephasing in the FID caused by the first gradient shape
is reversed by a rephasing gradient of opposite polarity as illustrated in Figure
2.3(b). Maximal recovery is reached after TE, when the additive effects of both
gradients cancel out. The phase dispersion Φ induced by gradients is proportion-
ally dependent on the amplitude G and the duration t of the gradient [Mark 12].

Spoiled and balanced gradient echo Within the gradient echo sequences, an-
other differentiation between spoiled and balanced steady-state gradient tech-
niques is based on the influence of the sequence on the transverse magnetization
after the read-out. A common method to cancel out remaining transversal magne-
tization is the use of a spoiler gradient resulting in a faster loss of remaining phase
coherence as illustrated in Figure 2.3(b). The contrast of spoiled gradient echo se-
quences is either T1- or T?

2-weighted. In contrast to that, balanced gradient echo
techniques rely on keeping the transversal magnetization in phase by using bal-
anced rewinder gradients, see Figure 2.3(c). The contrast is influenced positively
by T2 and negatively by T1 and therefore called T2

T1
-weighted. T1 influence is neg-

ative, as longer T1 leads to slow relaxation of the longitudinal magnetization and
to a lower measurable signal. Longer T2 values, in contrast, allow higher signal
as the transversal magnetization is not fully lost before the next pulse is applied,
assuming a sufficiently short TR.

Steady State imaging is another important concept in gradient echo imaging,
describing the balance between the recovery and loss of longitudinal magnetiza-
tion between subsequent excitations. An example for the FID signal is shown in
Figure 2.4. The steady state magnetization Mss depends on the employed TR, the
flip angle and the tissue-dependent T1 value. The maximal signal for a certain T1
is obtained using the Ernst angle αE defined by cos αE = e−/TR/T1 . This equation
states the optimal flip angle αE for a given TR. If the flip angle is chosen higher,



2.1 From Spin to Image - MRI in a Nutshell 19

TE

α

TR

α

Read

Phase

Read-encoding gradient

Slice

Figure 2.5: Classical sequence diagram focusing on the spatial localization. The slice
(Slice), read-out (Read) and phase (Phase) gradients are shown along with the RF pulse
and the resulting echo. The echo time TE is depicted in green, the repetition time TR in
blue.

saturation occurs as not enough recovery time is given. This leads to a lower sig-
nal.

2.1.3 K-space and Spatial Encoding

The spatial localization of the MR signal obtained in the receiver coils is a pre-
requisite to obtain images and volume data. This is achieved in two steps by the
use of the gradient coils. In the following, slice-selective excitation is explained fol-
lowed by frequency-encoding and phase-encoding gradients. All parts are sum-
marized in the sequence diagram in Figure 2.5.

The localization in slice-direction is based on the resonance condition for RF
pulses. Only spins precessing at frequencies within the bandwidth of the applied
RF pulse are influenced. The magnetic field is thus slightly changes by gradients
with strength B applied in the same time than the RF pulses to limit the RF pulse
effects to a certain slice of thickness ∆d. Taking the gradient G = ∆B

δd and the
bandwidth ∆f into account, the resulting slice thickness equals

∆d =
∆f
Gγ

. (2.11)

Within the slice, frequency-encoding and phase-encoding gradients allow spatial
encoding. The frequency-encoding gradient is applied during the signal readout
as shown in Figure 2.5. By manipulating the magnetization in a spatially depen-
dent manner, the sampled data can be localized using a Fourier transform. In
contrary to the read-out gradients, phase-encoding gradients are applied before
the echo is sampled and influence the phase of the magnetization, which than de-
pends on the position. While frequency-encoding gradients sample k-space data at
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multiple data points along a read-out k-space trajectory, the use of a certain phase-
encoding gradient corresponds to a k-space offset, which affects the whole sub-
sequent readout. The phase-encoding needs to be repeated for all desired phase-
encoding steps with repetition time TR. The time between excitations depends on
the magnetization manipulation and the desired contrast and largely contributes
to the long MRI acquisition time. The number of frequency steps in each excita-
tion is not time-critical but limited by the decay of magnetization, allowing only a
restricted acquisition window. While acquisitions have been proposed [Craw 92],
that sample the entire k-space with a single trajectory, this can lead to significant
image artefacts or restricted resolution [Lust 07].

In the Cartesian case, phase encoding gradients are applied in multiple steps
and orthogonal to the slice encoding and read-out gradients as depicted in Fig-
ure 2.5. By storing the acquired echos depending on the applied phase encoding
gradient, a two dimensional k-space is filled.

The phase-encoding gradients also allow so a practical explanation for the
properties of k-space . Higher phase-encoding gradients result in more dephasing
and thus lower signal intensity. Phase-encoding gradients lead to signals with low
amplitude, highlighting only the structures with a substantial amount of intensity
difference, such as they occur at edges. The obtained k-space can be transformed
by inverse Fourier Transform to a spatially localized signal, resulting in an image.

The measured signal, considering the influence of all gradients Gxtγ, Gytγ and
Gztγ, equals to the original signal distribution on the spatial domain ρ(x, y, z) mul-
tiplied by a sinusoidal function with frequencies

(kx, ky, kz) = (Gxtγ, Gytγ, Gztγ). (2.12)

The measured signal m(kx, ky, kz), summed up over the entire imaging area in the
receiver coils is then given as

m(kx, ky, kz) =
∫

x

∫
y

∫
z

ρ(x, y, z)(cos(kxx + kyy + kzz)

+ i sin(kxx + kyy + kzz))dxdydz

=
∫

x

∫
y

∫
z

ρ(x, y, z)e−i2π(kxx+kyy+kzz)dxdydz (2.13)

It is typically written in its vector form as

m(k) =
∫

ρ(r)e−i2π(kTr)dr, (2.14)

with k = (kx, ky, kz) and r = (x, y, z). Besides Cartesian sampling of k-space, illus-
trated in Figure 2.6(a), the read-out may follow different paths such as radial in
Figure 2.6(b) or spiral im Figure 2.6(c). In general, non-Cartesian trajectories offer
higher flexibility and denser sampling in the center, but come with the drawback
of a computational intensive gridding step in the reconstruction, i.e. the interpola-
tion to a Cartesian grid.
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(a) Cartesian (b) Radial (c) Spiral

Figure 2.6: Different k-space sampling trajectories: (a) Sequential Cartesian, (b) radial and
(c) spiral sampling shown with the corresponding grid.

Method TOF mp-bSSFP PCI

Sequence Type Spoiled GRE bSSFP Spoiled GRE

Inherent Contrast T1 T2/T1 Spin-density

Contrast Inflow during Inflow between Velocity translated

mechanism acquisition inversion/acquisition into phase

Flip angle 50◦ (2-D), 20◦ (3-D) 50-90◦ 20◦(2-D), 10◦(3-D)

TR 20-25ms 3-4ms 15ms

Table 2.2: The properties of the investigated nceMRA methods in different categories are
analysed.

2.2 Non-contrast-enhanced MRA Methods

In contrary to most MR examinations, where measures are taken to limit the influ-
ence of blood flow-induced artefacts, nceMRA methods exploit the movement of
blood to generate vascular contrast.

The contrast mechanisms for commonly used techniques such as Time of Flight
(TOF) , magnetization-prepared balanced steady state free precession (mp-bSSFP)
and velocity-encoded PCI are described in the following section. An overview
over the most important sequence parameters is given in Table 2.2.

The dynamic behaviour of blood flow over the cardiac cycle, especially the
pulsation of arterial blood flow, has to be considered for some angiographic exam-
inations. Either only data acquired during specific periods of the cardiac cycle are
combined to ensure a static and motion-free image, or the dynamics are resolved
using segmented acquisition, where separate k-space data sets are sampled for
different phases over multiple heart beats. The synchronisation of the acquisition
to the patient-specific cardiac cycle is typically done using electrocardiography
(ECG) or pulse triggering.
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2.2.1 Time of Flight

I S
(a) Before the acquisition

I S
(b) During the acquisition

Figure 2.7: The mechanism of flow-related enhancement, basis for the Time-of-Flight con-
trast is illustrated with a model containing a vein (blue) and an artery (red). The imaging
and the saturation slab are pictured in grey and shaded grey, respectively. (a) The contrast
situation before the inflow of unsaturated spins is shown, both arterial and venous blood
as well as the static tissue is suppressed. (b) The inflowing arterial blood (red) leads to
contrast generation, while the static tissue and the venous blood are still suppressed.

In TOF imaging, vascular contrast relies on flow-related enhancement [Whea 12].
This concept describes signal gain in the imaging plane originating from the inflow
of blood. It is used in combination with gradient echo sequences with short TR.
By application of multiple RF pulses, e.g. in a continuous 3-D acquisition, static
tissues are saturated and low signal saturation is obtained. The inflowing spins,
illustrated with arrows in Figure 2.7, are less influenced by the repeated pulses.
Their longitudinal magnetization, as a consequence, generates high signal inten-
sity when affected by RF pulses [Carr 12]. Relevant parameters for the balance of
background suppression and flow-enhancement are the TR, the flip angle and the
slice thickness as well as the vessel orientation. The typically short TR and high
flip angles assure sufficient background suppression. The saturation of moving
spins is scaled by their time within the imaging plane. Thus, ideal contrast can
be obtained by positioning imaging planes orthogonal to vessels, for high veloc-
ities, and for rather thin slices. To ensure that high signal is exclusively obtained
from arterial vessels, the venous inflow signal can be suppressed by adding a slice-
selective distal saturation band, illustrated by the hatched area in Figure 2.7. TOF
is used in both 2-D and 3-D, while for 3-D the stronger saturation of moving spins
due to the thicker slab typically leads to the use of smaller flip angles of 10◦-20◦

and the use of special shaped tilted optimized non-saturating excitation (TONE)
pulses [Atki 94, Kim 12b]. Main applications of TOF are 3-D cranial and carotid
imaging as well as 2-D peripheral MRA.

2.2.2 Magnetization Prepared Balanced Steady State Free Preces-
sion

The inherent T2
T1

contrast of bSSFP sequences is well suited for vascular contrast
as it tends to highlight blood and suppress most surrounding tissues. Vascular,
and specifically arterial contrast can be further enhanced using preparation pulses
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inverting the magnetization of the tissue in the imaging region. Imaging after the
inversion time (TI), chosen such that the relaxing inverted magnetization reaches
values close to zero, results in enhanced contrast of the fresh blood, which was
not influenced by the inversion pulse. The inversion slab is typically chosen larger
than the imaging plane to ensure inversion of inflowing venous blood and thus
uniquely arterial contrast [Kato 04]. The mechanism is illustrated in Figure 2.8(a)
for a renal artery acquisition after an inversion pulse and in Figure 2.8(b) at the
time of TI. The longitudinal magnetization is depicted in Figure 2.8c.

In
I

(a) Before the acquisition (b) During the acquisition

RF

Mz

Inflowing venous
blood

Inflowing arterial
blood

Static tissue

TI

(c) Longitudinal magnetiza-
tion

Figure 2.8: The contrast generation for inversion recovery balanced steady-state free pre-
cession sequences (bSSFP) is illustrated. (a-b) The renal vasculature is shown with both
arteries and veins as well as the imaging slab (I) and the inversion slab (In). The mag-
netization of static tissues, veins and arteries is inverted at the start of the inversion time
TI. After TI, the contrast differences between static tissue and venous blood and the ar-
terial blood are visible. (c) The corresponding curves for the longitudinal magnetization
after the inversion pulse allow for the differentiation between the tissues and arteries of
interest.

2.2.3 Velocity Encoded Phase Contrast Imaging

Velocity-encoded Phase Contrast Imaging (PCI) relies on bipolar gradients, which
are able to map velocity of moving magnetization to phase during the MRI acqui-
sition [Mark 11]. Figure 2.9 illustrates the effect of an idealized bipolar gradient,
consisting of a de- and a re-phasing lobe, on static and moving spins respectively.
While the phase is cancelled out for static spins after the second lobe, moving spins
gain a phase shift.

Sensitivity in arbitrary directions is achieved by repeating the acquisition with
different bipolar gradient settings. In a typical experiment, sensitive to the ve-
locities in three orthogonal directions, bipolar gradients are added to the slice en-
coding, the read and the phase-encoding direction in subsequent acquisitions. The
mechanism is illustrated in the following assuming a bipolar gradient field BG(r, t)
along the x-direction with

BG(r, t) =

xG(t)
0
0

 . (2.15)
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(a) Velocity-encoding gradient

TT/2

G

−G
Gx

RF

Static spin S

Moving spin A

(b) Flow-compensated gradient

Figure 2.9: Both the velocity-encoding and flow-compensated gradients used for PCI ac-
quisition and their effects on a static spin S and a moving spin A are shown. (a) The bipolar
velocity-encoded gradient, consisting of two slopes with equal time T/2 and magnitude
G but inverse polarity, lead to a different phase evolution for static and moving spins. (b)
The flow-compensated gradient, consisting of three slopes, does not affect the phase of the
moving or static spins.

The accumulated phase at the end of an acquisition interval [0, T] is calculated by

φ(x, t) =
∫ T

0
(γB0 + γx(t)G(t)) dt, (2.16)

the total field regarding the x-direction including the bipolar linear gradient equals

B(x, t) = B0(x, t) + BG(x, t). (2.17)

Assuming constant velocity v, the position x(t) of a magnetization moving along
x-direction is obtained as x(t) = x0 + vt. Thus, a linear dependence of the phase of
the velocity v becomes evident:

φ(x, t) =
∫ T

0
(γB0 + γ (x0 + vt)G(t)) dt = γB0T − v γG(T/2)2. (2.18)
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To compensate for phase effects unrelated to flow such as field inhomogeneities, an
additional velocity-compensated reference acquisition using a flow-compensated
gradient is required. The flow-compensated gradient compensates for the phase
shift as depicted in Figure 2.9. For typical three-directional velocity maps, either
reference acquisitions for each encoding, or a reference used for all three encodings
are used. The latter is known as the 4-point encoding scheme [Pelc 91]. To obtain
absolute velocities, encoded in phase shifts between −π and +π, the encoding
velocity ν is fixed to the highest expected velocity. If the choice of ν does not
fit the flow dynamics within the imaging slab, either aliasing effects occur or a
limited velocity resolution can be observed. Aliasing results from phase wrapping
of velocities outside the encoded range [−ν, +ν].

2.3 Summary Conclusions

The basic mechanisms used for MRI have been detailed. This includes an introduc-
tion of the spin and precession effects exploited for MRI, as well as echo generation
principles and k-space localization techniques. Furthermore, the acquisition tech-
niques for non-contrast-enhanced MRA, which were used to generate the data in
this thesis, have been introduced.
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The duration of an MRI examination for a given region of interest depends on
the time required to acquire a certain portion of k-space samples and on the total
number of sampled k-space points. Technical possibilities to accelerate the ac-
quisition using hardware or sequence optimizations are limited by physical and
physiological constraints [Chro 01]. Further acceleration can be achieved by ac-
quiring a lower amount of k-space samples and by using reconstruction methods
that restore the missing information. Two families of techniques to reconstruct
MR images from sub-sampled k-space data, parallel MRI (pMRI) and Compressed
Sensing (CS), were introduced.

This chapter first introduces the influence of sampling for the MRI. In the sec-
ond part, pMRI reconstruction is formulated as a linear problem. Third, the basic
principles of CS and their application within the context of MRI are introduced.
Finally, in the forth section, both methods are combined, relevant state of the art is
reviewed and the problem formulation used within this thesis is introduced.

3.1 MRI Reconstruction: Signal Equation to Discrete
Finite Sampling

The k-space signal m(k) of a 3-D object collected with three orthogonal gradients
within an MRI measurement, as described in detail in section 2.1.3 and Eq. (2.14),
is given by the following expression

m(k) =
∫

ρ(r)e−i2π(kTr)dr. (3.1)

where k, r ∈ R3 denote the position in k-space and in the image domain, respec-
tively. Thereby ρ(r) stands for the spin density of the object. Relaxation effects are

27
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neglected in the given formulas.

An inverse Fourier Transform is employed to obtain ρ(r) from the k-space sig-
nal:

ρ(r) =
∫

m(k)ei2π(kTr)dk = F−1(m(k)). (3.2)

The sampling in MRI is discrete and finite, rather than continuous and infinite.
Therefore, the basic notation of the discrete formulation used throughout this the-
sis will be introduced. Furthermore, the discrete sampling with the associated
problem of aliasing and the finite sampling and its implications for the image res-
olution will be detailed in the following subsections.

3.1.1 Discrete Formulation

The basic discrete formulation of the considered reconstruction approach will be
introduced here. The volume of interest is discretized in all spatial dimensions.
The total number of volume elements N equals N = Nx ·Ny ·Nz The volume el-
ements are indexed by ιx ∈ {1, . . . , Nx} , ιy ∈ {1, . . . , Ny} and ιz ∈ {1, . . . , Nz}
for the three spatial dimensions. An index ι ∈ {1, . . . , N} is introduced to refer to
all N voxels, such that ρι represents the spin density at the ’ι’th voxel. The entire
discretized spin density within the volume of interest may be written as

ρ =

ρ1
...

ρN

 . (3.3)

In the following, the emerging problem will be formulated using matrix-vector
notation wherever appropriate. Therefore, vectors are formed by concatenating
data from different dimensions which requires precise definitions of the indexing
system within vectors and matrices. In principle, the ιth element of vector x ∈ CN

will be addressed by xι or equivalently by (x)ι. For the element in the κth row and
ιth column of matrix E ∈ CNk×N the notation eκ,ι or (E)κ,ι will be used.

But to better illustrate the used data elements for concatenated vectors with dif-
ferent dimensions, the elements will also be addressed by the indices of the indi-
vidual dimensions instead of the global vector index. For a vector m ∈ CNγNk , con-
taining Nγ vectors with length Nk, the element m(γ,κ) corresponds to the element
m(γ−1)Nk+κ with index (γ − 1)Nk + κ in the global index notation. The same ap-
plies for matrices, where either one or multiple dimensions are concatenated. For
a matrix E ∈ CNγNk×N where γ ∈ {1, . . . , Nγ}, κ ∈ {1, . . . , Nk} and ι ∈ {1, . . . , N},
the element in the row corresponding to γ and κ and in column ι is addressed by
e(γ,κ),ι.
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The mapping for the frequently used spatial dimensions is described as an ex-
ample in the following. The arrangement of the coefficients is described by the
mappingsM andM−1 as

M : (ιx, ιy, ιz)→ ι with ι = ιzNxNy + ιyNy + ιx and (3.4)

M−1 : ι→ (ιx, ιy, ιz) with ιz = mod(ι, NxNy)

ιy = mod((ι−NxNy), Ny) and ιx = ι−NxNy − ιyNy. (3.5)

The spatial position of voxel ι, assuming a spacing of (∆x, ∆y, ∆z) , equals rι =
(ιx∆x, ιy∆y, ιz∆z). The size of the volume of interest equals to Nx∆x ·Ny∆y ·Nz∆z,
which is referred to as the Field of View (FOV).

The k-space is discretely sampled, the samples are indexed by κx ∈ {1, . . . , Nkx},
κy ∈ {1, . . . , Nky} and κz ∈ {1, . . . , Nkz} , resulting in a total of Nk = Nkx ·Nky ·Nkz

sampling points. An index κ ∈ {1, . . . , Nk} is introduced to refer to all Nk voxels,
such that kκ represents the frequency at the ’κ’th voxel.

The mapping is calculated accordingly by

M : (κx, κy, κz)→ κ with κ = κzNkxNky + κyNky + κx and (3.6)

M−1 : κ → (κx, κy, κz) with κz = mod(κ, NkxNky)

κy = mod((κ −NkxNky), Nky) and κx = κ −NkxNky − κyNky . (3.7)

The spatial position of k-space point κ, assuming a spacing of (∆kx, ∆ky, ∆kz),
equals to kκ = (κx∆kx, κy∆ky, κz∆kz).

For the Cartesian case, the dimensions will be used such that kx corresponds to
the read-out or frequency encoding, while ky and kz address the phase-encoding
directions. Sub-sampling in the seek of time reduction is thus meaningful only by
reducing the number of phase encoding steps to a lower number, i.e. N′ky

N′kz
<

NkyNkz .
The presented notation is used in the following to introduce discrete finite sam-

pling. For this purpose, a 1-D signal m(kx) of a 1-D object ρ̂(x) will be regarded. A
practical example is a 1-D line through a 2-D object such as a 2-D TOF slice through
the tibia, featuring schematically the anterior, posterior tibial and fibular arteries.
This model is illustrated in Figure 3.1. For the 1-D case Eqs. (3.1) - (3.2) equal

m(kx) =
∫

ρ(x)e−i2π(kxx)dx = F (ρ(x)) and (3.8)

ρ(x) =
∫

m(kx)ei2π(kxx)dkx = F−1(m(kx)). (3.9)

Discrete and finite sampling in MRI correspond to a multiplication of the con-
tinuous infinite measured signal m(kx) with the sampling function u∞(kx) and a
windowing function w(kx):

m̂(kx)︸ ︷︷ ︸
Discrete finite signal

= m(kx)︸ ︷︷ ︸
Continuous infinite signal

· u∞(kx)︸ ︷︷ ︸
Sampling

· w(kx)︸ ︷︷ ︸
Windowing

= m∞(kx)︸ ︷︷ ︸
Discrete signal

·w(kx).

(3.10)
The use of the sampling function is detailed in section 3.1.2, the windowing func-
tion in section 3.1.3.
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Figure 3.1: Line through a simulated 2-D phantom to illustrate the concepts for aliasing
and resolution.

3.1.2 Discrete Sampling and Aliasing

The sampling function u∞(kx), also referred to as comb function, is composed from
a sequence of infinite but uniformly distributed Dirac delta functions:

u∞(kx) = ∆kx

+∞

∑
κ=−∞

δ(kx − κ∆kx). (3.11)

This allows to represent equidistant Cartesian sampling with spacing ∆kx [Haac 99]
where the discrete position equals kx = κ∆kx . The sampled discrete signal m̂∞(kx)
is obtained by multiplying the signal with the sampling function:

m̂∞(kx) = m(kx) · u∞(kx) = ∆kx

+∞

∑
κ=−∞

m(κ∆kx)δ(kx − κ∆kx). (3.12)

Included into Eq. (3.9), the corresponding spin density is obtained as

ρ̂∞(x) =
∫ ∞

−∞
m̂∞(kx)ei2π(kxx)dkx (3.13)

=
∫ ∞

−∞

[
∆kx

+∞

∑
κ=−∞

m(κ∆kx)δ(kx − κ∆kx)

]
ei2π(kxx)dkx (3.14)

= ∆kx

+∞

∑
κ=−∞

m(κ∆kx)ei2πκ∆kxx. (3.15)

The Fourier relation in Eqs. (3.8-3.9), and application of the convolution theorem
yields a representation of the infinite spin density as a convolution of the spin
density with the inverse Fourier transform of the sampling function U(x):

ρ̂∞(x) = F−1(m̂∞(kx)) = F−1(m(kx) · u∞(kx))

= F−1(m(kx)) ∗ F−1(u∞(kx))

= ρ(x) ∗ F−1(u∞(kx)). (3.16)

U(x) equals U(x) = F−1(u∞(kx)) and corresponds to a comb function with
U(x) = ∑∞

ιx=−∞ δ(x− ιx
∆kx

). Finally, the sampled spin density ρ̂∞(x) equals

ρ̂∞(x) =
∞

∑
ιx=−∞

ρ(x− ιx
∆kx

). (3.17)
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Figure 3.2: The concepts of aliasing and resolution are illustrated on a line through a sim-
ulated 2-D phantom. The Fourier Spectrum and the corresponding image domain repre-
sentation is shown for three cases: (a-b) Nyquist sampling, (c-d) sub-Nyquist sampling
and (d-e) finite sampling.

This illustrates the periodicity resulting from the convolution in Eq. (3.16). The
infinite spin density equals an infinite series with a displacement of 1

∆kx
, referred

to as the Field of View (FOV).
An important derivation connecting the sampling frequency and the FOV is

obtained from Eq. (3.17): An unique representation of the signal may only be
chosen if adjacent copies of size 1

∆kx
do not overlap, as overlapping would lead to

aliasing artefacts. Be Ax the extent of the object in x-direction, the condition can
thus be formulated as

1
∆kx

> Ax � ∆kx <
1

Ax
, (3.18)

meaning that the k-space must be sampled denser than the inverse of the object
size. This relation is called the Nyquist sampling criteria. A k-space sampling that
fulfils relation Eq. (3.18) is referred to as Nyquist sampling. If the Nyquist criteria
is violated using sub-Nyquist sampling, the adjacent copies overlap and aliasing
occurs. This effect is demonstrated in Figure 3.2(c)-3.2(d). The spacing between
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adjacent samples is increased to 3∆k in the Fourier domain as illustrated on the
left side, which results in overlapping aliased copies of the object in the image
space on the right side. This effect is further illustrated for a PCI image in Figure
3.3(b).

3.1.3 Finite Sampling and Resolution
Since infinite sampling is not feasible given the temporal restrictions, the number
of sampled k-space points in kx direction is limited to Nkx . This is modelled by
multiplying the sampling function with a windowing function [Haac 99]

w(kx) = rect (
kx + 1/2∆kx

Wx
) of width Wx = Nkx∆kx. (3.19)

This leads to the relation

m̂(kx) = m̂∞ ·w(kx) = ∆kx

Nkx /2

∑
κ=−Nkx /2

m(κ∆kx)δ(kx − κ∆kx). (3.20)

Finally, the reconstructed spin density equals

ρ̂(x) =
∫ ∞

−∞
m̂(kx)ei2π(kxx)dkx (3.21)

=
∫ ∞

−∞
∆kx

Nkx /2

∑
κ=−Nkx /2

m̂(κ∆kx)δ(kx − κ∆kx)ei2π(kxx)dkx (3.22)

= ∆kx

Nkx /2

∑
κ=−Nkx /2

m̂(κ∆kx)ei2π(κ∆kxx). (3.23)

The multiplication of the data with the windowing function means that higher
frequencies are omitted, and results in a low-pass filtering of the image. The res-
olution of the image is thus influenced by the width of the windowing function.
An example for the resolution loss is illustrated in Figure 3.2(e)-3.2(f). The Fourier
spectrum sampled with spacing ∆kx but half the sampling width W/2 is shown on
the left side, resulting in a lower resolution in the image domain on the right side.
Using the convolution theorem, yields

ρ̂(x) = F−1(m(kx) · u∞(kx) ·w(kx)) (3.24)

= F−1(m(kx)) ∗ F−1(u∞(kx)) ∗ F−1(w(kx)) (3.25)
= ρ(x) ∗U(x) ∗W(x), (3.26)

where W(x) is the inverse Fourier transform of the windowing function w(kx). It
equals

W(x) = (Nkx∆kxsinc(πNkx∆kxx)ei2π(x∆kx)) (3.27)

and is also used in the calculation of the spatial point spread function (PSF), which
describes the blurring introduced by the finite sampling.
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Not only the sampling of m̂(kx) is finite and discrete, but also the resulting spin
density ρ(x). It is discretized with spacing ∆x and the spatial width corresponding
to the FOV. The discrete coordinates equal x = ιx∆x for ιx = [−Nx/2,+Nx/2]. Fi-
nally, this leads to the following representation for the reconstructed spin density:

ρ̂(x) = ∆x
Nx/2

∑
ιx=−Nx/2

ρ̂(ιx∆x)δ(x− ιx∆x). (3.28)

The spacing ∆x equals FOV
Nx

and is called the voxel size. It can be shown that
m̂(κx∆kx) and ρ̂(ιx∆x) form a discrete Fourier pair if the assumption that Nkx = Nx
holds [Haac 99]:

ρ̂(x) = ∆kx

Nkx /2

∑
κx=−Nkx /2

m̂(κx∆kx)ei2π(κx∆kxιx∆x) and (3.29)

m̂(kx) = ∆x
Nx/2

∑
ιx=−Nx/2

ρ̂(ιx∆x)e−i2π(κx∆kxιx∆x). (3.30)

(3.31)

This principle can be applied analogously for the other dimensions ky/y and
kz/z. Both discrete and finite sampling, and their effects, aliasing and limited res-
olution are illustrated for the 2-D case in Figure 3.3.

3.2 Parallel MRI and Extensions to Spatio-Temporal
Correlations

For parallel MRI (pMRI), k-space data is acquired simultaneously using multiple
receiver coils placed around the object of interest. Started with Four-element phase
arrays [Roem 90], modern coil setups can include 64 channels and more [Keil 13].
Every coil receives the signal with its own spatial sensitivity and thus generates ad-
ditional encoding information. An example of an aortic PCI scan using nine coils
is illustrated in Figure 3.4. This additional information can be used in two ways,
either to enhance the image quality for a fully sampled acquisition or to replace
time intensive phase-encoding gradient steps by utilizing the spatial information
provided through the coil sensitivities.

3.2.1 Spatial sensitivity information

For pMRI, the signal equation in Eq. (3.1) is formulated for each coil γ ∈
{1, . . . , Nγ} and models the spatial coil influence by multiplying the spin density
ρ with the sensitivity information sγ(r):

mγ(k) =
∫

ρ(r)sγ(r)ei2π(kr)dr. (3.32)



34 Compressed Sensing MRI Reconstruction

(a) (b) (c) (d)

Figure 3.3: The influence of the sampling width [Wx, Wy] and the sampling spacing
∆k = [∆kx, ∆ky] is illustrated in an aortic PCI image. (a) Both the sampling width and the
spacing were chosen adapted for the FOV. The resulting image is free of aliasing effects
and resolution losses. (b) The sampling spacing was increased by two in both directions
to ∆k = [2∆kx, 2∆ky], keeping the sampling width constant. Significant aliasing is visible
in the image space. (c) The original spacing ∆k = [∆kx, ∆ky] was applied, but the sam-
pling width reduced to [Wx

2 , Wy
2 ]. A clear loss in resolution becomes visible and the smaller

vascular structures are not separable any more. (d) Here, the outer part of k-space was
sampled. The result is an image with high contrast at the edges, for example the vessels
walls and the back of the patient. The lines above the images indicate the FOV and the
spacing in LR direction.

Here, eγ(k, r) = sγ(r)ei2π(kTr) is referred to as the net encoding function, or hybrid
encoding [Prue 06], containing both coil and gradient encoding.

Reconstruction of multi-coil data is possible by summing up the individual
coil images ργ(r). Thereby, the Sum of Squares (SoS) technique is superior to
linear summation over the coils due to phase cancellation effects with the latter
[Roem 90]. The final SOS reconstructed image is obtained by

ρ(r) = S(r) =
Nγ

∑
γ=1

(ργ(r))2. (3.33)

More advanced techniques further exploit the spatial sensitivities to compensate
for fold over artefacts on account of sub-sampling. Among the first proposed
methods was Simultaneous Acquisition of Spatial Harmonics (SMASH) [Sodi 97]
and derived techniques including AUTO-SMASH and VD-AUTO-SMASH, which
generate non-acquired phase-encoding steps directly from combinations of coil-
sensitivities. Later, Partially Parallel Imaging With Localized Sensitivities (PILS)
was proposed, which assumes basically distinct sensitivities for each coil and com-
bines the image directly using sub-images from each coil based on the idealized
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Figure 3.4: A multi-coil setup using 9 channels is illustrated for a 2-D aortic PCI acquisi-
tion. Images 1-9 show the single coil images sensitivities of the individual coil elements.
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coil setup [Blai 04]. Another image space-based method is Sensitivity Encoding
(SENSE) [Prue 99], formulating the signal at each pixel as a linear combination of
the individual coil contributions, consisting of the sensitivities and the obtained
signal. The final image is obtained by ’unfolding’ in the image domain. Finally,
GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [Gris 02] is
a k-space based technique, using auto-calibrating signal and weights to interpo-
late missing k-space samples. The technique underlying SENSE will be further
explained in detail, as it was included in the reconstruction developments of this
thesis. See the reviews [Blai 04, Hoge 05] for more details about further pMRI tech-
niques.

In addition to acceleration techniques that exploit spatial correlations, the in-
clusion of spatio-temporal correlations has been investigated for dynamic MRI ap-
plications, such as cardiac, blood flow or respiratory phase imaging. Those pro-
posed include methods for single coil imaging [Vaal 93, Doyl 95] and techniques
for multiple coils such as kt-BLAST and kt-SENSE [Tsao 05], UNFOLD [Mado 04],
PEAK-GRAPPA [Jung 08b] and TSENSE [Kell 01].

While k-space-based methods such as GRAPPA and SMASH do not require ex-
plicit knowledge of the coil sensitivities, SENSE and further image-based methods
need maps representing the sensitivities of each coil for the reconstruction. The
maps are acquired separately for each acquisition as the coil setup and the exact
localization of the coils can vary over time. This is commonly done based on a
filtered low-frequency reconstruction from the innermost part of k-space. This al-
lows for the estimation of the sensitivities by minimizing the effects of the objects.
If these samples are acquired before the actual acquisition, this is referred to as
’external coil sensitivities’ - if imaging samples are used the term, ’internal coil
sensitivities’ is employed.

3.2.2 SENSE reconstruction as a linear problem

Formulating the encoding 3.32 explicitly as a combination of Fourier coefficients
and spatial coil information and using eγ(k, r) = sγreiπkr yields

mγ(k) =
∫

ρ(r)eγ(k, r)dr. (3.34)

Formulated for discrete k-space points, the measurement for coil γ at k-space po-
sition κ equals m(γ,κ), the k-space object for coil γ and all voxels is denoted by mγ .
The entire acquired k-space samples from all coils are written in vector form using
m with

m =

 m1
...

mNγ

 . (3.35)

Using the discrete encoding e(γ,κ)(r) = ei2πkκrsγ(r), Eq. (3.34) equals

m(γ,κ) =
∫

ρ(r)e(γ,κ)(r)dr. (3.36)
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Corresponding to this, the reconstruction can be formulated as a linear problem,
by expressing each voxel of the image as the linear combination of the measure-
ments using the reconstruction matrix Fι,(γ,κ) of size N×NγNk :

ρι =
Nγ,Nk

∑
γ,κ

Fι,(γ,κ)m(γ,κ). (3.37)

Combining Eqs. (3.32) and (3.37) highlights the relation between encoding and
reconstruction:

ρι =
∫

ρ(r)(
Nγ,Nk

∑
γ,κ

Fι,(c,κ)e(γ,κ)(r))dr. (3.38)

The product
∑

γ=1,κ=1
Fι,(γ,κ)e(γ,κ)(rι) (3.39)

is referred to as voxel function, as it contains a description of the spatial weight-
ing of the signal for each voxel ι. The condition for spatially ideally separated
voxels is formulated as a Dirac function centred at rι, decreasing the influence of
neighbouring voxels:

∑
γ=1,κ=1

Fι,(γ,κ)e(γ,κ)(rι) = δι(r− rι). (3.40)

This equation is also known as ’strong reconstruction’ [Prue 99]. The encoding
matrix E(γ,κ),ι ∈ CNγNk×N is obtained from the encoding function by evaluating
e(γ,κ)(r) on the grid value positions rι:

E(γ,κ),ι = e(γ,κ),ι = e(γ,κ)(rι) = ei2π(kT
κ rι)sγ(rι). (3.41)

The entries of the encoding matrix will be referred to as e(γ,κ),ι. The relation be-
tween the acquired k-space measurements m̌ ∈ CNγNk and the reconstructed object
ρ ∈ CN for Nγ coils is captured by the linear equation Eρ = m, formulated as

Coil γ = 1


Coil γ = 2


...

Coil γ = Nγ





e(1,1),1 . . . e(1,1),N
... . . . ...

e(1,Nk),1 . . . e(1,Nk),N
e(2,1),1 . . . e(2,1),N

... . . . ...
e(2,Nk),1 . . . e(2,Nk),N

...
...

...

e(Nγ,1),1 . . . e(Nγ,1),N
... . . . ...

e(Nγ,Nk),1 . . . e(Nγ,Nk),N



·

ρ1
...

ρN

 =



m(1,1)
...

m(1,Nk)

m(2,1)
...

m(2,Nk)

...

m(Nγ,1)
...

m(Nγ,Nk)



 γ = 1 γ = 2

... γ = Nγ.

(3.42)
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As a result of Eq. (3.40), the condition for the reconstruction matrix F for fully
spatial unwrapping, termed ’weak reconstruction’ equals FE = Id.
The solution to the problem depends on the dimensions: If the number of rows
in E, NγNk, equal the number of columns N, it significates that the used parallel
coils equal the k-space sub sampling factor ξ = Nk/N.In this case the equation is
invertible, and the Moore-Penrose inverse yields the optimal solution:

ρ = Fm = (EHE)−1EHm. (3.43)

In the case NγNk < N, more unknowns than data points are given. Further re-
strictions, such as noise minimization and SNR optimization can thus be included
[Prue 99]. The basic case of full k-space sampling with a single coil (Nγ = 1, Nk =
N) lead to the expected relation F = E−1.

The reduction of scan time by a factor of ξ comes at the cost of Signal-to-noise-
Ratio (SNR). The relation between the SNR of a fully sampled scan (SNRf) and the
SNR of a reduced scan (SNRr) is indicated by [Prue 99]:

SNRr
ι =

SNRf
ι√

ξgι
(3.44)

. Two sources of SNR loss are identified, the signal reduction which reduces SNR
by a factor of

√
ξ and a reduction by an insufficiently spatially independent coil

setup. This geometrical noise amplification is measured by the geometric factor,
called g-factor [Prue 99].

3.3 Compressed Sensing in MRI

The theory of Compressed Sensing (CS), proposed in the last decade by Candès and
Donoho [Cand 08, Dono 06], has been employed in multiple fields and has caused
a stir in the field of MRI. Based on the observation that a wide range of signals
are compressible, i.e. that they have a sparse representation in a transfer domain,
CS suggests that signals can be reconstructed from sub-sampled data. The huge
impact in MRI originates from the acceleration possibilities due to long acquisi-
tion times, the flexibility of the sampling and the huge range of possible sparsity
transforms.

3.3.1 Compressed Sensing
The information content of a signal can often be represented by far less samples
than acquired in accordance with the Nyquist criteria. This principle forms the
basis of all sorts of compression routines, used for example to reduce the memory
footprint of image or video data. A prominent example is the use of the wavelet
transform in the JPEG2000 standard. Typically, the data is first acquired at the
Nyquist sampling rate and then compressed using sparse representations. The
compressed signal is obtained by using only the compressed coefficients in the sig-
nal reconstruction. CS aims to sample data at sub-Nyquist rate right from the be-
ginning and to decompress the data into a good object representation afterwards.
This inverse approach is illustrated in Figure 3.5.
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Figure 3.5: Compressed Sensing: Reduced sampling of the object instead of compressing
the fully acquired signal

Let x ∈ CN be the signal of interest, and m ∈ CM a series of measurements con-
ducted to obtain x. Here Ψ = [ψ1, . . . , ψM] is an orthogonal basis for the sampling,
resulting in mj = 〈x, ψj〉. Recovering x from m for M � N involves mapping the
data into a transform domain Φ, where the signal is assumed to have a simpler
structure with only few non-zero entries. The orthogonal basis of the transform
domain Φ given by Φ = [φ1, . . . , φN] and the signal x ∈ CN can be written with
the coefficients si as x = ∑N

i=1 siφi for i ∈ {1, . . . , N}. If x can be represented using
only S non-zero coefficients out of N, it is called S-sparse in the transform domain
Φ. The sparse signal is referred to by xS. For real signals, due to noise the co-
efficients are rather insignificantly small than exactly zero, resulting in ||x− xS||2L2
being small as well. Knowledge about the transform Φ facilitates storage of the
meaningful information of the signal in a lower number of coefficients. Crucial
for the success of the reconstruction is the choice of the sampling basis Ψ. Sam-
ples only add information to the reconstruction problem, if they contain measure-
ments from the entire linear space of Φ. An important theorem in this context is
the Restricted Isometry Property (RIP) [Sche 11], which helps to formulate a suffi-
cient condition for signal recovery from a sparse signal obtained with a sampling
scheme below the Nyquist rate. The isometry constant δS of a matrix Φ is defined
as the smallest number such that

(1− δS) ||x||2L2
≤ ||Φx||2L2

≤ (1 + δS) ||x||2L2
. (3.45)

One of the central theorems derived from this is the exact recovery of the S-sparse
signal x if the isometry constant can be shown to be smaller than

√
2− 1 [Cand 08].

The mutual coherence µ(Φ, Ψ) between the sampling basis Ψ and the sparsity
transform basis Φ is calculated as

µ(Φ, Ψ) =
√

N max
1≤j,i≤N

∣∣〈φiψj〉
∣∣ with µ(Φ, Ψ) ∈ [1,

√
N]. (3.46)

The relation between coherence, sparsity S and the number of required samples M
[Cand 08] is given by

M ≥ C · µ(Φ, Ψ)2 · S · log(N) (3.47)
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with a constant C. This illustrates the relation: The higher the incoherence between
Φ and Ψ, the lower the number of samples M can be for a given sparsity S. Fre-
quent choices for Ψ are random bases, as they have been shown to be incoherent
to other bases.

In addition to the principles of sparsity and incoherence introduced, the third
fundamental principle of CS is the choice of the reconstruction algorithm A :
CM 7→ CN. The recovery problem for x, sampled with an incoherent measurement
system Ψ is under-determined with N � M:

m = Ψx. (3.48)

Inclusion of the sparsity transform Φ into the reconstruction problem allows to
identify the best solution in terms of sparsity from the infinite number of possible
solutions for x suggested from Eq. (3.48):

min
x
||Φx||L0

, subject to Ψx = m, (3.49)

In general, imperfections in the acquisition do not allow Ψx = m. Instead, the least
squares approximation ||m−Ψx||2L2

referred to as data fidelity term, is employed:

min ||Φx||L0
, subject to ||m−Ψx||2L2

< ε with ε > 0. (3.50)

3.3.2 Sparsity and Incoherence in MRI

MRI was one of the first technologies to adapt the Compressed Sensing theory
early after its emergence around the year 2007. Lustig et al. discussed main
features and forms of sparsity as well as incoherence for MRI [Lust 10] with the
Sparse-MRI and L1-Spirit algorithms. Gamper et al. proposed Compressed Sens-
ing for dynamic MRI in 2008 [Gamp 08]. Ever since, CS has been an area of active
research in MRI with an increasing number of innovations such as adapted spar-
sity transforms, reconstruction algorithms and new ways of sampling below the
Nyquist criteria.

Intuitively, the highest compression factors are possible in data which can be
represented by very few coefficients in the transform domain, thus showing the
highest degree of correlation. Examples for applications include dynamic applica-
tions with high spatio-temporal correlation, parameter mapping with a substan-
tial amount of correlation across the different parameters or naturally sparse an-
giographic exams. Lower acceleration factors should be expected for static high-
resolution applications.

Although MRI sampling in the Fourier space, or k-space , is relatively flexible,
the theoretical proposed randomness of sampling points is not practicable due to
several reasons: Trajectories in k-space need to be chosen as smoothly as possi-
ble due to the effects of hardware imperfections, gradient delays, eddy currents
and phase offsets. Furthermore, since the energy is concentrated in the center of
k-space representing the low frequencies and should be sampled densely. There-
fore, a well-suited sampling pattern for CS MRI needs to comply to these side
constraints while maximizing the incoherence [Lust 08]. Two measures to analyse
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the degree of incoherence for various MRI sampling options are the Point Spread
Function (PSF) and, assuming sparsity in a transform domain rather than the im-
age domain, the Transform Point Spread Function (TPSF). Both have been intro-
duced [Lust 10] as:

PSF(i, j) = eH
j ΦHΦei and TPSF(i, j) = eH

j ΨΦHΦΨHei. (3.51)

Sparsity While some images provide sparsity in the image domain with Φ = 1

including for example contrast-enhanced angiographic images with a good back-
ground suppression, most MRI images are sparse in a transform domain rather
than the image domain. The choice of the transformation Φ is either influenced
by general assumptions about medical images or derived by the specific applica-
tion and with respect to the employed acquisition technique. Another aspect that
can be used to differentiate sparsity transforms is their operation range. They are
either intra-volume or inter-volume based.

Total variation and wavelet decomposition are given as examples along with
their coefficients in Figure 3.6 for a PCI volume of the aorta. The wavelet decom-
position using Daubechies 4 wavelets is shown in Figure 3.6(a), the TV decompo-
sition in Figure 3.6(c). The coefficient plot, containing all entries of Φ(x) sorted
by magnitude, illustrates well, that the information is contained within few large
entries.

(a)

0
0.001

0.003

0.005

0.007

0.009

Coefficients

(b) (c)

0

0.002

0.004

0.006

Coefficients

(d)

Figure 3.6: llustration of the wavelet transform and total variation as two widely used
sparsity transforms. (a) Wavelet transform for level 1 with (b) the coefficients sorted by
magnitude. (c) Illustration of the 2-D total variation along with (d) the coefficients sorted
by magnitude.

3.4 Parallel MRI Reconstruction in Compressed Sens-
ing

For this thesis, the pMRI algorithm SENSE was included into CS. The basic equa-
tion of the considered reconstruction problem is derived in the following.
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3.4.1 Problem Formulation
The non-linear reconstruction algorithm used for recovery of a sparse signal with
CS must accomplish two goals simultaneously: achieve a fit to the measured data
and enforce the sparsity assumption as shown in Eq. (3.50).

For MRI, the number of measurements M equals the number of acquired sam-
ples across all coils NγNk. The measurement vector m include the combined raw
data vector m ∈ CNγNk and the sampling basis Ψ ∈ CM×N is substituted by the
encoding matrix E ∈ CNγNk×N. The entries equal e(γ,κ),ι = uκeikκrιcι

γ, with rι being
the position of voxel ι, kκ the κth frequency, uκ the chosen sampling pattern for k-
space point κ and cι

γ the coil sensitivity value for coil γ and voxel ι. The sampling
uκ equals 1 for sampled and 0 for zero filled k-space positions. The sparsity trans-
form, previously formulated as Φx, is extended to Φ(x) to include a wide range of
possible regularization terms within the operator Φ. The entire problem including
the sparsity assumption is

min ||Φ(x)||L0
, subject to ||Ex−m||L2

< ε with ε > 0. (3.52)

The problem of Eq. (3.52) has been proven to be NP-hard [Nata 95], therefore
dedicated optimization strategies are required. As a consequence, a common di-
rection is the relaxation of the L0 norm to the L1 norm:

min ||Φ(x)||L1
, subject to ||Ex−m||L2

< ε with ε > 0. (3.53)

The problem is frequently formulated in its unconstrained form or Lagrange
formulation by introducing the parameter λ > 0 to control the influence of the
sparsity term. The objective function equals

L(x) = ||Ex−m||L2
+ λ ||Φ(x)||L1

. (3.54)

For Nr sparsity transforms, the formulation corresponds to

L(x) = ||Ex−m||L2
+

Nr

∑
r=1

λr ||Φr(x)||L1
. (3.55)

The minimization problem is formulated as

x̂ = argmin
x
L(x). (3.56)

This can be solved iteratively, defining a starting value x0 using Ni iterations. The
intermediate result of iteration i + 1 is obtained as

xi+1 = argmin
xi
L(xi). (3.57)

3.4.2 State of the Art

In the following, state of the art for the three mentioned pillars of CS in MRI, the
sampling, the regularization and the optimization algorithm, will be given.
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Sampling strategies for MRI vary from the originally for CS proposed random
pattern, as these are not practical for MRI. Therefore, a range of adapted sam-
pling trajectories was proposed accounting for the non-linear distribution of en-
ergy from k-space centre to periphery. Aside the most straight forward adaption,
a fully sampled centre combined with a randomly sampled periphery, pseudo
random sampling schemes were proposed. These include a sequence and gra-
dient switch-based technique by Wang et al. [Wang 09], variable density sampling
using probability density functions proposed by Lustig et al. [Lust 07] or Pois-
son disc approximations initially formulated by Yellott et al. and Nayak et al.
[Yell 83, KNNa 89]. IN principle, previously developed ideas for under sampling
were adapted and used for CS, such as accelerated radial acquisition schemes as
proposed by Glover et al. and Berger et al. [Glov 92, Barg 02], or variable density
acquisition techniques as shown by Greiser et al. [Grei 03] were adapted for CS.
Further used patterns include the phyllotaxis pattern as proposed for cardiac MRI
by Piccini et al. [Picc 11].

Sparsity assumptions can be divided in intra-volume and inter-volume ap-
proaches. Intra-volume based sparsity transforms include the very generic
wavelet as included by Lustig et al. [Lust 10] and total variation (TV) trans-
forms formulated by Block et al. and for different complex versions by Chen et
al. [Bloc 07, Chen 10]. TV is based on the assumption, that medical images are
piecewise smooth, resulting in a low value for the integral over the image gradi-
ent. Noise pixels, in contrast, show high gradient variations. For wavelets, the
level may vary as well as the used Wavelet family. Furthermore, the wavelet con-
cept has been extended to incorporate curvilinear and anisotropic structures using
curvelets such as used by Holland et al. [Holl 10] or ridgelets as was shown by Al
Zubi et al. [AlZu 11].

The second category, inter-volume sparsity transforms assume sparsity in
transform domains spanning over multiple acquisitions, for example temporal
frames, different flip angles, multiple slices or multi-contrast settings. These in-
clude temporal wavelets and Fourier transform in time direction, used for example
in the kt-SPARSE algorithm by Lustig et al. [Lust 06] and extensions of kt-BLAST
by Gamper et al. [Gamp 08]. Furthermore, the TV norm was also applied in time
domain as proposed in the GRASP algorithm by Feng et al. [Feng 13]. Multiple
dimensions are involved in group sparsity algorithms, originally formulated by
Huang et al. [Huan 09] and used either for dynamic or multi-contrast settings by
Usman et al.,[Usma 11] Majumdar et al. and Huang et al. [Maju 11, Huan 12].

Another possible division among sparsity techniques focuses on the adaptiv-
ity. The so far discussed sparsity assumptions are formulated a priory as a math-
ematical model. But there are also techniques focusing on adapting the sparsity
model to the data during the reconstruction process. A popular example is the kt-
FOCUSS algorithm as proposed by Jung et al. [Jung 09], which uses low resolution
images as a start guess and prunes this to a sparse representation which is refined
over iterations. Several algorithms learn the sparsity assumptions in increasingly
adapted dictionaries such as the methods by Ravishankar et al. and Rubinstein et
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al. [Ravi 11, Rubi 10] and the recent adaptation to cardiac MRI by Caballero et al.
[Caba 12].

Optimization algorithms efficiently solving the unconstrained problem in Eq.
(3.52) are an active field of research since the emergence of CS techniques.

Two general classes can be distinguished: greedy algorithms operating on the
unrelaxed problem such as Matching Pursuit (MP) algorithms formulated by Mal-
lat et al. [Mall 93] and algorithms focusing on the relaxed form in Eq. (3.53). These
latter include non-linear variants of the conjugate gradients (CG) algorithm used
by Block et al. and Lustig et al.[Bloc 07],[Lust 07], which were among the first
methods proposed. In a first step, the gradient of the actual x in combination with
the prior search direction is used to identify the direction, the second step per-
forms a line search, minimizing the functional in the defined direction. A wide
range of non-linear variants were also proposed and are discussed in Hager et al.
[Hage 06]. Further algorithms include interior point methods as proposed by Chen
et al. [Chen 01], iterative thresholding algorithms introduced by Blumensath et al.
[Blum 08] and Daubechies et al. [Daub 04], iteratively re-weighted least squares
by Ye et al. [Ye 07] and iterative regularized Gauss-Newton algorithms such as
proposed by Uecker et al. and Knoll et al. [Ueck 08, Knol 12].

3.5 Summary and Conclusions

This chapter provided the basis of the developed reconstruction algorithms. Rele-
vant concepts in MRI reconstruction, parallel MRI and Compressed Sensing were
introduced and combined to form the basis of the reconstruction problem for-
mulation used throughout this thesis. The application of this formulation to
nceMRA and PCI - both techniques that can benefit significantly from sub Nyquist-
sampling and scan time reduction - will be the subject of the following chapters.
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This Chapter presents a reconstruction algorithm developed for static nceMRA
methods, in particular 2-D peripheral TOF and 3-D free-breathing renal visual-
ization. The main algorithmic contents are the novel adapted analytical sam-
pling strategy combining elements of pMRI and CS, called MultI-Coil Compressed
Sensing (MICCS) pattern, and a dedicated Split Bregman minimization algorithm.
Parts of these results were presented in [Hutt 14b, Hutt 11b, Hutt 11a, Hutt 12a,
Hutt 12b] and [Hutt 14a].

The algorithmic contents will be presented in this chapter and evaluated in
both applications in the following chapter. The evaluation thereby focuses both on
the image quality and organ specific measures showing the diagnostic usability of
the novel method.

4.1 Motivation

Two frequent angiographic examinations are the visualization of the lower ex-
tremity vasculature and the acquisition of the renal vasculature. While for both
applications, nceMRA techniques are not the method of choice in the clinical rou-
tine, the concerned patient population would highly benefit from the availability
of non-invasive methods. The common diagnostic examinations, including DSA,
US and ceMRA present severe problems, ionizing radiation and iodinated con-
trast material for DSA, user dependent results for US and the administration of
gadolinium-based contrast agent for ceMRA, which is especially contraindicated
for patients with renal diseases [Gloc 10]. The specific problems for both applica-
tions differ, but both are currently hampered by their long acquisition time, espe-
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cially if a good resolution is yield to visualize and quantize stenosis and smaller
arteries. The emerging common goal is a highly accelerated acquisition technique
which enables their wider clinical usage. Both being based on contrast mecha-
nisms that highlight vessels while suppressing static tissue, they share the pos-
sibilities for data compression using sparsity constraints. Especially if high ac-
celeration factors are desired, two challenges have to be addressed: the choice
of the optimal sampling pattern and an adapted regularization and minimization
strategy to overcome noise problems. The choice of the sampled lines becomes
increasingly important with growing acceleration factors and should therefore not
be left to chance. An iterative reconstruction algorithm designed to address these
challenges is proposed in the following.

4.2 State of the Art

CeMRA has been among the first applications for CS in MRI and as already men-
tioned by Lustig et al. in 2007 [Lust 07]. It has been identified as a well suited
application due to the typically long acquisition times, the required high spatial,
and for dynamic ceMRA, temporal resolution and the natural sparsity in the im-
age domain. The long acquisition time apply even more for nceMRA. Reducing
the imaging time furthermore helps to reduce motion artefacts or blurring effects.
A wide range of methods was proposed, differing in the sampling, the used recon-
struction algorithm as well as the sparsity assumption. A subset is given below,
focusing on methods applied either to peripheral and renal angiography or specif-
ically proposed for nceMRA techniques.
For peripheral arteries, specific regularization was proposed by Stinson et al.
[Stin 13] with vascular masking in combination with CG-SENSE. Cukur et al.
[Cuku 09] accelerated mp-bSSFP peripheral angiography using pseudo-random
sampling in combination with both coefficent sparsity and total variation. Spe-
cific techniques developed for renal MRA include sampling strategies such as
non-contrast enhanced outer radial inner square k-space scheme, as proposed by
Worters et al. [Wort 12] or variable density tiled random k-space sampling, applied
to nceMRA by Lai et al. [Lai 11]. Techniques focusing on applying pMRI methods
to renal acquisitions were proposed by Riffel et al. [Riff 13] comparing the Caipir-
inha method with GRAPPA, Wright et al. [Wrig 14] introduced GRAPPA with
stack of stars sampling on time resolved contrast-enhanced renal angiography and
Michaely et al. [Mich 06] studied pMRI reconstructions of contrast-enhanced renal
MRA with different accelerations factors regarding vessel depiction and SNR.
Further methods, applied not specifically to peripheral or renal MRA, but invented
for nceMRA techniques include the method by Akcakaya et al.[Akca 11], exploit-
ing joint sparsity of the individual coil images for nceMRA of the pulmonary arter-
ies. Storey at al. [Stor 12] investigated the combination of GRAPPA with sparsity
assumptions of nceMRA subtraction images. The method of Chang et al. [Chan 13]
focused also on ECG triggered mp-bSSFP acquisitions and used images subtrac-
tion in combination with the Karhunen Loeve transform as regularization. Finally,
Otazo et al. [Otaz 11] proposed to use principal component analysis along flip an-
gles for a randomly sampled 3-D ECG gated acquisition with variable flip angles.
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4.3 Regularization and Sampling Strategy

A common formulation is used for both, formulating the entire volume, respec-
tively the entire stack of 2-D slices as a column vector. Therefore, the k-space
data from one slice l is combined for all coils γ ∈ {1, . . . , Nγ} to the vector
ml ∈ C

NkxNkyNγ . Then, all slices are arranged in a column vector m ∈ CNkNγ with
Nk = NkxNkyNkz :

ml =

 ml
1

...
ml

Nγ

 and m =

m1

...
mNl

 . (4.1)

The 2-D slice images, written as column vectors xl ∈ CNxNy and l ∈ {1, . . . , Nz},
are likewise arranged in a common vector x ∈ CN with N = NxNyNz:

x =

 x1

...
xNl

 . (4.2)

The reconstruction problem is formulated using the encoding matrices E ∈
CNγNk×N with

e(γ,κ),ι = uκeikκrιc(γ,ι). (4.3)

Thereby rι is the position of voxel ι, kκ the κth frequency, uκ the chosen sampling
for k-space sample κ, c(γ,ι) the coil sensitivity value for coil γ and image space
voxel ι. The data fidelity term is

H(x) =
1
2
||Ex−m||2L2

. (4.4)

4.3.1 Regularization

The pMRI problem, formulated in the developed algorithms in its least squares
form using the encoding matrix E, is in general ill-conditioned [Ueck 09]. There-
fore, noise amplification is a known problem in SENSE reconstructions [Prue 99,
Qu 07, Liu 09a, Hoge 05]. Its origin is traced back to non fully linear independent
coil setups leading to ill-conditioned reconstruction matrices [Lin 04, Hoge 04]. As
a result, the problem is vulnerable to small errors in the input data, as they oc-
cur for example in the approximated coil profiles. High under sampling factors
as desired for the stated applications deteriorate this problem. Therefore, adapted
regularization is required. Total variation (TV) and wavelet transform sparsity
were used as regularizers in the present cases. TV is based on the observation that
medical images are piecewise constant and smooth.

Let
∇x = (∇T

x x,∇T
y x,∇T

z x)T (4.5)
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be the gradient of x, calculated numerically as

(∇xx)ι = (∇xx)(ιx,ιy,ιz) = x(ιx,ιy,ιz) − x(ιx−1,ιy,ιz) (4.6)

(∇yx)ι = (∇yx)(ιx,ιy,ιz) = x(ιx,ιy,ιz) − x(ιx,ιy−1,ιz) (4.7)

(∇zx)ι = (∇zx)(ιx,ιy,ιz) = x(ιx,ιy,ιz) − x(ιx,ιy,ιz−1)
. (4.8)

The total variation in its original isotropic version [Oshe 92] equals

TVi(x) = ||∇x||L2,1
=

N

∑
ι=1

√
|(∇xx)ι|2 +

∣∣(∇yx)ι

∣∣2 + |(∇zx)ι|2. (4.9)

The second, anisotropic, version is calculated as

TVa(x) = ||∇x||L1
=

N

∑
ι=1
|(∇xx)ι|+

∣∣(∇yx)ι

∣∣+ |(∇zx)ι|. (4.10)

Wavelet decomposition has been successfully applied to image denoising in mul-
tiple domains [Jin 05] including MRI [Pivz 06]. The discrete wavelet transforms
(DWT) considered here represent a given function by discretely sampled wavelets.
It differs from further transforms such as the Fourier transform by including local
frequency information. A wide range of different wavelets exist, among these are
the orthogonal Daubechies wavelets, defined by a high pass filter fh and a low pass
filter fl available with different coefficient numbers. In the following the Daubechies
4 wavelets (D4) are used, which are defined by the coefficients

h−2 =
1 +
√

3
4
√

2
, h−1 =

3 +
√

3
4
√

2
, h0 =

3−
√

3
4
√

2
and h1 =

1−
√

3
4
√

2
, (4.11)

resulting in the filter specifications

fh(z) = h−2z−2 + h−1z−1 + h0 + h1z and (4.12)

fl(z) = −h1z−2 + h0z−1 + h−1 + h−2z. (4.13)

The analysis operation consists of filtering the signal of interest a ∈ CN with both
filters, followed by successive down sampling. This results in both approximation
and detail coefficients. A multi-scale approach is employed, where the results of
level α are obtained by:

aα
k =

N

∑
ι=1

fh(ι− 2k)aα−1
ι and (4.14)

dα
k =

N

∑
ι=1

fl(ι− 2k)aα−1
ι , (4.15)

where a0 = a. The application of the DWT to images is done sequentially on
the columns and the rows of the image, resulting in four sets of coefficients:
aα, dα,h, dα,v, dα,d of size N/(2α2α) each. In the following, the second level wavelet
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transform using the above stated filters will be described by the transform W :
CN 7→ CN with

W(x) =



a2

d2,h

d2,v

d2,d

d1,h

d1,v

d1,d


. (4.16)

The wavelet transform is typically used as regularization in combination with the
L1 norm, resulting in

WV(x) = ||W(x)||L1
. (4.17)

Further regularization involving multiple adjacent slices that exploits for ex-
ample the continuity of vessels has been proposed as Vessel Prior Knowledge in
[Hutt 11b] and [Hutt 12b], but is not part of this thesis. For the multi-slice case,
the sparsity transforms are calculated slice wise and added over the entire stack of
slices.

The unconstrained objective function LUC(x) including the data fidelity term
and the regularization terms equals

LUC(x) = H(x) + λtTVi(x) + λwWV(x)

=
1
2
||Ex−m||2L2︸ ︷︷ ︸

Data fidelity term

+ λt ||∇x||L2,1︸ ︷︷ ︸
Total variation

+ λw ||W(x)||L1︸ ︷︷ ︸
Wavelet transform

, (4.18)

where λt, λw ∈ R with λt, λw ≥ 0 are the regularization weights.
The minimization problem to be solved is

x̂ = argmin
x
LUC(x). (4.19)

4.3.2 MICCS Sampling Strategy

The developed acquisition pattern combines aspects of well-known parallel MRI
(pMRI) reconstruction techniques such as SENSE with Compressed Sensing (CS)
ideas. The proposed pattern, called MultI-Coil Compressed Sensing (MICCS) sam-
pling strategy, is described by the mask vector u ∈ {0, 1}N where uκ stands for the
sampling at k-space voxel κ =M(κx, κy, κz).
Thereby uκ equals

u(κx,κy) = uκ

{
1, for a sampled voxel and
0, for a non-sampled voxel.

(4.20)

The pattern will be detailed in its 2-D version for individual slices for illustration
purposes. The proposed pattern consists of a central region with size Nκcy around

the middle point κmy =
⌊Nky

2

⌋
and an outer region. The respective start and end
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points of the central region equal κmsy = κmy −
⌊Nκcy

2

⌋
and κmey = κmy +

⌊Nκcy
2

⌋
.

The central region is defined as the index set C, the peripheral region by P , where

C =
{
(κx, κy) | ( κmsy ≤ κy ≤ κmey ) ∧ (1 ≤ κx ≤ Nkx)} and (4.21)

P =
{
(κx, κy) |

(
1 ≤ κy < κmsy ∨ κmey < κy ≤ Nky

)
∧ (1 ≤ κx ≤ Nkx)

}
, (4.22)

with κ =M(κx, κy). This division is illustrated symbolically in Figure 4.1.

kx

ky

κmy
κmey

κmsy

Nky

0

Nky

P

P

C

κmey

κmey

κmsy

Figure 4.1: Illustration of the MICCS pattern. The k-space is divided into a central region
C and a peripheral region P . The sampling of the peripheral region is illustrated using
an exemplary parameter set. The regular sampling of the central region is shown with
dcy = 3.

The central region is regularly under sampled with distance dcy ∈ Z , adapted
to the number of coils located in the under sampling direction, which is beneficial
for the pMRI reconstruction aspect. Neighbouring slices are sampled such that
their central lines are interleaved with offset ocy(l) ∈ Z:

ul
(κx,κy)

=


1, for κy = κmsy + ocy(l) + i · dcy and 1 ≤ κx ≤ Nkx

1, where i ∈N subject toM(κx, κy) ∈ C and
0, otherwise .

(4.23)

The peripheral region is sampled with density decreasing towards the k-space bor-
ders, the distances between succeeding sampling points are calculated using the
distance function d(χ, (a, b)), where χ ∈ Z is the distance index and a, b ∈ R are
the pattern parameters:

d : N×R2 →N with d(χ, (a, b)) = d(a · χ)be. (4.24)

The location of the ith sampling point results from the derived cumulative function
s(i, (a, b)):

s : N×R2 →N with s(i, (a, b)) =
i

∑
χ=1

d(χ, (a, b)). (4.25)
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These functions, as well as the peripheral offset opy ∈ N, are included in the sam-
pling pattern calculation as follows:

ul
(κx,κy)

=



1, for (κy = κmsy − (opy(l) + s(i, (a, b)))) ∧ 1 ≤ κx ≤ Nkx

1, where i ∈N subject toM(κx, κy) ∈ P ,
1, for (κy = κmey + (opy(l) + s(i, (a, b)))) ∧ 1 ≤ κx ≤ Nkx

1, where i ∈N subject toM(κx, κy) ∈ P and
0, otherwise .

(4.26)

Thereby, the peripheral offset is typically chosen identical to the central offset opy =
ocy.
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Figure 4.2: Illustration of the peripheral pattern construction for two parameter settings
(a, b) = (1.3, 1.0) and (a, b) = (0.1, 7.5). (a) Distance and (b) cumulative function . (c)-(d)
Final patterns for both parameter choices.

Examples for the central and peripheral region are shown in Figure 4.1. The ob-
tained total number of sampled lines depends on the k-space size Nky and on the
parameters (a, b). Figure 4.2 illustrates the distance function d(χ, (a, b)), the cumu-
lative function s(i, (a, b)) and the resulting peripheral pattern for two specific pa-
rameter settings to demonstrate the high flexibility of the proposed pattern. These,
specified by (a, b) = (1.3, 1.0) and (a, b) = (0.1, 7.5), result in the same number of
36× 2 sampled lines in the periphery for Nky = 600.

Internal, Interleaved and Interpolated Coil Calculation

The complex spatial coil profiles, required for SENSE based algorithms, are de-
scribed by cl

γ ∈ RN for slice l and coil γ, are calculated based on k-space data. Two
different ways to obtain them are common, either by a separate external scan, or
internally from the image data. Based on the k-space data, filtering strategies are
employed to obtain smooth profiles. The spatial closeness of neighbouring slices
is exploited twofold. The central k-space data is obtained fully internally by using
an interleaved approach, the resulting coil profiles are filtered in slice direction.

The parameters for the regular k-space center under sampling ocy(l) and dcy
are chosen as ocy(l) = mod (l, 3) and dcy = 3 to ensure full k-space coverage
over three adjacent slices. The interleaving strategy is illustrated in Figure 4.3(a)
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through (c), showing the central sampling of three adjacent slices. The combined
fully sampled central sampling, used as basis for the coil sensitivity calculation, is
depicted in 4.3(d).

Spatial filtering in slice direction smooths the obtained coil profiles

c̃l
(γ,ι) =

1
4

cl−1
(γ,ι) +

1
2

cl
(γ,ι) +

1
4

cl+1
(γ,ι). (4.27)

κmey

κmsy

(a) Slice l− 1

κmey

κmsy

(b) Slice l

κmey

κmsy

(c) Slice l + 1

κmey

κmsy

(d) Joint k-space

Figure 4.3: Scheme of the central sampling required for internal interleaved coil sensitivity
calculation for three adjacent slices (a-c). Combined, a fully sampled k-space central region
is obtained (d).

4.4 Reconstruction Algorithms

The unconstrained problem in Eq. (4.19) can be solved using a wide variety of
methods, some of which were stated in Section 3.4.2. Two different methods will
be detailed in the following, a Quasi Newton method belonging to the group of
gradient based methods and the unconstrained Split Bregman method.

4.4.1 Gradient Based Optimization

Gradient based optimization methods minimize the objective function L(x) using
its gradient∇L(x) in multiple iterations. The value for xi+1 in the i + 1th iteration
is obtained using the step size ti+1 ∈ R and the direction pi+1 ∈ CN:

xi+1 = xi + ti+1pi+1. (4.28)

They differ in the calculation of the step size and the direction.
The considered objective function L(x) for the given pMRI-CS reconstruction
problem is, as a sum of convex functions, convex. It is furthermore differentiable
and thus allows for the use of gradient based optimization methods such as Con-
jugate Gradient (CG) [Hest 52] or Quasi Newton methods [Noce 80]. These require
the evaluation of the objective function L(x) as well as its gradient

∇L(x) = ∇H(x) + λt∇TVi(x) + λw∇WV(x). (4.29)

Be E∗ the Hermitian conjugate of the encoding matrix E, the derivative of the
data fidelity term equals

∇H(x) = E∗(Ex−m). (4.30)
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Algorithm 4.1 Calculation of the MICCS pattern
Require: Nkx , Nky , Nκcy , ocy, dcy, a, b

1: for all l do
2: for all κ do
3: ul

κ = 0
4: end for
5: i = 0
6: whileM(κx, κy) ∈ C do
7: κy = κmsy + ocy(l) + idcy,i = i + 1
8: for all κ do
9: ul

κ = 1
10: end for
11: end while
12: i = 0
13: whileM(κx, κy) ∈ P do
14: κy = κmsy + (opy(l) + s(i, (a, b))), i = i + 1
15: for all κ do
16: ul

κ = 1
17: end for
18: end while
19: i = 0
20: whileM(κx, κy) ∈ P do
21: κy = κmsy − (opy(l) + s(i, (a, b))), i = i + 1
22: for all κ do
23: ul

κ = 1
24: end for
25: end while
26: end for
27: return ul

κ ∀l, κ
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The encoding matrix E is not calculated explicitly in the algorithm, but evaluated
as an operator. Therefore, the operator E : CN 7→ CNkNγ is formulated as

E(x) =

 u · F (c1 · x)
...

u · F (cNγ · x)

 , (4.31)

where u ∈ RN and F ∗ = F−1, the adjoint operator E∗ : CNkNγ 7→ CN equals

E∗

 m1
...

mNγ

 =
Nγ

∑
γ=1

c∗γ · F−1(u ·mγ). (4.32)

Here, · stands for the element wise multiplication of two vectors. Both operators
are illustrated schematically in Figure 4.4.
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Figure 4.4: Illustration of the encoding operator and its inverse for the SENSE algorithm.

To avoid singularities in the derivative, the TV term is approximated [Acar 94,
Lust 07] using

|x|ι =
√

x2 + τ (4.33)

where τ ∈ R > 0 is a constant, referred to as corner rounding parameter. This
results in

∇TVi(x) =
(∇2

xx) + (∇2
yx) + (∇2

zx)√
|(∇xx)|2 +

∣∣(∇yx)
∣∣2 + |(∇zx)|2 + τ

(4.34)
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Finally, for the derivation of the wavelet L1 term, the inverse wavelet operation
WH : CN 7→ CN, called wavelet synthesis is used. This is, using the filter operators
stated above, described by

aα−1
ι =

N/(2α)

∑
n=1

f̃h(ι− 2n)aα
n +

N/(2α)

∑
n=1

f̃l(ι− 2n)dα
n, (4.35)

for the signal a.
Combined with the product rule and the differentiation for the absolute value in
the L1 norm it results for the derivative

∇WV(x) = WH(sgn(W(x)). (4.36)

The limited-memory Broyden Fletcher Goldfarb Shanno (lBFGS), a Quasi New-
ton algorithm with limited memory requirements, was chosen as gradient based
optimizer. It was proposed for large-scale optimization problems such as the con-
sidered regularized reconstruction. Its equivalence to the CG solver under certain
assumptions was proven by Nazareth et al. [Naza 79].

In contrast to Newton methods, Quasi Newton method do not require explicit
calculation of the Hessian matrix ∆2(L), but use the numerical approximation H
for the inverse Hessian. This approximation is based on the secant condition, the
Taylor extension of the gradient of the objective function

Hi+1(∇L(xi+1)−∇L(xi)) = −tiHi∇L(xi). (4.37)

The Quasi Newton variants vary with the used update formula for H, for the used
Broyden Fletcher Goldfarb Shanno (BFGS), the update equals

Hi+1 = ViHkT
+ ti(piTyi)−1pipiT where Vi = I− (piTyi)−1piyiT. (4.38)

The direction is obtained by

pi = −Hi∇L(xi) and yi = ∇L(xi+1)−∇L(xi). (4.39)

A further development is the limited memory BFGS algorithm, storing not the
entire Hessian approximation Hi, but only the vectors pi and yi for the subsequent
update to Hi+1 [Noce 80]. The BFGS algorithm is given in Algorithm 4.2, with a
total of Ni iterations. The step size was determined using the backtracking line
search with the Wolfe conditions.

4.4.2 Split Bregman Algorithm
The Split Bregman approach offers multiple advantages over the previously dis-
cussed gradient based optimization methods. It allows better incorporation of the
constraints into the minimization by formulating the concept in a two-step ap-
proach and its splits the regularization constraints by introducing auxiliary vari-
ables. The resulting sub problems can thus be solved using shrinkage techniques.
Furthermore, its faster convergence was shown [Gold 09, Nien 14].
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Algorithm 4.2 Broyden Fletcher Goldfarb Shanno algorithm
Require: L, H0

INPUT: x0

for all i = 1 to Ni do
Calculate the step size ti using the backtracking line search
Calculate the direction pi = −Hi−1∇L(xi−1)
Update xi = xi−1 + tipi

Calculate yi = ∇L(xi)−∇L(xi−1)
Hessian approximation Hi from the BFGS update rule in Eq. (4.38)

end for
OUTPUT: xNi

Development of the Split Bregman Algorithm

A constrained reconstruction problem with convex functionals H and J and any
norm ||J(x)|| is considered with

x̂ = argmin
x
||J(x)|| , (4.40)

subject to H(x) < ε, (4.41)

with ε ∈ R, ε > 0.
Converted into an unconstrained problem it reads

x̂ = argmin
x
||J(x)||+ µH(x). (4.42)

While classically, a sequence of µk with µk−1 < µk is used over iterations to enforce
data consistency, Bregman iterations use the concept of the Bregman distance to
formulate the problem as a sequence of unconstrained problems. The Bregman
distance is calculated as

Dp
J (x, v) = J(x)− J(v)− 〈p, x− v〉, (4.43)

where p ∈ CN is the sub-gradient of J at v. The unconstrained problem of Eq. (4.42)
[Breg 67], is formulated using the Bregman distance [Gold 09]. For differentiable
H it holds for the sub-gradients that

0 ∈ ∂(Dp
J (x, xk) + µH(x)) at xk+1 and pk+1 ∈ ∂J(xk+1). (4.44)

This results in

xk+1 = argmin
x

Dp
J (x, xk) + µH(x)

= argmin
x

J(x)− 〈pk, x− xk〉+ µH(x), (4.45)

where J(xk) is omitted because of its independence from x, and

pk+1 = pk − µ∇H(xk+1). (4.46)
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Connection to Augmented Lagrangian and Penalty Methods

The presented Split Bregman method is closely related to the Augmented La-
grangian formulation, resulting for the stated problem in the function

L(x, a, µ) = J(x) + aTH(x) + µ ||H(x)||2L2
, (4.47)

where a ∈ RN equals the Lagrangian multiplier and µ > 0 the penalty parameter.
This is solved in a two step method

xk+1 = argmin
xk

L(xk, ak, µ) (4.48)

ak+1 = ak + µH(xk+1). (4.49)

The penalty methods fits into this formulation with a = 0, the SB method in Eqs.
(4.45-4.46) is obtained by a = Ep [Rama 11]. Both, the Augmented Lagrangian and
the Split Bregman method have in common, that they do not require µ→ ∞.

Variable Splitting

The unconstrained problem in Eq. (4.42) can be converted into a series of uncon-
strained problems by introducing additional auxiliary variables [Afon 11, Gold 09].
The obtained decoupling of the minimization problem and its regularization terms
allows specific optimization techniques for each sub problem. The actual values
of the remaining components are fixed and included into the objective function.
This mechanism is illustrated in the following section with the concrete pMRI CS
problem.

4.4.3 Formulation of Split Bregman for the pMRI CS Problem

The data fidelity term and the energy function of Eq. (4.42) fit into the given Split
Bregman formulation with

H(x) =
1
2
||Ex−m||2L2

and (4.50)

J(x) = λt ||∇x||L2,1
+λw ||W(x)||L1

. (4.51)

This formulation corresponds to an extension of Eq. (3.53) to a more general regu-
larization form. The introduction of the additional variables dw, dx and dy ∈ CN

yields the formulation with penalty terms

(x̂, d̂x, d̂y, d̂w) =

argmin
x,dx,dy,dw

µ

2
||Ex−m||2L2

+λt
∣∣∣∣(dx, dy)

∣∣∣∣
L2
+λw ||dw||L1

+
αλt

2

(
||dx−∇xx||2L2

+
∣∣∣∣dy−∇yx

∣∣∣∣2
L2

)
+

αλw

2
||dw−W(x)||2L2

, (4.52)
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where µ, α ∈ R with µ, α > 0 and
∣∣∣∣(dx, dy)

∣∣∣∣
L2

= ∑N
ι=1

√
(dx)2

ι + (dy)2
ι . Thereby,

the isotropic TV does not allow decoupling the variables dx and dy [Plon 11]. With
linear H, as given for the data fidelity term specified in Eq. (4.50), the simplifica-
tions proposed by Goldstein [Gold 09] can be applied. Then, Eq. (4.45) equals

(x̂, d̂x, d̂y, d̂w) =

argmin
x,dw,dx,dy

µ

2
||Ex−m||2L2

+λt
∣∣∣∣(dx, dy)

∣∣∣∣
L2
+λw ||dw||L1

+
αλt

2

(∣∣∣∣∣∣dx−∇xx−bj
x

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dy−∇yx−bj

y

∣∣∣∣∣∣2
L2

)
+

αλw

2

∣∣∣∣∣∣dw−W(x)−bj
w

∣∣∣∣∣∣2
L2

(4.53)

for the stated problem. Eq. (4.46) is formulated for the concrete problem with three
equations as

bj+1
x = bj

x+∇xxj+1−dj+1
x , (4.54)

bj+1
y = bj

y+∇yxj+1−dj+1
y , and (4.55)

bj+1
w = bj

w+W(xj+1)−dj+1
w . (4.56)

where bx, by, bw ∈ CN are the residual errors.
The minimization in Eq. (4.53) can now be split into sub-problems allowing to

de-couple the L1 and L2 parts. The minimization problem for the L2 component
equals

(xj+1) = argmin
x
LL2(x, dj

x, dj
y, dj

w, bj
x, bj

y, bj
w) (4.57)

where the objective function for the L2 problem LL2(x) is formulated as

LL2(x, dj
x, dj

y, dj
w, bj

x, bj
y, bj

w) =
µ

2
||Ex−m||2L2

+
αλt

2

(∣∣∣∣∣∣dj
x−∇x(x)−bj

x

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dj

y−∇y(x)−bj
y

∣∣∣∣∣∣2
L2

)
+

αλw

2

∣∣∣∣∣∣dj
w−W(x)−bj

w

∣∣∣∣∣∣2
L2

(4.58)

The sub problems for the wavelet and TV terms are formulated as

(dj+1
x , dj+1

y ) = argmin
dx,dy

αλt

2

∣∣∣∣∣∣dx−∇x(xj+1)−bj
x

∣∣∣∣∣∣2
L2
+

αλt

2

∣∣∣∣∣∣dy−∇y(xj+1)−bj
y

∣∣∣∣∣∣2
L2

+λt
∣∣∣∣(dx, dy)

∣∣∣∣
L2

and (4.59)

(dj+1
w ) = argmin

dw

αλw

2

∣∣∣∣∣∣dw−W(xj+1)−bj
w

∣∣∣∣∣∣2
L2
+λw ||dw||L1

. (4.60)

The L2 problem is solved using an lBFGS algorithm with Ni steps. The isotropic TV
in equation (4.59) is minimized using the generalized shrinkage formula [Gold 09]:

(dj+1
x , dj+1

y ) = s1(xj+1, bj
x, bj

y, 1/α), (4.61)
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with

(dj+1
x )ι =

(∇x(xj))ι + (bj
x)ι

(zj)ι
((zj)ι − 1/α)+ and (4.62)

(dj+1
y )ι =

(∇y(xj))ι + (bj
y)ι

(zj)ι
((zj)ι − 1/α)+, (4.63)

where
(z)j

ι =
√(
∇x(xj)ι+bx

)2
ι
+
(
∇y(xj)ι+by

)2
ι

(4.64)

and where (t)+ represents the positive part of t: (t)+ = max(t, 0). In contrast to
the gradient based optimization numerical calculation of the gradient of the total
variation norm, the wavelet L1 norm as well as the corner smoothing parameter τ
are not required. This is a benefit, as the choice of adapted τ constitutes a trade-
off between convergence speed and the quality of the obtained solution [Rama 11,
Lust 07].

The wavelet term minimization is done with soft thresholding

(dj+1
w ) = s2(xj+1, bj

w, 1/α), (4.65)

where

(dj+1
w )ι =

(W(xj+1))ι∣∣(W(xj+1))ι

∣∣ (∣∣∣(W(xj+1))ι

∣∣∣− 1/α
)
+

. (4.66)

The stated steps, minimization of the L2 term, generalized TV thresholding and
wavelet soft thresholding is repeated in each iteration j for j ∈ {1, . . . , Nj}.

4.5 Implementation

All following algorithms are implemented for this thesis in a C++ framework,
shown as an overview in Figure 4.5. It offers both the connection to the manu-
facturer’s scanner and can operate as a standalone platform. It consists of a basic
layer including mathematical libraries, image processing libraries and the data
container, used for both the 2-D and 3-D static data as well as for the 6-D PCI data.
The necessary steps for the CS based reconstruction pipeline, as depicted in Figure
1.2 of Chapter 1, can be retrieved in the framework:

• Sampling and coil sensitivities,

• objective function and regularization terms and

• reconstruction algorithms.

A wide range of sampling options, including the proposed MICCS sampling strat-
egy and the coil sensitivity combinations are implemented within the framework.
Different regularization terms are realized, either described or developed within
this thesis, which are combined to objective functions. The next layer are the re-
construction algorithms, used to solve the emerging optimization problems. As
for the regularizers, both state of the art methods and novel proposed algorithms
are implemented.
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Figure 4.5: Illustration of the IterRecon framework. The joint contributions are marked in
yellow, the contributions of this thesis in green.

4.5.1 Complexity Analysis

The gradient based and Split Bregman based algorithms are shown in flow charts
in Figure 4.6 and in the Algorithms 4.3 and 4.4. The complexity of both will be
analysed in the following. Let N be, as previously stated, the number of considered
image voxels, Nγ the number of coils, Ni the number of performed lBFGS iterations
for the GB algorithm, Nj the number of Bregman iterations and Ni the number of
the lBFGS iterations used to minimize the L1 term.

The evaluation of the data fidelity term is not performed as a matrix multiplica-
tion as in the theoretical formulation in Eq. (4.3) but operator wise as described in
Section 4.4.1 and illustrated in Figure 4.4. It requires fast Fourier transforms (FFT)
for each of the Nγ coils with, in the worst case for a fully 3-D Fourier transform,
complexity O(N log N) for each coil. Further more, 2N additional multiplications
and N subtractions, and for the L2 norm, N multiplications and subtractions are
performed, resulting in a total complexity of O(NγN log N). The gradient requires
in addition a further Fourier transform and for each voxel 2 multiplications and
one addition, resulting in O(NγN log N). The evaluation of the regularizers to-
tal variation and wavelet transform with a complexity of O(N) each complete the
objective function evaluation. In total, for Ni iterations and a maximum of 20 eval-
uations of the objective function, with the lBFGS being linear in the complexity,
the effort of the gradient based algorithm lays within O(NiNγN log N).
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Figure 4.6: Schematic representation of the gradient based and Split Bregman based algo-
rithm.

Application Algorithm Nx ×Ny Nz Nγ Ni/Nj/Ni Run time [sec]

Peripheral SB 448× 184 32 26 −/5/3 9517.2

Peripheral GB 448× 184 32 26 8/− /− 9250.9

Renal SB 192× 68 156 10 −/5/3 1160.4

Renal GB 192× 68 156 10 5/− /− 693.8

Table 4.1: The run times for the considered GB and SB for the peripheral and renal acqui-
sitions are given with the corresponding parameters.

The complexity of the Split Bregman algorithm is evaluated separately for
the three innermost steps, the minimization of the L2 function using the objec-
tive function LL2, the shrinkage steps and the update of the residual errors. The
effort for the objective function LL2 thereby equals to the previously calculated
of L as it is governed again by the Fourier transform. The evaluation of the
penalty terms requires uniquely additional additions, wavelet and TV evaluations.
The minimization of the L2 minimization step thus lies within O(NiNγN log N).
Both shrinkage and soft thresholding have complexity O(N). The same ap-
plies for the update of the residual errors. The total complexity thus equals
O(Nj(NiNγN log N + 2N + N)) = O(NjNiNγN log N).

The run times for the current implementation on a standard notebook with
8.0 GB RAM using a i3-2328M CPU with 2.2GHz are given in Table 4.1. These
are measured for the entire reconstruction, but without taking the data I/O and
the calculation of the coil sensitivities into account. The Split Bregman algorithm
requires for example for a renal 3-D volume with matrix size N = 192× 68× 156
with Nγ = 10 coils, using TV regularization and performing Ni = 3 inner and
Nj = 5 outer iterations around 19 minutes.
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Algorithm 4.3 Gradient based algorithm
Require: u, m, λt, λw, LUC, Ni

INPUT: x0

1: Calculate combined coil profiles c(γ,ι)
2: for all i = 1 to Ni do
3: Perform optimizer step with the objective function LUC(xi−1) and its gradi-

ent ∇LUC(xi−1)
4: Calculate the data fidelity term H(xi−1) as illustrated in Figure 4.4
5: Calculate finite differences and evaluate the TV term TVi(xi−1)
6: Perform 2nd level wavelet decomposition W(xi−1)
7: Evaluate WV(xi−1)
8: Update xi

9: end for
OUTPUT: xNi

Algorithm 4.4 Split Bregman algorithm
Require: u, m, λt, λw, LL2, Nj, Ni

INPUT: x0

1: for all j = 1 to Nj do
2: x0 = xj−1

3: for all i = 1 to Ni do
4: Perform optimizer step with the objective function LL2(xi−1) and its gra-

dient
5: Calculate the data fidelity term H(xi−1) as illustrated in Figure 4.4
6: Calculate finite differences and evaluate the TV penalty term TVi(xi−1)

7: Perform wavelet 2nd level decomposition W(xi−1)
8: Evaluate WV(xi−1)
9: Update xi

10: end for
11: Set xj = xNi

12: Perform the shrinkage operations
13: (dj

x, dj
y) = s1(xj, bj−1

x , bj−1
y , 1/α)

14: dj
w = s2(xj, bj−1

w , 1/α)
15: Update the residual errors
16: bj

x = bj−1
x +∇xxj − dj

x

17: bj
y = bj−1

y +∇yxj − dj
y

18: bj
w = bj−1

w + W(xj)− dj
w

19: end for
OUTPUT: xNj
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4.5.2 Parameter Choices
The convergence analysis for the proposed optimization methods for the specific
pMRI CS reconstruction is hampered by the problem of noise amplification for
pMRI. Taking this into account, a solution found as optimal for the stated problem,
may not correspond to the desired image result, as the L2 data fidelity term is not
a suitable measure for optimality. A fixed number of iterations for all processed
data sets of the same application is chosen in this thesis. The identification of
a suitable stopping criteria would be beneficial, but is beyond the scope of this
thesis. The same holds true for the chosen regularization parameters λ. While they
are optimized for the presented cases, and fixed over all data sets, they may need
to be chosen differently for data from further manufacturers, different protocols or
further setup modifications.

In the experiments in Chapter 5 and Chapter 6, the gradient based (GB) and
Split Bregman (SB) reconstruction will be applied to accelerate peripheral and re-
nal data sets. In this purpose, the parameters given for the GB methods will all
be based on the objective function in Eq. (4.18) and the minimization problem
formulated in Eq. (4.19). The parameter thus include Ni, λt and λw.

For SB, the minimization problem of interest is formulated in Eq. (4.52). The
relevant parameters are the number of Split Bregman iterations Nj, the number
of quasi newton iterations used to solve the L2 problem Ni and the regulariza-
tion weights. Thereby, to limit redundancy and without any loss of freedom, the
weights µ, α are chosen as µ = 1.0 and α = 2.0 and the TV and wavelet weights
are referred to by λSB

t and λSB
w .

4.6 Summary and Conclusion

The algorithmic elements for a novel iterative algorithm for static nceMRA tech-
niques, focusing explicitly on high acceleration factors, were presented in this sec-
tion. These include an parametrizable analytical sampling strategy, called MICCS
pattern combining elements of multi-coil pMRI methods with the requirements of
Compressed Sensing. Furthermore, the Split Bregman for the pMRI-CS problem,
regularized with isotropic TV and wavelets, was formulated. The following chap-
ters present the data and the evaluation techniques used for the comparison of the
proposed algorithmic elements as well as the results for both peripheral and renal
acquisitions.
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The proposed MICCS pattern in combination with the Split Bregman algorithm
is applied in this Chapter to 2-D peripheral TOF data from 10 volunteers. The pat-
tern is compared to further sampling strategies and the influence of the algorithm
is evaluated. Finally, the clinical usability is shown with accelerated acquisitions
of the entire lower vasculature.

5.1 Motivation

Peripheral arterial occlusive disease is a cardiovascular disease with high preva-
lence [Juer 63]. Comprehensive visualization, typically covering the abdominal
aorta and iliac arteries, the femoral and popliteal arteries down to the tibial and
fibular arteries, is required for its diagnosis and management.

An electrocardiography (ECG) triggered 2-D TOF sequence provides a non-
invasive alternative to commonly used invasive techniques. It offers both high
resolution and excellent vascular contrast. The reasons for a 2-D rather than a 3-D
acquisition scheme are physiologically motivated. As explained in section 2, the
TOF contrast depends on the inflow of unsaturated spins, resulting in a need for an
inflow of blood into the imaging slice during the acquisition. Another important
parameter is the thickness of the imaging area. Thicker slices yield to a more sig-
nificant saturation, observed even for flowing spins that experience pulses while
travelling within the volume. These two constraints apply especially in the pe-
riphery due to the highly pulsatile arterial inflow profile. Furthermore, studies in
patients with stenosis in the peripheral vasculature showed damped arterial flow
profiles in the femoral arteries with a significantly reduced systolic peak [Wiks 07],
contributing to further saturated vascular signal in thick slices.

67
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5.2 Data and Evaluation

Data sets from the peripheral arteries were acquired on clinical 3T MR Scanners
(MAGNETOM Trio A Tim System, MAGNETOM Skyra, Siemens Healthcare Sec-
tor, Erlangen) in 10 healthy volunteers.

5.2.1 Peripheral TOF Data Acquisition

Peripheral data sets were acquired in 10 volunteers using an ECG-triggered 2-D
sequence and a 36-channel peripheral coil. To evaluate the image quality achieved
with the presented algorithms, the data sets were fully sampled so that they can
be used as a reference. Two different types of data sets were acquired, specified by
protocols Peri I and Peri II. Protocol Peri I acquires data sets from 4 slices from the
region below the bifurcation of the popliteal artery into anterial and posterior tibial
and the origin of the peroneal artery as shown in Figure 5.1(a). Used parameters
were an in-plane FOV of 448 mm× 448 mm and a matrix size of 460× 460 leading
to a resolution of 0.97 mm× 0.97 mm. With the second protocol Peri II, data from
the entire upper and lower peripheral vasculature is acquired in 3 steps with 128
slices each as depicted in Figure 5.1(a). Using this protocol, data sets were acquired
in 5 volunteers. The FOV was chosen as small as possible as 448 mm× 168 mm
which is sufficient for covering the volunteer anatomy. Together with a matrix
size of 448× 184 the in-plane resolution equals 1 mm× 0.9 mm. Further imaging
parameters for both data sets were TE / TR = 5 ms / 34.7 ms and a slice thickness
of 2 mm. In total 384 slices were acquired for these data sets in three table positions
with 128 slices each.

5.2.2 Volume Based Evaluation

The obtained result vectors x were quantitatively analysed and compared to the
reference r both using quantitative volume based measures as well as specific or-
gan based evaluations. The image quality was compared to the fully sampled
reference using the Normalized Root Mean Squared Error (NRMSE) and the Struc-
tured Similarity (SSIM). The measures were calculated as

NRMSE(r, x) =
1
N
||r− x||L2

and

SSIM(r, x) =

(
2µ(r)µ(x) + c1

µ(x)2 + µ(r)2 + c1
+

cov(x, r) + c2

σ(r)2 + σ(x)2 + c2

)
,

where µ(x) ∈ R is the mean value of x, σ(x) ∈ R the standard deviation of x and
cov(x, r) ∈ R the covariance between x and r.

Furthermore, more specific angiographic evaluation was employed using Con-
trast to Noise Ratios (CNR). For the CNR, a background region (xb) outside the
object was chosen as well as a tissue (xt) and a vascular region of interest (xv).
The tissue region in the peripheral data sets was a quadratic region within the
soleus muscle and the femoral artery was chosen to provide vascular contrast as
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(b) Evaluation scheme

Figure 5.1: Vascular system of the lower extremities. (a) Covered range in head-foot direc-
tion for the protocols Peri I and Peri II. (b) Schematic evaluation scheme. Images adapted
from [Gray 01].

depicted in Figure 5.1(b). The CNR values for vessel-tissue (CNRVT) and vessel-
background (CNRVB) equal

CNRVT(xv, xt) =

(
µ(xv)− µ(xt)√

0.5(σ(xv)2 + σ(xt)2)

)
and

CNRVB(xv, xb) =

(
µ(xv)− µ(xb)√

0.5(σ(xv)2 + σ(xb)2)

)
.

5.2.3 Organ Based Evaluation

In addition to the described image based evaluation, additional organ based mea-
sures were evaluated. This organ- rather than volume - based approach analy-
ses the depiction of the peripheral arteries. Therefore, the Vessel Sharpness Index
(VSI) was evaluated. The VSI calculation is based on the method proposed by Li.
et al. for the coronar arteries [Li 01], by analyzing the signal intensity projection
across the diameter of the vessel.
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5.3 Evaluation of the MICCS Sampling Strategy

The reconstruction experiments conducted with both the peripheral and renal data
described above had the purpose to investigate both the proposed sampling strat-
egy and the choice of the reconstruction algorithm. In a first step, the proposed
MICCS sampling strategy is evaluated broadly compared to further patterns pro-
viding the same acceleration. In the next experiment, the pattern was applied in
combination with the GB and SB algorithms to the presented application of in-
terest. Reference volumes r ∈ CN, obtained by direct reconstruction of the fully
sampled datasets with SoS were used for all experiments. Finally, the clinical us-
ability and applicability is shown with full leg acquisitions as they are performed
for example for the diagnosis and treatment decision for peripheral occlusive dis-
ease.

5.3.1 Experimental Setup

The proposed sampling pattern is evaluated by reconstructing all Peri I data sets
with six different patterns, all corresponding to the same acceleration factor of
6, corresponding to 76 phase encoding lines of 460. The analysed patterns are
schematically illustrated in Figure 5.2. Beside the full sampling Full (Figure 5.2(a)
the proposed MICCS pattern (Figure 5.2(b)) with a center with size Nκcy = b0.1 ·
Nkyc and under sampling dcy = 2, two patterns with a regularly sampled periphery
Reg1 and Reg2 (Figure 5.2(c)-5.2(d)) and two with randomly sampled periphery
Ran1 and Ran2 (Figure 5.2(e)-5.2(f)) were included. Thereby, the center of the Reg1
and Ran1 was fully sampled, while Reg2 and Ran2 were constructed with the
same central under sampling as MICCS. The used reconstruction algorithm was
the iterative unregularized SENSE algorihtm (ISENSE) with Ni = 8.

(a) Full (b) MICCS (c) Reg1 (d) Reg2 (e) Ran1 (f) Ran2

Figure 5.2: Schematic illustration of the different patterns with the under sampling factor
of 6. Besides the full sampling Full in (a) and the proposed MICCS pattern in (b), two
regular under sampled patterns Reg1 and Reg2 are shown in (c) and (d) as well as two
randomly under sampled patterns Ran1 and Ran2 in (e) and (f).
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5.3.2 Results

The quantitative results for the different pattern choices are given in Tables 5.1 and
5.2 and representative image results for one slice are illustrated in Figure 5.3.

Full

MICCS

Reg1

Reg2

Ran1

Ran2

Figure 5.3: Representative image results for the in-vivo study for the reference and six
different under sampling patterns with an acceleration of 6. The first column shows results
for volunteer 1 along with a zoom to the left leg in the middle column. The right column
illustrates results for volunteer 2 along with a zoom to the right leg.

The image results in Figure 5.3 show the increased vessel sharpness and gen-
eral enhanced image quality of the proposed MICCS pattern in comparison to
the further patterns. The red arrows indicate small vascular structures, well de-
picted with the MICCS, but barely visible using the regular or random under sam-
pling patterns. Furthermore, the noise and aliasing artefacts are visibly reduced
for MICCS, and the image impression manages well to recover the fully sampled
reference in the first row of Figure 5.3. The visual result of a better image impres-
sion corresponds well with the quantitative results in Table 5.1. The NRMSE of
the MICCS pattern of 0.029± 0.003 was decreased by 42% compared to the next
best comparison method regarding NRMSE, Ran1, with 0.050± 0.006, the SSIM
increased from 0.056± 0.008 for Ran2 to 0.959± 0.013 by 8.7%. The CNR values
reached values of 32.401 ± 18.225 and 31.707 ± 14.910, which corresponds to an
increase of 22% respectively 26% in the mean compared to Ran1. The CNR values,
however, vary significantly over the data sets. Furthermore, the sharpness value
for VSI amounted to 0.239± 0.039, nearly reaching the reference with 0.279± 0.046.
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Method NRMSE SSIM

Ref 0.000± 0.000 1.000± 0.000

MICCS 0.029± 0.003 0.959± 0.013

Reg1 0.070± 0.012 0.793± 0.047

Reg2 0.061± 0.012 0.830± 0.048

Ran1 0.050± 0.006 0.854± 0.039

Ran2 0.056± 0.008 0.882± 0.024

Table 5.1: Quantitative image and vessel sharpness index evaluation for the in-vivo study.
The reference was used to calculate the normalized root mean square error and the struc-
tural similarity for all patterns.

Method CNRVT CNRVB VSI

Ref 30.190± 15.942 34.714± 19.416 0.279± 0.046

MICCS 32.401± 18.225 31.707± 14.910 0.239± 0.039

Reg1 24.301± 12.417 19.881± 6.885 0.173± 0.046

Reg2 23.837± 13.153 21.674± 8.461 0.198± 0.050

Ran1 26.486± 13.941 25.112± 9.832 0.177± 0.044

Ran2 23.791± 10.920 22.378± 7.422 0.171± 0.041

Table 5.2: Quantitative image and vessel sharpness index evaluation for the in-vivo study.
The contrast-to-noise ratio between vessel and background and vessel and tissue as well
as the vessel sharpness index were evaluated for all six pattern reconstruction results.

This corresponds to an increase of 20% in reference to the best comparison method
regarding sharpness, Reg2, with 0.198± 0.050.

In summary, the study of different under sampling patterns showed signifi-
cant benefits for the proposed MICCS pattern. Its major advantages are its ana-
lytical and flexible generation as well as the excellent results regarding sharpness,
NRMSE and SSIM.

5.4 Highly Accelerated NceMRA of the Peripheral Ar-
teries

After the evaluation of the pattern in the previous section, the entire proposed
method, consisting of the MICCS pattern and the Split Bregman algorithm, will be
in the focus of this section.
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Parameters Full ISENSE SBTV SBW SBTV-W GBTV GBW GBTV-W

λt / λSB
t n.a. 0.0 0.002 0.0 0.002 0.002 0.0 0.002

λw/ λSB
w n.a. 0.0 0.0 0.001 0.001 0.0 0.001 0.001

Ni n.a. 5 n.a. n.a. n.a. 8 8 8

Nj/N′i n.a. n.a. 5/3 5/3 5/3 n.a. n.a. n.a

Table 5.3: Weighting parameters for the reconstructions.

5.4.1 Experimental Setup

The comparison of the SB and GB algorithm for high acceleration factors of 12 is
in the focus for the following reconstruction. The data sets acquired with protocol
Peri I were used in combination with the MICCS sampling scheme. The result of
the fully sampled reference reconstruction is compared to different reconstruction
results based MICCS pattern. The reconstruction problems are formulated as dis-
cussed in Section 4.5.2. The raw data is reconstructed first using an unregularized
iterative SENSE algorithm (ISENSE). Then, two different ways are applied: using
a gradient-based (GB) solver operating on the unconstrained function (Algorithm
4.3) with Ni = 8 and the proposed split formulation with the Split Bregman algo-
rithm (SB) (Algorithm 4.4) with N′i = 3 and Nj = 5.
Both reconstruction pathways were combined with total variation regularization
(GBTV, SBTV), with wavelet regularization (GBW, SBW) and with the combination
of both (GBTV-W, SBTV-W). The regularization weights λt and λw, respectively λSL

t
and λSL

w and the iteration numbers were optimized to low NRMSE for each of the
combinations and kept fixed over all data sets. The chosen settings are given in
Table 5.3.

To demonstrate the diagnostic usability, the data sets acquired with protocol
Peri II, including the data from the entire lower peripheral vasculature are recon-
structed. Maximum intensity projections (MIP) are generated in axial direction to
evaluate the visualization of the vessels along the entire leg.

5.4.2 Results

Tables 5.4 and 5.5 state the calculated quantitative results for the algorithm study.
Comparisons are possible both between SB and GB as well as between the different
regularization terms. The best result was obtained using the SB algorithm with
both wavelet and TV regularization (SBTV-W). The NRMSE was reduced by 76%
compared to ISENSE and by 40.5 % compared to the GB method using the same
regularizations. The CNR increased for SB in the mean by roughly 30% and the VSI
by 64% compared to (GBTV-W). These values are very similar to those obtained by
(SBTV). The errors for the SBW results are higher, the CNR and SSIM lower even
compared to the GBW results. The discrepancies between different regularizers
are less prominent in the GB results. There is, however, a difference observable
in favour of the TV-based variants. Those results correspond well to the image
based findings of two representative volunteers in Figure 5.4, depicting an axial
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Method NRMSE SSIM

Ref 0.000± 0.000 1.000± 0.000

ISENSE 0.0652± 0.102 0.817± 0.036

SBTV 0.0153± 0.004 0.991± 0.003

SBW 0.0715± 0.020 0.788± 0.002

SBTV-W 0.0152± 0.004 0.991± 0.003

GBTV 0.0400± 0.008 0.931± 0.020

GBW 0.051± 0.009 0.885± 0.028

GBTV-W 0.0405± 0.008 0.929± 0.001

Table 5.4: Quantitative image and vessel sharpness index evaluation for the in-vivo study.
The reference was used to calculate the normalized root mean square error and the struc-
tural similarity for all patterns.

slice for all eight discussed reconstruction techniques. The SBTV and SBTV-W show
a suppressed background noise, nice delineation of the vascular structures and
sharp vessel borders.

Finally, the maximum intensity projection results obtained with SBTV-W for the
protocol Peri II in Figure 5.5 illustrate the diagnostic usability of the proposed
method. The results for the entire lower vasculature are shown for volunteers 2
and 3 in Figures 5.5(a) and 5.5(b). The smaller vessels are accurately depicted, as
can be well observed with the arrows indicating the perforating branches of the
femoral artery. Furthermore, the vessels of the lower leg, the anterior, posterior
and peroneal artery are indicated equivalently with red arrows. The results from
the region around the trifurcation are depicted for volunteers 1 and 4 in Figures
5.5(c) and 5.5(d).

5.5 Summary and Conclusions

Several algorithmic elements were proposed in this chapter, including a fully an-
alytical k-space sampling pattern. Combined from a regularly under sampled k-
space center and a periphery with density decreasing towards higher k-space val-
ues. It showed to produce results with high sharpness, SSIM and low NRMSE
values. The formulation of the pattern offers a wide range of possible sampling
schemes with decreasing density. Furthermore, the Split Bregman algorithm was
introduced for combined CS-pMRI algorithms with TV and wavelet-based regu-
larization. Experiments involving 10 data sets showed the decrease of the imaging
time by a factor of 12 using the proposed strategy. The reconstructions done with
the entire lower leg vasculature showed its clinical usability, as it depicted very
well both the main peripheral arteries and the perforating branches by accelerat-
ing the imaging time significantly.
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Method CNRVT CNRVB VSI

Ref 37.540± 20.267 43.557± 27.601 0.292± 0.025

ISENSE 30.775± 10.824 26.304± 06.527 0.178± 0.034

SBTV 43.218± 24.753 46.140± 23.372 0.296± 0.067

SBW 25.934± 07.884 24.326± 05.253 0.186± 0.034

SBTV-W 43.184± 24.374 45.950± 22.714 0.300± 0.072

GBTV 33.987± 14.134 33.619± 10.502 0.182± 0.040

GBW 28.509± 15.000 28.630± 13.286 0.164± 0.056

GBTV-W 33.180± 12.524 33.396± 10.278 0.182± 0.039

Table 5.5: Quantitative image and vessel sharpness index evaluation for the in-vivo study.
The CNR between vessel and background and vessel and tissue as well as the VSI were
evaluated for all seven reconstruction results.

Ref

GBW

SBTV

ISENSE

SBTV-W

SBW

GBTV-W

GBTV

Figure 5.4: Representative image results for the in-vivo study for the reference and six dif-
ferent reconstruction methods with an acceleration of 12. The first columns shows results
for volunteer 1, column 3 and 4 results for volunteer 2.
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(a) Volunteer 2 (b) Volunteer 3

(c) Volunteer 1 (d) Volunteer 4

Figure 5.5: Exemplary image results for the Peri II data set for volunteers 1-4.
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In this chapter, the method proposed in Chapter 4, which combines a highly
under sampled analytical pattern and an iterative Split Bregman-based reconstruc-
tion, is applied to 3-D free-breathing renal acquisitions. The purpose of this study
is threefold: (i) Feasible acceleration factors using the novel MICCS pattern are de-
termined for this application, (ii) TV regularization in combination with the gra-
dient based and Split Bregman algorithms is evaluated and (iii) the proposed it-
erative method is compared with clinically used SENSE and GRAPPA methods.
These experiments are extensively evaluated using a quantitative volume- and
organ-based approach, focusing on the diagnostic value of the obtained results.

6.1 Motivation

Cardiovascular renal diseases such as renal artery stenosis or others are major
causes for severe renal insufficiency or malfunction. In the worst case, failure in
identifying them early enough may result in the need for extracorporal dialysis
or even kidney transplantation [Herb 06]. Angiographic examinations of the renal
arteries, from the aorta, the ostium, the main trunk until the peripheral second
and third order branches, therefore play a major role for accurate diagnosis and
treatment planning at an early stage.

High resolution balanced Steady State Free Precession (bSSFP) techniques com-
bined with respiratory gating have been described for a non-invasive patient-
friendly renal angiography. As shown in multiple studies in the past years, its
results are comparable to DSA and ceMRA [Maki 07, Wytt 07, Mohr 10, Liu 09a,

77
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Lanz 09]. The method does not require breath holds and is therefore well adapted
for non-cooperative patients such as children or patients in pain.

6.2 Data and Evaluation

The used renal data sets obtained in a total of 10 volunteers and the organ-based
evaluation strategy are presented in this section.

6.2.1 Renal mp-bSSFP Data Acquisition
Non-contrast-enhanced renal angiography data sets were acquired with an IR-
prepared 3-D bSSFP technique [Wytt 07, Kato 04] using the standard body and
spine matrix coils of the system (six elements with two rings each) on clinical 3T
MR Scanners (MAGNETOM Trio A Tim System, MAGNETOM Skyra, Siemens
Healthcare Sector, Erlangen, Germany) in ten healthy volunteers. The acquisition
was free-breathing and respiratory-triggered with a respiration belt. The readout
direction was chosen from left to right. An inversion slab was applied to suppress
both venous blood originating from the vena cava and stationary background tis-
sue. The thickness of the 3-D slab in z-direction was chosen depending on the
individual position and size of the kidneys and the tipping between right and left
kidney, as illustrated in Figure 6.1(a). Therefore for this parameter a range is given.

High resolution data (protocol Renal I) was acquired in four volunteers. The
imaging parameters included an imaging matrix of 480× 480× [60,90], a FOV of
256 mm× 256 mm× [120 mm, 180 mm], TI of 1300 ms, TE / TR = 1.640 ms / 1451
ms and a flip angle of 90◦. Furthermore, for the comparison with clinically avail-
able acceleration techniques SENSE and GRAPPA three datasets were acquired in
each of the remaining six volunteers with the Renal II protocol: A fully sampled
reference dataset, a GRAPPA dataset using an under sampling factor of ξ = 6
and a SENSE dataset, equivalently accelerated by a factor of ξ = 6. For these
datasets, imaging parameters included an imaging matrix of 192 x 265 x [60,90], a
FOV of 256 mm× 256 mm× [120 mm, 180 mm], TI of 1300 ms, TE / TR = 1.570ms
/ 2200ms and a flip angle of 90◦.

6.2.2 Evaluation Strategy

The obtained vectors, written as previously as result vectors x ∈ CN, were quan-
titatively analysed and compared to the reference r ∈ CN using both quantitative
volume based measures and specific organ based evaluations. The image quality
was compared to the fully sampled reference using the Normalized Root Mean
Squared Error (NRMSE) and the Structured Similarity (SSIM) as presented in Sec-
tion 5.2.2 for the entire 3-D volume. The vessel sharpness index (VSI) was eval-
uated in two axial cross sections of the aorta, pre- and post-bifurcation (apr,apo),
and two sagittal cross sections of the main right and left renal arteries (RRA, LRA)
(rar,ral), as illustrated in Figure 6.1(b). The sharpness values at these locations

were added to obtain cumulative sharpness results for the aorta VSIa ∈ R and the
renal arteries VSIra ∈ R.
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(a) Acquisition range

AORTA

rarral

apr

Aorta

LRA RRA

apo

(b) Evaluation scheme

Figure 6.1: (a) The 3-D imaging slab is presented and (b) the organ-based evaluation
including the sharpness and contrast at four chosen localizations are illustrated in the
schematical illustration of the renal vasculature. Images adapted from [Gray 01].

Acceleration ξ = 1 ξ = 3 ξ = 6 ξ = 9 ξ = 12

Encoding lines 28800 9412 4800 3179 2382

Time volunteer 1 8:45 2:55 1:28 0:58 0:44

Table 6.1: Encoding steps and re-calculated acquisition times for the renal acquisitions.

VSIa = VSIapr + VSIapo and (6.1)
VSIra = VSIrar + VSIral . (6.2)

6.3 Acceleration Study

The influence of the acceleration factor on the image and diagnostic quality of
the results was evaluated with the high-resolution datasets acquired with proto-
col Renal I. The fully sampled data was reconstructed using SoS. Then, the fully
sampled data was under sampled with factors ξ = 3, 6, 9, and 12 using the novel
MICCS pattern. These accelerated data sets were reconstructed using the iterative
unregularized SENSE reconstruction (ISENSE). Results for volunteer 1 are shown
in Figure 6.2. The two top rows illustrate the results for two axial slices within
the kidney and perpendicular to the main left renal artery. Following in the 3rd
and 4th row are the axial and coronal MIPs. The last row shows details of the
fine peripheral renal vasculature as well as the main left renal arteries. Even if a
loss in image quality is observable for higher accelerations, the image results even
for higher factors such as ξ = 9 and ξ = 12 depict the aorta, main trunks and
peripheral renal arteries.
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Acceleration NRMSE SSIM VSIa VSIra

Reference 0.000± 0.000 1.000± 0.000 0.252± 0.060 0.267± 0.025

ξ = 3 0.087± 0.017 0.871± 0.041 0.189± 0.027 0.241± 0.016

ξ = 6 0.101± 0.019 0.867± 0.042 0.158± 0.007 0.189± 0.033

ξ = 9 0.106± 0.018 0.865± 0.043 0.165± 0.020 0.156± 0.032

ξ = 12 0.123± 0.021 0.861± 0.046 0.130± 0.031 0.091± 0.013

Table 6.2: Quantitative evaluation for the renal acceleration study.

The correlating acceleration factors and the resulting acquisition times are
given in Table 6.1 for volunteer 1 both in absolute number of phase encoding lines
as well as with the acquisition times. The times depend on the breathing pattern
of the patient, therefore the relative acceleration should be regarded.

The quantitative values in Table 6.2 show the increase of NRMSE, the loss of
SSIM and the decrease in VSI with growing acceleration factor. The sharpness is
illustrated furthermore in Figure 6.3 with zoomed visualizations of the positions
where the sharpness was evaluated, thus the upper and lower aorta and the right
and left renal artery. Both the preserved sharpness even for higher factors, as well
as the influence of the iterative reconstruction on the quality of the data sets are
visible.

6.4 Highly Accelerated NceMRA of the Renal Arteries

After the acceleration study performed in the previous section, the reconstruction
algorithm is in the focus of this section.

6.4.1 Experimental Setup

The high-resolution data sets were reconstructed directly using SoS and under
sampled with a factor of ξ = 9 and reconstructed with the iterative unregular-
ized SENSE method (ISENSE). Then, both the gradient based iterative SENSE al-
gorithm (GBTV) and the proposed Split Bregman reconstruction (SBTV) with total
variation regularization were applied as formulated in Section 4.5.2. The regular-
ization weights were optimized to the lowest NRMSE for each algorithm to en-
sure fair comparison. The TV weights for the GBTV were optimized in the range
of λt ∈ [0.0, 0.01] and the optimal weight was found to be λt = 0.001. For SBTV,
the range was λSL

t ∈ [0.0, 0.1], with the chosen best value at λSL
t = 0.005. Only TV

regularization was chosen as a result of the obtained results for peripheral data in
Section 5.4.2.
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6.4.2 Results
The axial and coronal MIPs obtained from all four algorithms are shown in Figure
6.4 with detail views of the interesting regions in the last row. They illustrate the
advantages of the SBTV algorithm in combination with the MICCS pattern. The
general image quality is good in the nine-fold accelerated ISENSE reconstruction,
but losses in the vessel sharpness can be identified both in the main renal arteries
as well as in the small peripheral renal arteries as indicated by red arrows. In addi-
tion, the contrast between the vascular structures and the background is corrupted
by the reconstruction, resulting in a loss of details. The GBTV algorithm does not
manage to recover these issues. The smoother image impression is counteracted
by an additional loss of small structures, indicated again by the red arrows. The
improvement of the SBTV algorithm is noticeable both in the recovery of small pe-
ripheral vessels as well as in the improved sharpness of the main renal branches.
These improvements correspond well to the reported quantitative values given
in Table 6.3. The NRMSE improved slightly for GBTV compared to ISENSE from
0.106 to 0.105, the SSIM improved from 0.865 to 0.878. However, the sharpness
values confirmed the visual image impressions as they decreased from 0.165, re-
spectively 0.156 to 0.140 and 0.125. The proposed SBTV algorithm improved both
the image quality measures NRMSE by about 25% and the structured similarity of
around 10%. The most significant results regard the sharpness measures, which
were improved compared to the ISENSE method by 56 % and 95% and relative to
the GBTV reconstruction even by 32 % and 60%. The reported acceleration factor of
9, corresponds to a reduction in the imaging time from 8 minutes and 45 seconds
to 58 seconds.

Method NRMSE SSIM VSIa VSIra

Reference 0.000± 0.000 1.000± 0.000 0.252± 0.060 0.267± 0.024

ISENSE 0.106± 0.018 0.865± 0.043 0.165± 0.020 0.156± 0.032

GBTV 0.105± 0.018 0.870± 0.042 0.140± 0.027 0.125± 0.030

SBTV 0.075± 0.004 0.949± 0.021 0.219± 0.058 0.250± 0.088

Table 6.3: Quantitative evaluation for the algorithm study using renal datasets.

6.5 Comparison With Clinical State of the Art

In this section, the proposed algorithm is evaluated in data sets from volunteers,
where a fully sampled scan, as well as clinical GRAPPA and SENSE acquisitions
were performed.

6.5.1 Experimental Setup
The additional GRAPPA and SENSE datasets acquired with acceleration factor
6 were reconstructed using clinically available internal reconstruction. The fully
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Method NRMSE SSIM VSIa VSIra

Reference 0.000± 0.000 1.000± 0.000 0.270 0.316

ISENSE 0.125± 0.012 0.43± 0.086 0.232 0.234

SBTV 0.117± 0.014 0.744± 0.090 0.247 0.254

GRAPPA − − 0.190 0.132

SENSE − − 0.088* 0.014*

Table 6.4: Quantitative evaluation for the study comparing the proposed algorithm with
the reference and clinically used SENSE and GRAPPA algorithms. The stars for the SENSE
sharpness results indicate, that the quality of two datasets reconstructed with SENSE did
not allow to calculate the sharpness indices.

sampled datasets were retrospectively under sampled using the dedicated pattern
with acceleration factor 6. This results in sampling 1920 instead of 11520 phase
encoding lines for the dataset with matrix size 192× 265× 60. Finally, the under
sampled data was reconstructed with ISENSE where Ni = 5 and with SBTV where
N′i = 3, Nj = 5 and λSL

t = 0.001.

6.5.2 Results

Quantitative results for the comparison are given in Table 6.4. The NRMSE and
SSIM are reported for the iteratively reconstructed algorithms.

The physiologically motivated sharpness values were evaluated at the previ-
ously described locations for all five algorithms. Thereby, two of the SENSE results
did not allow vessel sharpness evaluation due to the poor image quality. The re-
sulting sharpness values for SBTV were close to the reported reference values, but
were significantly lower for the GRAPPA and SENSE method. The aortic sharp-
ness values decreased from 0.247 for SBTV over 0.190 for GRAPPA to 0.088 for
SENSE. These performances are also observable in the reconstructed results for all
four vessel sharpness locations shown in Figure 6.5. These figures were done in
colour to better illustrate the differences. While the SBTV results provide a very
clear depiction of the arteries, the GRAPPA results are corrupted by noise espe-
cially in the aorta and the SENSE results do not allow any depiction of the vessels.
Finally, axial slices for all five discussed methods are illustrated in Figure 6.6 with
a zoom to the left kidney. The SBTV results depict nicely the aorta and main renal
artery as well as peripheral smalles branches. The increased sharpness compared
to ISENSE is as well visible, While the GRAPPA results visualized the aorta and
the main branch, significant noise enhancement is observable and the peripheral
branches are lost. The SENSE result does not provide visualization of the renal
arteries when performed with the used acceleration factor of ξ = 6.
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6.6 Discussion

The shown results illustrate the performance of the proposed combination of the
novel MICCS pattern and the SBTV algorithm. The acceleration study showed its
capacity to produce very good results for high acceleration factors. The evaluation
of the GBTV and the SBTV algorithms underlined the ability of the Split Bregman
based algorithm to preserve and recover vascular structures for nine fold acceler-
ated raw data. Small structures, such as the peripheral renal arteries not visible in
the non-regularized method, could be clearly depicted. This study included only
TV regularization. Evaluation of further sparsity assumptions would be benefi-
cial. The evolution of the NRMSE over the y-coordinate, depicted in Figure 6.7 for
the ISENSE and the SBTV algorithm further reveals that the obtained improvement
is higher in the regions corresponding to kidneys and thus containing the periph-
eral renal arteries. As a consequence, it could be thought of specific regulariza-
tions or weights to incorporate the different tissue distribution known a priori in
this acquisition. Finally, the comparison to clinically implemented and available
GRAPPA and SENSE algorithm showed the performance of the proposed itera-
tive algorithm to deliver diagnostic results where these methods fail. It should be
noted, however, that these methods would not be used with acceleration factors
of 6 in a clinical application. The use of iterative reconstruction with adapted sam-
pling, regularization and minimization strategies allows for the reported higher
acceleration factors. So far, the method was applied to ten data sets. Both the ex-
cellent visual and quantitative sharpness results as well as the low NRMSE show
its ability to produce accurate diagnostically useful visualisation of the renal ar-
teries. Next steps should include the validation in patients with pathologies and
comparison with results achieved with standard clinical methods such as ceMRA.

6.7 Summary and Conclusion

The proposed combination of the novel MICCS pattern and the Split Bregman
based SBTV algorithm was able to accelerate the free-breathing 3-D renal acqui-
sition by a factor of 9, corresponding to a reduction in the imaging time from 8
minutes and 45 seconds to 58 seconds, while maintaining excellent sharpness and
depiction of the entire renal vasculature. The reduction of the imaging time could
be invested in higher spatial resolution which could in return allow for even better
depiction of the smallest renal arteries.
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(a) ξ = 3 (b) ξ = 6

(c) ξ = 9 (d) ξ = 12

Figure 6.2: The reconstruction results for the acceleration factors ξ = 3, ξ = 6, ξ = 9
and ξ = 12 are shown. In the first and second row axial slices within the kidney and
perpendicular to the main left renal artery are depicted. Following in the middle rows are
the axial and coronal mips and finally, the last row shows details of the fine peripheral
renal vasculature and the main left renal arteries.
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(a) ξ = 1 (b) ξ = 3 (c) ξ = 6 (d) ξ = 9 (e) ξ = 12

Figure 6.3: The four evaluated positions at the aorta before and after the renal bifurcation
and at two positions in the right and left renal artery are shown for the reference and the
reconstructions using acceleration factors of ξ = 3, ξ = 6, ξ = 9 and ξ = 12.
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(a) Reference (b) ISENSE

(c) GBTV (d) SBTV

Figure 6.4: The axial and coronal MIPs are shown along with zooms to the peripheral
renal arteries for the reference and the iterative algorithms using the MICCS pattern. The
ISENSE, the GBTV and the SBTV algorithm were performed.
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(a) Reference (b) SBTV (c) GRAPPA (d) SENSE

Figure 6.5: The four evaluated positions at the aorta before and after the renal bifurcation
and at two positions in the right and left renal artery are shown for the reference, the
proposed SB iterative reconstruction using the MICCS pattern, for the GRAPPA and the
SENSE reconstruction.
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1

(a) Reference (b) ISENSE (c) SBTV

(d) GRAPPA (e) SENSE

Figure 6.6: Axial slices from the reconstruction results for the comparison study against
clinical methods using renal data are shown for the reference, ISENSE, the proposed SB
method using the MICCS pattern, GRAPPA and SENSE.
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Figure 6.7: The evolution of the NRMSE across the region of interest is depicted for both
the ISENSE and the proposed SBTV algorithm.
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This chapter marks the beginning of Part III which presents algorithms devel-
oped specifically to accelerate PCI acquisitions. The special challenges of PCI data
for the reconstruction are presented in this chapter.

7.1 Motivation

The reconstruction problem for PCI differs from the previously presented appli-
cations in the dimensionality and in the way the data is processed. In contrast
to the so far presented static application considering up to 3 spatial dimensions,
PCI data is characterized by its additional temporal and velocity encoding dimen-
sion. While most MRI techniques yield static volumes, obtained after acquisition
and reconstruction, PCI examinations provide dynamic physiological information.
There are various physiological parameters that can be measured with MRI like
perfusion, diffusion and velocity. This work focuses on the physiological flow re-
lated parameters that can be determined with PCI. Additional processing of the
data is required to extract the velocity and flow information. This chapter will
present the processing pipeline for PCI data, along with the used notations and
the discretization. Furthermore, relevant state of the art in accelerated PCI is re-
ported.
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7.2 From Moving Magnetization to Physiological Val-
ues

In the following section, the PCI pipeline, detailing the steps from moving magne-
tization to the calculation of physiological values will be presented. An illustration
of the pipeline is given in Figure 7.1.

(A) Acquisition

(B) Reconstruction

(D) Segmentation
(E) Velocity maps

(C) Angiographic
images

(F) Physiological
values

40
50
60
70
80Mean Velocity Vm(t) [cm/s]

0 200 400 600 800
Time [ms]

(C) Phase difference
images

yt,s

xt,s

pt,sat

lχ,t vt,s

Figure 7.1: Pipeline for processing PCI data from acquisition to calculation of physiologi-
cal values. The focus for this thesis lies on the reconstruction part, which is highlighted in
yellow.
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7.2.1 Acquisition and Reconstruction
The physical basis of PCI acquisition, corresponding to step (A), was given in
Section 2.2.3. Results of this step are k-space volumes for every time step t with
t ∈ {1, . . . , Nt} and for every velocity encoding s with s ∈ {1, . . . , Ns}. The total
number of volumes equals Np = NtNs, where Np is referred to as problem size. In
the case of pMRI using Nγ coils, k-space raw data is acquired for each coil γ with
γ ∈ {1, . . . , Nγ}. Using the same conventions as for the static applications, the
volumes are represented by column vectors

mt,s
γ =

 mt,s
γ1
...

mt,s
γNk

 ∈ CNk , (7.1)

where Nk = NkxNkyNkz is the number of k-space points indexed by κ. The dis-
crete coordinates of sampling point κ equal (κx, κy, κz). The all channel vector
mt,s ∈ CNγNk is obtained by concatenating the data of all coils. The multi-
dimensionality of PCI data with up to 3 spatial dimensions, the temporal dimen-
sion as well as the encoding dimension offers multiple choices for the employed
k-space sampling strategies during the acquisition. The k-space dimensions repre-
senting phase encoding directions, κy in the 2-D case and κy, κz in the 3-D case, will
be referred to by intra-volume dimensions. The read-out direction is fixed as κx,
but is not taken into account for under sampling. The remaining time and velocity
encoding dimensions are called inter-volume dimensions. The set of all k-space
volumes shall be referred to as

M = {mt,s|t ∈ {1, . . . , Nt} and s ∈ {1, . . . , Ns}} (7.2)

where |M| = Np.
The reconstruction step (b) yields image space volumes for each time step t and
encoding s

xt,s =

xt,s
1
...

xt,s
N

 ∈ CN (7.3)

from the given raw data. The same discretization in the spatial dimensions is
chosen as detailed for the static data sets. The total number of the image volume
voxels equals N = NxNyNz, written as column vector with voxel index ι. The
discrete coordinates of voxel ι equal (ιx, ιy, ιz). The set of all image volumes is in
the following referred to as

X = {xt,s|t ∈ {1, . . . , Nt} and s ∈ {1, . . . , Ns}} (7.4)

where |X| = Np. The reconstruction of a PCI volume for multi coil data is formu-
lated by the operatorR defined as

R : CNkNγ × ...×CNkNγ︸ ︷︷ ︸
Np

7→ CN × ...×CN︸ ︷︷ ︸
Np

, (7.5)



94 Processing Pipeline and State of the Art in Phase Contrast MRI

with
R(M) = X. (7.6)

A subset of a reconstructed PCI data set for Nt = 3 and Ns = 4 is illustrated in
Figure 7.2.

s

t

Figure 7.2: Subset of a representative PCI data set illustrating the temporal dimension
t, the velocity-encoding dimension s with black arrows, as well as the spatial dimension
indicated by the white arrow.

7.2.2 Postprocessing

The image space volumes are the input for step (C), where both angiographic and
phase difference images are calculated. The angiographic images at ∈ RN are
calculated as the voxel wise magnitude sum of the complex differences between
velocity-compensated and velocity-encoded acquisitions:

at
ι =

Ns

∑
si=2

∣∣∣xt,1
ι − xt,si

ι

∣∣∣ . (7.7)

These images highlight the regions with moving magnetization and provide high
contrast for areas with flow irrespective of the direction. Static areas are sup-
pressed due to the small magnitude.
The phase difference between velocity-compensated and velocity-encoded acqui-
sition allows to quantify the velocities for each voxel pt,s ∈ [−π/2,+π/2]N. Those
are calculated voxel wise for each encoding s ∈ {2, . . . , Ns}, resulting thus in phase
difference maps highlighting the velocities in the considered encoding direction:

pt,s−1
ι = arg(xt,1

ι )− arg(xt,s
ι ), (7.8)
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Figure 7.3: Illustration of the formation of the anatomical at and phase difference images
pt,s. The magnetization vectors for the flow-compensated and velocity-encoded acquisi-
tions for three voxels representing spins with high velocity ιhv, (a) with low velocity ιlv (b)
and within a region with low signal ιls (c) for Ns = 2 are shown in the complex plane. The
derived length of the difference vector, depicted in blue, is used to calculate at, the phase
difference, indicated by the green angle, for pt,1.

where arg(x) represents the phase of the complex number x. The calculation of
angiographic and phase difference images is illustrated in Figure 7.3 depicting the
magnetization for three voxels representing spins with high velocity ιhv, with low
velocity ιlv and within areas with low signal ιls for Ns = 2. The complex number
xt,s

ι ∈ C is identified with its vector representation

xt,s
ι =

(
Re{xt,s

ι }
Im{xt,s

ι }

)
∈ R2. (7.9)

The vector is illustrated in the xy plane, corresponding to the complex plane rep-
resentation. The magnetization vector for the flow-compensated scan and the first
velocity-encoded scan at time step t for pixel ι is called xt,1

ι and xt,2
ι , in accor-

dance with the previously introduced notation. The complex difference vectors
are shown in blue, the phase difference angle in green. The length of the differ-
ence vector, corresponding to at

ι in Figure 7.3 illustrate the differentiation between
spins moving at different velocities. The velocity difference translates in different
values for the phase differences. The overall low signal intensity in areas with
low signal, such as outside the object, translates in difference vectors with small
magnitude as illustrated in Figure 7.3(c), leading to their suppression in the angio-
graphic images. The arbitrary phase of the low signal results, however, in salt and
pepper noise artefacts in the phase difference images.

The angiographic images are used to obtain segmentations for the vessels of
interest in step (D). The lumen for vessel χ is represented discrete by lχ,t ∈ {0, 1}N

where lχ,t
ι equals ’1’ within vessel χ and ’0’ outside.

The phase difference images are further processed in step (E). Three-dimensional
velocity fields vt,s ∈ RN, containing absolute velocities are obtained by multiply-
ing the velocity maps with the encoding velocity ν:

vt,s =
ν

π
pt,s. (7.10)
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Finally, step (F) combines vessel lumen and velocity maps to obtain physiological
quantities. These include parameters such as volumetric flow Qv(t), the mean
velocity Vm(t) and the peak velocity Vp(t) for individual vessels. Further de-
rived quantities such as wall shear stress [Stal 08], antegrade and retrograde flow
volume across the heart valves, total stroke volume and regurgitation volume
[Cawl 09], and eccentric systolic blood flow in the ascending aorta [Sigo 11] are
taylored for specific applications but all based on PCI data.

Besides flow measurements, further applications of PCI include velocity mea-
surements in the cerebrospinal fluid, where parameters such as intra cranial com-
pliance and local craniocervical hydrodynamic parameters such as cord displace-
ment and systolic cerebrospinal fluid velocity are analysed [Alpe 05].

7.3 State of the Art in Accelerated PCI Reconstruction

Time-consuming techniques such as PCI raise the biggest demand for accelera-
tion techniques. Their clinical acceptance and their entrance to routine applica-
tions depend on the progress made towards a speed up of the acquisition time.
Progress has been made in the last 20 years on different levels, from trajectory op-
timizations, pMRI techniques, specific temporal based methods up to CS based
techniques.

7.3.1 Non-iterative Reconstruction

Parallel imaging techniques had a wide resonance in PCI. Multiple studies were
proposed with both SENSE based [Thun 03, Beer 05] and GRAPPA based meth-
ods by various groups [Lew 10, Peng 10]. The dynamic character has been ex-
ploited by view sharing methods [Foo 95, Mark 01] as well as a high number of
spatio-temporal methods. These include kt-BLAST [Thun 12, Stad 09, Ooij 13] kt-
BLAST-SENSE [Balt 05], kt-GRAPPA [Baue 13], kt-PCA [Gies 12, Knob 13], Turbo
BRISK [Doyl 99] and PEAK-GRAPPA [Jung 08a]. An extension to these methods,
but adapted specifically to PCI is the compartment-based temporal Principal Com-
ponent Analysis (PCA) proposed by Giese et al. [Gies 12].

7.3.2 Iterative Methods

Iterative methods based on CS have been emerging since the adaptation of CS to
MRI. These vary widely along used trajectory, sparsity assumption, reconstruc-
tion type, acceleration and application. Recent methods include the study by Kim
et al. [Kim 12a], applying the kt-SPARSE-SENSE approach to phantom, liver and
peripheral PCI data. Temporal regularization with principal component analysis
and Fourier transform was combined with the conjugate gradient algorithm and
applied in two steps. The reconstructions involved acceleration factors of 6 versus
factor 3 pMRI (GRAPPA) reconstructions. Further regularization ideas include
the sparsity of the complex difference image, applied in combination with TV to
Cartesian randomly sampled aortic data and solved using alternating directions
by Kwak et al. [Kwak 12]. This method was applied with acceleration factors of
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1 to 6 to pulmonary PCI. Second order temporal differences were used for car-
diac MRA by Velikina et al. [Veli 10] in combination with iteratively reweighted
least squares. Further algorithms relying on spatially varying temporal gradi-
ents include spatially temporal constrained reconstruction proposed by Hulet at
al [Hule 13] for radially sampled aortic data using 16 views from 128. The CG
algorithm was used to solve the emerging minimization problem. Specific phase
regularization is also applied to random Cartesian aortic datasets involving differ-
ent solvers such as iterative soft thresholding and the Newton-Raphson algorithm
as used by Zhao et al. [Zhao 12]. Two algorithms based on l1-SPIRIT have been
developed for radial golden-angle sampled PCI by Santelli et al. [Sant 13] using
Tikhonov regularization in aortic arch data and for Poisson Disc sampled pediatric
aortic patient data using Wavelet regularization proposed by Hsiao et al. [Hsia 12].
Holland et al. [Holl 10] applied Curvelet, Wavelet and TV regularization in combi-
nation with a CG solver to gas-phase velocity images. The only CS based method
applied to in-vivo carotid PCI so far was the study by Tao et al. [Tao 13]. They
propose L1 minimization of the yf-space solved with the SPGL1 algorithm. The 3
fold accelerated results were compared to GRAPPA images.

7.3.3 Sampling

Proposed sampling strategies for non-iterative approaches include radial sam-
pling such as shown by Thompson et al. [Thom 04] and spiral trajectories as
proposed by Pike et al. and Sigfridsson et al. [Pike 94, Sigf 12]. For the itera-
tive methods, state of the art approaches typically employ intra-volume variation
and partly as well variation in t-direction but the freedom in encoding direction s
is rarely used.

Radial acquisition was used by Velikina et al. [Veli 10] with the stack of stars
sampling scheme. The temporal dimension was included into the golden-angle ra-
dial acquisition by Santelli et al. [Sant 13] as well as by Hulet et al. [Hule 13] using
a radial sampling scheme, selecting 16 views from 128 using offsets for neighbour-
ing phases to enhance incoherence.

Besides radial strategies, Cartesian sampling patterns were employed in com-
bination with CS techniques. Random sampling in the periphery, combined with a
fully sampled central k-space region was used in the studies by Kwak et al. and Tao
et al. [Kwak 12, Tao 13] and by Zhao et al. [Zhao 12], which does not include vari-
ation over encodings but includes different random distributions for the temporal
dimension. Very similar is the Monte Carlo based sampling strategy employed
by Holland et al. [Holl 10] and the Poisson disc strategy in the study of Hsiao et
al. [Hsia 12]. The sampling strategy in Kim et al. [Kim 12a] is as well based on a
Cartesian pattern, randomly sampled in t direction with a 8th order polynomial
function. The variation in encoding direction was proposed, but the experiments
used a fixed pattern ’due to computational ease’.



98 Processing Pipeline and State of the Art in Phase Contrast MRI

7.4 Summary and Conclusion

The special challenges of PCI data were presented in this Chapter focusing es-
pecially on their implications on the reconstruction. These include the multi-
dimensionality, which leads to higher computational complexity of the reconstruc-
tion, but allows as well to develop dedicated sampling and regularization strate-
gies exploiting all dimensions in the goal to further speed up acceleration. Further-
more, the PCI pipeline, detailing the way from moving blood particles to physio-
logical values was introduced. The required post processing of the reconstructed
volumes implies an increased need for both spatial and temporal accuracy in the
complex reconstruction results.
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This Chapter motivates PCI as a challenging application and presents the ex-
perimental setup for the developed acceleration algorithms for PCI data. The ac-
quired data sets including phantom, volunteer and patient data as well as the used
evaluation strategy for the experiments in the following chapters are detailed.

8.1 Motivation for Carotid PCI

The increasing importance of hemodynamic information in clinical diagnosis, the
advantages of PCI in assessing blood flow information but also the long acquisi-
tion times can be well observed in the example of the carotid bifurcation region.
The trade-off between clinically acceptable imaging time and high temporal and
spatial resolution applies particularly to smaller and complex arterial systems such
as the carotid bifurcation, where partial volume effects can influence the measure-
ment of flow velocities and thus may lead to non-diagnostic results.

The carotid bifurcation region is of clinical relevance due to the high prevalence
of calcifications, vessel narrowing and stenosis and the need for accurate planning
of invasive procedures such as endarterectomy. Furthermore, it presents the chal-
lenges of relatively small anatomical structures, complex flow patterns in the bifur-
cation as well as high peak velocities as they would occur in stenosis. High spatial
and temporal resolution is required, which increases the acquisition time and thus
the need for acceleration. Two possible applications are the bilateral assessment
of carotid flow to evaluate consequences of stroke or the diagnosis and evaluation
of severe internal carotid artery (ICA) stenosis. The algorithms developed in the
following chapters were applied to data from volunteers and two patient cases
from the carotid artery bifurcation, including the common carotid artery (CCA)
and distal to the bifurcation of the internal and external carotid artery (ECA).
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pumpcontrol unit

Figure 8.1: Illustration of the phantom experiment setup. The pump is controlled by the
control unit in the operators room. The grey lines indicate the imaging planes.

8.2 Data

The evaluation of a reconstruction algorithm for PCI requires different studies.
First, the obtained flow profiles need to be verified using physical laws, second,
a bigger volunteer study is required to show its robustness and finally, third, its
capability to produce useful data for patients with significant pathologies has to be
demonstrated. The following sections present the data acquired in these purposes.

8.2.1 Phantom Experiment

Phantom data sets were acquired using an MR-compatible pump (CardioFlow
5000 MR, Shelley Medical, Toronto, Canada) connected to a control unit outside
the scanner room and a tube system filled with blood mimicking fluid. An inflow-
outflow setup was used for this study, consisting of two connected tubes with a
diameter of 1.9 mm which are connected to the pump and placed around a phan-
tom bottle to simulate tissue contrast. The imaging slice was chosen orthogonal
to the tubes, such that each imaging plane contained a cross section of the bot-
tle and both the in- and out-flow tube. See Figure 8.1 for a schematic represen-
tation of the setup. Fluid was pumped through the phantom with a regulated
laminar flow of 150 ml/s and imaged on a 3T MR scanner (MAGNETOM Skyra,
Siemens Healthcare Sector, Erlangen, Germany). The imaging parameters were
FOV 190 mm× 130 mm, matrix 256× 176 and a slice thickness of 3.1 mm, TE / TR
= 3.4 ms / 6.2 ms, and flip angle 20 ◦.

8.2.2 In-vivo Study

PCI data was acquired in 18 healthy volunteers (18-72 years) on a clinical 3T MR
scanner (MAGNETOM Skyra, Siemens Healthcare Sector, Erlangen, Germany)
using an ECG-triggered PC sequence. The region of interest (ROI) was chosen
around the carotid artery bifurcation. Up to 16 transverse slices were acquired,
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ICA

CCA

ECA

Figure 8.2: Illustration of the carotid volunteer experiment setup. The grey lines indicate
the imaging planes. Image adapted from [Gray 01].

starting from the common carotid artery (CCA), about 40 mm below the bifurca-
tion up to the internal and external carotid artery, approximately 20 mm above
the bifurcation. This setup is illustrated in Figure 8.2. Imaging parameters were
TE/TR = 3.5 / 49.76 ms, flip angle 20 ◦, FOV 200 mm× 200 mm, slice thickness
2-4 mm, and imaging matrix 256× 256, with in-plane resolution of 0.78 mm ×
0.78 mm. The encoding velocity ν and the number of temporal phases were indi-
vidually optimized. Between 11 and 20 temporal phases were acquired and ν was
chosen between 60 and 100 cm/s. The FOV was adapted if required.

8.2.3 Patient Cases

Two patients with severe high-grade stenosis in the ICA were examined on a clin-
ical 3T MR scanner (MAGNETOM Verio, Siemens Healthcare Sector, Erlangen,
Germany) using an ECG-triggered PC sequence. These data sets allow to evaluate
the reconstruction algorithms in the presence of pathologies. Patient I was diag-
nosed with a severe high-grade stenosis of the left ICA (NASCET 80 %) and a low
grade stenosis of the right ICA with ultrasound and Computed Tomography An-
giography (CTA). The axial slices within the stenosis in Figure 8.3(a) and the coro-
nal maximum intensity projection (MIP) from the CTA in Figure 8.3(a) illustrate
the severity of the stenosis. Arrows indicate the location of the calcified plaque
which causes the lumen narrowing. Patient II underwent nceMRA and ceMRA.
Both showed a unilateral high-grade stenosis in the right ICA of over 80% as ob-
servable in Figure 8.4(a) and Figure 8.4(b). Both patients were examined prior to
a scheduled endarterectomy. The velocity sensitivity ranges were optimized indi-
vidually. Three slices were acquired, one in the CCA and two in the ICA at pre-
and post-stenotic positions as indicated in Figure 8.3(b) and Figure 8.4(b).

The imaging parameters included TE/TR = 3.25 ms / 3.96 ms (3.96 ms /6.51 ms
for Patient II), echo spacing 26.04 ms, flip angle 20 ◦, FOV 200× 200 mm2, slice
thickness 4 mm, imaging matrix 224× 224 and in-plane resolution of 0.89 mm ×
0.89 mm. The encoding velocity ν was chosen as ν=180 cm/s (150 cm/s) and the
number of temporal phases as Nt=26 (Nt=15).
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(a) Patient I: CTA axial slice (b) Patient I: CTA MIP

Figure 8.3: Presentation of the patient case I. Arrows indicate the location of the stenosis.
(a) Axial slice through the stenosis and (b) coronal MIP from a CTA scan. The locations of
the imaging planes are illustrated in green in (b).

(a) Patient II: NceMRA MIP (b) Patient II: CeMRA MIP

Figure 8.4: Presentation of the patient case II. Arrow indicate the location of the stenosis.
Patient II: (a) MIP of a nceMRA (TOF) examination and (b) MIP of a ceMRA examination.
The locations of the imaging planes are illustrated in green in (b).
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8.3 Evaluation Strategy

The results obtained for PCI data are analysed quantitatively based on both the
reconstructed volume set X after step (B) in the pipeline shown in Figure 7.1 and
on the derived quantitative physiological values obtained after step (F).

8.3.1 Volume Based Evaluation
The volume-based quantitative measures were thereby always calculated for all
velocity encodings and temporal steps, as the derived physiological values are
based on the combination of different encodings. The accuracy of all components
should thus be analysed. The measures are evaluated on the concatenated vectors
for all encodings and temporal time steps as presented in Eq. (9.7) in Section 9.1.

The volume-based evaluation in comparison to the reference includes the nor-
malized root mean square error (NRMSE) and the structural similarity measure
(SSIM) [Wang 04]. The reference data set will be referred to by r. The NRMSE
and the SSIM, choosing the parameters c1 and c2 ∈ R as suggested by Wang et al.
[Wang 04] are obtained as

NRMSE(r, x) =
1

Np

Nt

∑
t=1

Ns

∑
s=1

1
N
∣∣∣∣rt,s − xt,s∣∣∣∣

L2
(8.1)

and

SSIM(r, x) =
1

Np

Nt

∑
t=1

Ns

∑
s=1

2µ(rt,s)µ(xt,s) + c1

µ(xt,s)2 + µ(rt,s)2 + c1
+

cov(xt,s, rt,s) + c2

σ(rt,s)2 + σ(xt,s)2 + c2
. (8.2)

More specifically for angiographic data, the Contrast to Noise Ratios involving
the vessel background (CVRVB) and the vessel tissue contrast (CVRVT) were em-
ployed. Respective regions of interest were chosen manually in the vessel, tissue
and background and are denoted by the index sets ιv,ιt and ιb. These measures
were presented for static applications in Section 5, but are evaluated over the en-
tire volume set for PCI with

CNRVB(x, ιv, ιb) =
1

Np

Nt

∑
t=1

Ns

∑
s=1

µ(xt,s
ιv )− µ(xt,s

ιb )√
0.5(σ(xt,s

ιv )
2 + σ(xt,s

ιb )
2)

(8.3)

and

CNRVT(x, ιv, ιt) =
1

Np

Nt

∑
t=1

Ns

∑
s=1

µ(xt,s
ιv )− µ(xt,s

ιt )√
0.5(σ(xt,s

ιv )
2 + σ(xt,s

ιt )
2)

. (8.4)

8.3.2 Physiology Based Evaluation

The obtained image results were further processed as explained in Figure 7.1 to
obtain the volumetric flow Qv(t), the mean velocity Vm(t) and the peak veloc-
ity Vp(t). These parameters, evaluated for vessel χ, are calculated using the seg-
mented dynamic vessel lumen lχ,t and the 3-D velocity fields vt,s ∈ RN. The dy-
namic segmentation was done manually on the obtained image volumes.
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The volumetric flow, mean and peak velocity are obtained by

Qv(t) =
N

∑
ι=1

lχ,t
ι

∣∣∣∣vt
ι

∣∣∣∣
L2

, (8.5)

Vm(t) =
Qv(t)

∑N
ι=1 lχ,t

ι

and (8.6)

Vp(t) = max
ι

lχ,t
ι

∣∣∣∣vt
ι

∣∣∣∣
L2

. (8.7)

The accuracy of those was analysed using the temporal normalized root mean
square error (TNRMSE). The TNRMSE(pr, pt) for a dynamic parameter p ∈ RNt ,
considering the reference pr ∈ RN

t and the test data result pt ∈ RN
t is calculated as

TNRMSE(pr, pt) =
1

Nt

∣∣∣∣∣∣∣∣pr − pt

pr

∣∣∣∣∣∣∣∣
L2

. (8.8)

The quality of the TNRMSE of the mean velocity Vm(t) and the volumetric flow
Qv(t) follows from Eq. (8.5). The controlled phantom setup allows to verify the
flow conservation law based on the total flow Q ∈ R, calculated as

Q =
Nt

∑
t=1

Qv(t). (8.9)

Two different conservation laws can be verified. First, the intra-slice flow conser-
vation is measured calculating the deviation ∆Ql ∈ R between the inflow Qi

l ∈ R

and outflow Qo
l ∈ R in and from slice l, which is obtained as

∆Ql =

∣∣Qi
l −Qo

l

∣∣
|Qi|

. (8.10)

Second, the inter-slice flow conservation, defined by the in- or outflow between
adjacent slices l and l − 1, can be evaluated calculating the deviations ∆Qi

l and
∆Qo

l

∆Qi
l =

∣∣Qi
l −Qi

l−1

∣∣∣∣Qi
l

∣∣ and (8.11)

∆Qo
l =

∣∣Qo
l −Qo

l−1

∣∣∣∣Qo
l

∣∣ . (8.12)

8.4 Summary and Conclusion

The assessment of the blood flow velocities in the carotid bifurcation region was
presented as an application with both high clinical relevance as well as challenges
regarding the required spatial and temporal resolution. The high blood flow veloc-
ities and the relative small vessel diameters of the CCA, ICA and ECA make this
application especially prone for partial volume effects and thus raise the need for
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techniques allowing both high acceleration factors and high accuracy. The gains in
acquisition time could thus be invested in higher spatial and temporal resolution
which is in turn of huge interest for its clinical usability. The presented phantom,
in-vivo and patient data will be used in the following chapters, developing the iter-
ative reconstruction for PCI and the algorithms MuFloCoS and LoSDeCoS. Special
focus will be on the stability and robustness of the developed methods, evaluated
by analysing a fixed algorithmic setup for the volunteers as well as the diagnostic
output of the patient data.
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The multi-dimensionality of PCI data offers challenges but also possibilities
for the iterative reconstruction problem. This section will detail the joint iterative
reconstruction along with the multi-dimensional regularizers as well as the novel
interleaved velocity encoding and temporal sampling strategy, referred to by I-VT
sampling.

9.1 Joint Regularized Iterative Reconstruction

The reconstruction of multi-coil PCI data was formulated in a general way in Eq.
(7.5) as

R(M) = X. (9.1)

Conventional pMRI reconstruction approaches treat every volume as an individ-
ual reconstruction problem, which requires to change the operator application
fromR into Np applications ofRi with

Ri : CNkNγ 7→ CN, (9.2)

resulting in

xt,s = Ri(mt,s) ∀ t ∈ {1, . . . , Nt} and ∀ s ∈ {1, . . . , Ns}. (9.3)

TherebyRi varies depending on the chosen reconstruction algorithm.
Formulated iteratively as unconstrained minimization problem with data fidelity
and regularization term, the operatorRi equals

Ri(mt,s) = argmin
xt,s

L(xt,s), (9.4)
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where

L(xt,s) =
1
2

∣∣∣∣Et,sxt,s −mt,s∣∣∣∣2
L2︸ ︷︷ ︸

Data fidelity term

+ λR(xt,s)︸ ︷︷ ︸
Regularization

. (9.5)

The data fidelity term comprises the under sampling pattern described by ut,s for
each time step t and velocity encoding s, the coil maps ct

γ describing the spatially
varying sensitivity information of the Nγ coils and the Fourier coefficients. The
encoding matrix Et,s ∈ CNγNk×N is composed as

Et,s = et,s
(γκ,ι) = ut,s

κ eikκrιct
(γ,ι), (9.6)

where rι is the position of voxel ι and kκ the κ-th frequency in time step t and
for encoding s. Depending on the degree of variations in the sampling, the same
encoding matrix can be used for all encodings and all time steps.

9.1.1 Joint Iterative Reconstruction

Instead of the presented individual reconstruction, joint reconstruction of all vol-
umes is beneficial to incorporate multi dimensional regularizers. In this approach,
the sets M and X are written as column vectors. The volume for the entire param-
eter space is addressed by x ∈ CNpN:

x =



x1,1

...
x1,Ns

...

xNt,1

...
xNt,Ns



}
s = 1

...}
s = Ns

...}
s = 1

...}
s = Ns

 t = 1

... t = Nt

(9.7)

Furthermore, representations for subsets of the entire vector are needed for certain
reconstruction steps. The vector containing all velocity encoding information for
time step t, shall be referred to by xt ∈ CNNs . If all time steps for encoding s are
considered, the respective vector equals xs ∈ CNNt . The same subset conventions
apply to the raw data vector m. The vector containing all raw data points is re-
ferred to by m ∈ CNkNγNp . To incorporate joint iterative PCI data, the encoding
matrices Et,s are combined to a joint encoding matrix E ∈ CNpNγNk×NpN. It has a
block structure and is composed of Np matrices Et,s ∈ CNγNk×N:

E =

E1 0
. . .

0 ENt

 where Et =

Et,1 0
. . .

0 Et,Ns

 . (9.8)
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Formulating the data fidelity term as presented in Section 4 as

H(x) =
1
2
||Ex−m||2L2

, (9.9)

the joint PCI objective function equals

LPCI = H(x)︸ ︷︷ ︸
Data fidelity term

+ λR(x)︸ ︷︷ ︸
Regularization

(9.10)

This leads to the following minimization problem:

x̂ = argmin
x
LPCI. (9.11)

The regularization R(x) where R : CN 7→ R, will be detailed in the following.

9.1.2 Regularization Strategy

A wide range of possible constraints for the regularization term R(x) exist. The ad-
ditional dimensions time and velocity encoding enable further strategies beyond
the known image based assumptions such as TV and Wavelet. Nevertheless, those
are still valid assumptions and may be beneficial in combination. The dynamic
character of PCI data allows for the use of temporal constraints such as tempo-
ral Fourier transform. Furthermore, the velocity encoding dimension can lead to
either novel regularizers, or the advantageous combination of existing static or
dynamic assumptions.

Previously introduced TV and Wavelet in Section 5 are applied for PCI data
and are summed over time steps and encodings:

TVi(x) =
Nt

∑
t=1

Ns

∑
s=1

N

∑
ι=1

√
|(∇xxt,s)ι|2 +

∣∣(∇yxt,s)ι

∣∣2 + |(∇zxt,s)ι|2

=
Nt

∑
t=1

Ns

∑
s=1
||∇x||L2,1

and (9.12)

WV(x) =
Nt

∑
t=1

Ns

∑
s=1

∣∣∣∣W(xt,s)
∣∣∣∣

L1
. (9.13)

For the temporal Fourier transform F st(x), different settings in combination with
the velocity encoding dimension are possible.

The temporal Fourier transform for the individual encoding s is written as
Ft(xs) where xs ∈ CNNt . The temporal Fourier transform for all four encodings
of a PCI dataset is illustrated next to the temporal evolution of all voxels in Figure
9.1(b).
Combinations of the temporal Fourier transform over the encodings are referred
to by second order temporal-velocity Fourier transform in the following. The sim-
plest version, direct summationof the individual Fourier components F sum

t,s is il-
lustrated in Figure 9.2(a) and calculated as

F sum
t,s (x) =

Ns

∑
s=1
||Ft(xs)||L1

. (9.14)
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t
ι

s = 1 s = 2 s = 3 s = 4
(a) Image space

f
ι

s = 1 s = 2 s = 3 s = 4
(b) Fourier Transform

Figure 9.1: Temporal Fourier transform for the four encodings of a PCI dataset. The image
results in the ιt-space are shown in (a), the corresponding Fourier transform in the ιf -space
are depicted in (b) for all four velocity encodings.

(a) F sum
t,s (b) Fv

t,s (c) F jst
t,s (d) F jts

t,s

Figure 9.2: Different second order Fourier variants are shown: (a) F sum
t,s , (b) Fv

t,s, (c) F jst
t,s

and (d) F jts
t,s

The resulting reduction of the dimensions is not beneficial, as the additional sim-
ilarities over velocity encodings, visible in Figure 9.1(b) would not be exploited.
Changing the sum and the L1 norm leads to the vector wise L1 norm calculation
Fv

t,s, shown in Figure 9.2(b) and obtained by

Fv
t,s(x) =

∣∣∣∣∣
∣∣∣∣∣ Ns

∑
s=1
Ft(xs)

∣∣∣∣∣
∣∣∣∣∣
L1

. (9.15)

The Fourier information is used separately for each encoding, but the common
information is not exploited.
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Further ideas are the joint temporal and encoding Fourier transform either ar-
ranging the coefficients first by encoding and than by time step F jst

t,s or vice versa

F jts
t,s :

F jst
t,s (x) = ||Ft,s(x)||L1

and F jts
t,s (x) = ||Ft,s(x̌)||L1

. (9.16)

These variants are illustrated in Figure 9.2(c) and Figure 9.2(d).
For this thesis, the vector wise version was used Fv

t,s(x) and is referred to by
velocity encoding temporal Fourier transform (vtFT) in the following.

9.2 Interleaved Velocity Encoding and Temporal Sam-
pling

This section presents an under sampling strategy for PCI data involving intra- and
inter-volume variations. It is called interleaved velocity encoding and temporal
sampling (I-VT) . The proposed I-VT sampling strategy focuses on exploiting all
degrees of freedom with two goals. The data shall be sampled such that the co-
herence is minimized while offering high acceleration factors and the degree of
re-usability within the data set is maximized.

9.2.1 Pattern Formulation

The proposed sampling strategy is described by ut,s ∈ CNk where ut,s
κ stands for

the sampling at k-space position κ with spatial indices (κx, κy, κz), related by the
mappingM, in time step t and encoding s. Thereby

ut,s
κ = ut,s

(κx,κy,κz)
=

{
1, indicates a sampled voxel and
0, otherwise.

(9.17)

The central region of the pattern is defined analogously to Section 4.3.2 around the

middle point κm = (κmy, κmz) = (
⌊Nky

2

⌋
,
⌊

Nkz
2

⌋
) with size (Nκcy , Nκcz). The respec-

tive start and end points of the central region equal

κms = (κmsy, κmsz) =(κmy−
⌊Nκcy

2

⌋
, κmz−

⌊Nκcz

2

⌋
) and (9.18)

κme = (κmey, κmez) =(κmy+
⌊Nκcy

2

⌋
, (κmz+

⌊Nκcz

2

⌋
). (9.19)

The central region is defined as index set C, the peripheral region as P , where

C = {κ |
(
κmsy ≤ κy ≤ κmey

)
∧ (κmsz ≤ κz ≤ κmez) ∧ (1 ≤ κx ≤ Nkx)

}
and (9.20)

P = {κ |
(

1 ≤ κy < κmsy ∨ κmey < κy ≤ Nky

)
∧

| (1 ≤ κz < κmsz ∨ κmez < κz ≤ Nkz) ∧ (1 ≤ κx ≤ Nkx)} . (9.21)
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9.2.2 Interleaved Central k-Space Sampling

The central sampling is based on a regularly under sampled template,
parametrized by the distance

dc = [dcy, dcz]
T (9.22)

and the offset
(j(t, s)) = [ocy(j(t, s)), ocz(j(t, s))]T. (9.23)

The offset depends on the time step t, the encoding s and the mapping j : N2 →N,
referred to as shifting index in the following. Those are chosen for 2-D as

dc =

[
Ns
1

]
and oc(j(t, s)) =

[
(j− 1)

0

]
(9.24)

and for 3-D as

dc =

[Ns
2

Ns
2

]
and oc(j(t, s)) =

[
mod (b(j− 1)/2c, bNs/2c)

mod (bj/2c, bNs/2c)

]
. (9.25)

The pattern is constructed with

ut,s
(κx,κy,κz)

=


1, for (κy, κz) = κms + oc(j(t, s)) + idc and
1, for 1 ≤ κx ≤ Nky where i ∈N

1, for subject toM(κx, κy, κz) ∈ C
0, otherwise.

(9.26)

The construction of the k-space center sampling is schematically shown in Fig-
ure 9.3 for Ns = 4. The possible k-space central regions for j ∈ {1, . . . , 4} are shown
for the 2-D case in Figure 9.3(a) and for the 3-D case in Figure 9.3(b).
The introduction of the mapping j(t, s) allows to represent a wide range of possible
central pattern variations. Conventional choices such as a static pattern, sampling
all time steps and velocity encodings in the same way, can be formulated with by
constant c ∈ Z as

jS(t, s) = c, (9.27)

independent of t and s. The sampling strategy with variations in time dimension
is obtained by choosing

jT(t, s) = c(t). (9.28)

The novel I-VT sampling strategy proposes variations in both time and velocity
encoding direction, which obey two constraints:

1. Two subsequent time steps in the same encoding never share the same cen-
tral lines and

2. all k-space central lines must be sampled in each time step.



9.2 Interleaved Velocity Encoding and Temporal Sampling 113
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(a) 2-D
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Figure 9.3: Illustration of the central region generated with the proposed I-VTsampling
strategy: Variations for j ∈ {1, . . . , Ns} for the (a) 2-D and (b) 3-D case. The four different
colours express the acquired k-space samples for the four variations. The smaller black
dots represent non-sampled k-space points.

This introduces mappings j(t, s) such that

1. j(ti, s) 6= j(tk, s) for |ti − tk| = 1 and (9.29)
2. j(t, si) 6= j(t, sk), ∀ si, sk ∈ {1, . . . , Ns}. (9.30)

These constraints assure both high incoherence and the shared coil sensitivity cal-
culation. The patterns fulfilling those constraints are referred to as interleaved
velocity encoding temporal (I-VT) patterns.

The regular permutations jP(t, s) interleave the sampling in s direction and offer
cyclic shifts in time domain as

jP(t, s) = mod(t + s, Ns). (9.31)

This mapping automatically obeys the two constraints formulated in Eqs. (9.29-
9.30). Another option are random permutations

jP(t, s) = rand(1, . . . , Ns), (9.32)

such that Eqs. (9.29-9.30) hold.
The four mentioned mapping functions are schematically illustrated in Figure 9.4.

9.2.3 Peripheral Decreased Density Sampling
The proposed sampling of the center can in principle be combined with any in-
coherent choice for the periphery such as the Poisson-disc distribution. In the
following, the proposed MICCS pattern from Section 4.3.2 will be used with the
same offsets for central and peripheral region op = oc to assure smooth transitions.
While the pattern construction was illustrated schematically so far, an exemplary
2-D problem with Nky = 256 and the obtained patterns are shown in Figure 9.5.
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Figure 9.4: Schematic results in the ts plane for four mapping functions: Static mapping
jS(t, s), temporal variation jT(t, s), regular permutations jP(t, s) and random permutations
jR(t, s).

The point spread functions over time and velocity encoding dimension for the four
described variants are illustrated using a 3-D plot and a 2-D projection in Figure
9.6.

The proposed I-VT sampling strategy exploits s and t directions to add incoher-
ence, but also enables shared calculation of the coil sensitivity profiles. Typically,
the central lines of k-space are externally acquired and used for the calculation
of coil profiles. Using the proposed pattern, the central lines can be collected in-
terleaved over all encodings. Further benefits of this sampling strategy become
evident later in this thesis.

9.3 Implementation

All developed reconstruction algorithms are implemented into the previously ex-
plained IterRecon framework described in Section 4.5. The parts relevant for the
PCI data reconstructions are framed in red in Figure 9.7. The computational com-
plexity for the evaluation of the data fidelity term for each encoding and each time
step corresponds to the complexity calculated for the static case, as the Fourier
transforms are calculated independently or each encoding and time step. The to-
tal cost thus equals O(NpNγN log N) for each evaluation of the data fidelity term.

The run times for the current implementation on a standard notebook with
8.0 GB RAM using a i3-2328M CPU with 2.2GHz are given in Table 9.1. These
are again measured for the entire reconstruction, but without taking the data I/O
and the calculation of the coil sensitivities into account. The MuFloCoS algorithm
requires for example for a 2-D carotid data set with matrix size N = 256× 256, 11
temporal phases and 4 velocity encodings with Nγ = 10 coils, performing Ni = 10
iterations around 25 minutes.

9.4 Summary and Conclusion

The joint iterative reconstruction problem for PCI was presented. In contrast to the
conventional case, all encodings are reconstructed simultaneously, enabling multi-
dimensional regularizers such as second order temporal Fourier transforms. Fur-
thermore, the novel PCI sampling strategy, called I-VT sampling, was motivated
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Figure 9.5: Exemplary 2-D patterns for Nky = 256 are shown using the same parameters
a, b for the inverse root sampling in the periphery, but varying in the mapping j(t, s) used
for the central k-space region.

F st

F ι

(a) jS(t, s)

F st

F ι

(b) jT(t, s)

F st

F ι

(c) jP(t, s)

F st

F ι

(d) jR(t, s)

Figure 9.6: The point spread functions (PSF) for the four discussed mapping functions are
depicted. All PSFs are shown in 3-D and in a 2-D projection below.

and detailed. It includes variation in all available dimensions, especially as well
over velocity encodings, which is not yet used in the state of the art detailed in Sec-
tion 7. The implementation of the joint reconstruction and the I-VT sampling was
described, including the presentation of the developed PCI part of the IterRecon
framework.
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Objective function and regularization terms

Evaluation tool
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Temporal 2nd order
Fourier transform

Singular value
thresholding

Data container
for 6-D PCI data

Mathematics

Complex SVD,
lBFGS, CG ..

Image Processing

Wavelet, FFTW

Data handling
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Split-Bregman

Gradient-based
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neighboring slices

Proximal operators: Soft
thresholding, TV shrinkage,

Multi-slice regularization
strategies

Figure 9.7: Illustration of the IterRecon framework highlighting the elements for PCI re-
construction in red. The joint contributions are marked in yellow, the contributions of this
thesis in green.

Application Algorithm N Np Nγ Ni/Nj/N′i Run time [sec]

Carotids MuFloCoS 256× 256 44 11 10/− /− 1519.4

Carotids LoSDeCoS 256× 256 44 11 −/5/3 988.6

Carotids S-CSveFT-W 256× 256 44 11 10/− /− 885.4

Table 9.1: The run times for the considered algorithms for the PCI data are given with the
corresponding parameters.
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This chapter presents an iterative reconstruction algorithm for PCI data, called
multi-dimensional, flow-adapted Compressed Sensing (MuFloCoS). The MuFlo-
CoS approach proposes an adaptive vessel masked and temporally weighted
(TMW) L1 regularization which exploits spatio-temporal correlations while main-
taining the temporal flow fidelity using the anatomy based sub-division. In this
chapter, the MuFloCoS algorithm will be motivated and developed. The imple-
mentation, the experimental setup using the data presented in Chapter 8 are ex-
plained and the results are presented and discussed.

10.1 Motivation

For carotid PCI, the dynamic changes originate mainly from blood flow effects, ei-
ther directly or indirectly induced by vessel wall motion due to its pulsatile nature.
In addition, their spatial extent is limited to the vessel proximity. Further possible
origins of movement, patient-, cardiac-, and breathing motion can be neglected
for this application. The temporal resolution of derived physiological parame-
ters with clinical relevance, such as volumetric flow, peak velocity or wall shear
stress depends to a high degree on the temporal fidelity of the reconstruction. A
well suited temporal regularization should thus exploit the anatomical correlation
in the static tissue parts to offer volumes with clinically accepted image quality
while maintaining the temporal fidelity in vessel proximity.

Two basic requirements exist for the use of this prior knowledge:

117
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• A joint reconstruction algorithm, which reconstructs all volumes for all time
steps as well as velocity encodings simultaneously to allow for exploiting
correlations spanning over different images along all dimensions.

• A stable dynamic sub-division of the image volume into vessels and static
tissue is required.

The necessary information for this subdivision is intrinsically available in PCI with
the anatomical images. The proposed MuFloCoS algorithm exploits the significant
spatio-temporal correlation in the dynamic acquisition while preserving the tem-
poral flow resolution with a temporal masked and weighted (TMW) L1 regular-
ization strategy employing vessel masks.

Two versions of this algorithm have been developed. The first version, called
MDFCS, corresponds in parts to the publications [Hutt 13b] and [Hutt 13a], the sec-
ond version will be referred to by MuFloCoS and was presented in [Hutt 14d]. Mu-
FloCoS extends MDFCS by a fully interleaved and incoherent sampling. Further-
more, the TMW-L1 regularization strategy is refined by adding additional weight-
ing and masking with a static and dynamic mask for a stable and automatic dif-
ferentiation into static and non-static tissue during the reconstruction. In contrast
to further proposed methods, not only the spatial and temporal dimension, but
also the PCI inherent velocity encoding dimension is included in all steps of the
algorithm.

10.2 MuFloCoS

The novel MuFloCoS approach is presented in detail here. It consists of four main
points: (i) The multi-dimensional joint iterative Newton-based reconstruction and
(ii) the interleaved I-VT pattern were already explained in Sections 9.1 and 9.2. (iii)
The vessel-masked and temporal weighted TMW regularization will be detailed in
Section 10.2.1 and finally (iV) the domain sub-division using the anatomical image
will be explained in Section 10.2.2.

10.2.1 Vessel Masked and Temporal Weighted L1 Regularization

The significant spatio-temporal correlations of PCI can be observed exemplary in
the first five time steps for the velocity compensated scan and the through-plane
velocity encoded scan in Figure 10.1(a). Those can be modelled using finite dif-
ferences (FD) ∇t with different step length in time direction. For each temporal
time point t and encoding s, the FD ∇t,s,tj

t x, with ∇t,s,tj
t x ∈ CN to phase tj with

j ∈ {1, . . . , Nt} is calculated voxel wise as

(∇t,s,tj
t x)ι = x

tj,s
ι − xt,s

ι . (10.1)

Figure 10.1(b) illustrates the FD ∇t,s,tj
t x for t = 1 and tj ∈ {2, . . . , 5} for the ve-

locity compensated (s = 1) and through-plane encoded (s = 2) scans. To assess
the proposed sparsity assumption quantitatively, the coefficients of the FD images
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t

s

(a) Exemplary PCI dataset

t

s

(b) Finite differences with growing timestep

Figure 10.1: Illustration and justification of the weighted and masked temporal regular-
ization strategy. (a) The magnitude of the flow-compensated (s = 1) and through-plane
encoded (s = 2) images is shown for t ∈ {1, . . . , 5}. (b) The finite differences over time
between t = 1 and tj ∈ {2, . . . , 5} are depicted.

∣∣∣(∇t,s,tj
t x)ι

∣∣∣ for ι ∈ {1, . . . , N} are depicted sorted by magnitude in Figure 10.2 for

∇1,1,2
t x, ∇1,1,4

t x, ∇1,2,2
t x and ∇1,2,4

t x. Three observations can be made and will mo-
tivate the algorithmic choices detailed below. (i) In general, it can be observed,
that the significant high contributions are concentrated within few pixels in the
coefficient plot. This corresponds well to the difference images in Figure 10.1(b),
where the main contributions to the finite differences are clearly concentrated at
the vessels, which show velocity changes over time, while the background has
relatively low contribution. (ii) There is a substantial difference between the flow
compensated and encoded images. While the flow-encoded scans show the de-
scribed enhancement of vessels in the temporal phases with high flow, this is less
clearly observable in the compensated scans. The zooms into the highest 0.1% of
the coefficients show a more significant contribution of the velocity-encoded scan.
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Figure 10.2: Finite difference coefficients
∣∣∣(∇t,s,tj

t x)ι

∣∣∣ ordered by magnitude show the spar-
sity of the used differences for tj = 2 and tj = 4. The straight lines depict the coefficients
for the velocity-compensated, the dotted lines for the velocity-encoded scans. The zooms
illustrated the 0.1% highest and the evolution of the middle third of the coefficients.

The lower coefficients reveal the inverse situation. Overall, the coefficients for the
flow-encoded scans are more compressed in the highest values. (iii) Finally, the
concentration of contributions to the vessels decrease for more distant time steps.
However, the general importance of the differentiation in vessels and background
remains valid for a certain range of subsequent time steps. Based on those obser-
vations, the MuFloCoS algorithm includes three features into the temporal finite
difference regularization:

• A vessel-mask limiting the regularization to background areas to preserve
the dynamics within the vessels,

• different treatment for the flow compensated and velocity encoded scans,
and

• a temporal weighting in time direction, including a range of time steps but
attributing higher importance to closer frames.

The difference terms are arranged for all step sizes in a common vector ∇t,s
t x ∈

CNNt as:

∇t,s
t x =

∇
t,s,1
t x
...

∇t,s,Nt
t x

 . (10.2)
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The concatenated vector for all flow encodings ∇t
tx ∈ CNNp and for all encodings

and all time steps ∇tx ∈ CNNpNt equal

∇t
tx =

 ∇
t,1
t x
...

∇t,Ns
t x

 and ∇tx =

∇
1
t x
...
∇Nt

t x

 . (10.3)

The weighting function w(t, tj) is realized either with a box function wB(t, tj) or

a Gaussian kernel wG(t, tj) = −1√
2π

e−
(tj−t)2

σ2 , centred at position t with standard de-
viation σ ∈ R, determining the extent of the influence of neighbouring phases.
Thereby the vector wt ∈ RNNt equals

wt = (w(t, 1), . . . , w(t, 1)︸ ︷︷ ︸
N times

, . . . , w(t, Nt), . . . , w(t, Nt)︸ ︷︷ ︸
N times

). (10.4)

It is used to form the weighting matrix for time step t, Wt ∈ RNNs×NNp , as well as
the complete weighting matrix W ∈ RNNp×NNpNt with

Wt =

wt

. . .
wt

 and W =

W1

. . .
WNt

 . (10.5)

Finally, the vessel masks bt ∈ RN are involved. Those equal

bt
ι =

{
1, for voxels within a vessel and
0, for background voxels.

(10.6)

Their calculation is detailed in Section 10.2.2. To limit the regularization to
the background areas, the masks are subtracted from the unity vector 1N − bt,
such that voxels within vessels are multiplied with 0 and do not contribute to
the value of the regularization. The differentiation between compensated and en-
coded acquisitions is modelled by weighting all voxels of the compensated scan
with 1, meaning that the regularization considers them. The masks are arranged
in the diagonal matrices Bt = diag(bt) ∈ RN, and composed to form matrices
Mt ∈ RNNs×NNs . These are used in the assemblage of the entire mask matrix
M ∈ CNNp×NNp and are given as

Mt =


1

1− Bt

. . .
1− Bt

 and M =

M1

. . .
MNt

 . (10.7)

The temporal differences ∇tx are multiplied with the mask matrix M and the
weighting matrix W, which results in the temporal masked and weighted regu-
larization term

TMW(x) = ||MW∇tx||L1
. (10.8)
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The objective function including the regularization weight λtmw equals

LMuf(x) = H(x)︸ ︷︷ ︸
Data fidelity term

+ λtmwTMW(x)︸ ︷︷ ︸
Regularization

(10.9)

=
1
2
||Ex−m||2L2︸ ︷︷ ︸

Data fidelity term

+ λtmw ||MW∇tx||L1
.︸ ︷︷ ︸

Regularization

(10.10)

This leads to the following minimization problem:

x̂ = argmin
x
LMuf(x). (10.11)

The TMW-L1 regularization penalizes non-similarity to neighbouring temporal
phases but differentiates between static and flow affected areas in order to avoid
temporal blurring.

10.2.2 Anatomy Based Sub Division

During the iterative reconstruction the volume, defined by its voxel set T with
T = {ι = 1, . . . , N} is divided into a static part consisting of the voxel set S and
a part affected by flow induced motion D with T = S ∪ D and S ∩ D = ∅ to
allow guidance of the temporal regularization to the static parts. This is important
to avoid temporal blurring. The goal is therefore to obtain dynamic masks bt ∈
[0, 1]N as described in Eq. (10.6) with the property

bt
ι =

{
1, if ι ∈ D and
0, if ι ∈ S.

(10.12)

As the sub-division correlates mainly with the vessel anatomy in the chosen ap-
plication, bt

ι is referred to as vessel mask. The selected differentiation feature is the
occurrence of flow as it is inherent in the PCI technique through the anatomical
images at as explained in Section 7.2.2. The proposed interleaved and incoherent
pattern leading to distributed incoherent artefacts in s and t direction allows an
approximation of at, which is used to generate the masks bt. This information is
then available for the temporal regularization and directs it to the known locations
of correlation. Beside the approximation of the typical PCI anatomical map at , as
described in Eq. (7.7), a static approximation ā calculated as the anatomical image
over all phases is used

āι =

√√√√ Ns

∑
s=2

1
Nt

(
Nt

∑
t=1

(xt,1)ι −
Nt

∑
t=1

(xt,s)ι

)2

. (10.13)

During the reconstruction, both are calculated based on the actual image estimate
xt,s

i for iteration i ∈ {1, . . . , Ni}. The first necessary estimate used during the first it-
eration, referred to by x0 corresponds to the conventionally reconstructed raw data
vector using the SoS method: x0 = S(m). By updating the masks in each iteration,
the algorithm adapts to the improving image quality over iterations. MuFloCoS
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uses a combination of both static and dynamic images, which is crucial for the sta-
bility and robustness of the algorithm particularly for the first iterations which are
heavily influenced by aliasing artefacts. This is illustrated with a 9.0 times under
sampled data set in Figure 10.3. The obtained static masks for the first 4 itera-
tions and the last iteration are shown in Figure 10.3(a), the dynamic images for
time step 2 in Figure 10.3(b). The aliasing artefacts in the first dynamic masks are
visible, while the static images allow clear depiction of the vessels with the first it-
eration. This is possible through the use of the I-VT pattern with variations in both
temporal and velocity encoding direction. The combined use of these interleaved
sampled k-space reconstructions allows to generate the high quality anatomical
images.

(a)

(b)

i

1

0

wSD(i)1−wSD(i)

(c)

(d)

Figure 10.3: The generation of the adaptive vessel masks as a combination of the static and
dynamic anatomical images is illustrated. The (a) static images ā and (b) dynamic images
at for the first 4 and the last iteration are depicted. (c) The evolution of their respective
influence is shown depending on the parameter wSD(i). (d) The final vessel masks bt for
t = 2 are visualized.
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The sub-division is entirely based on this intrinsically obtained anatomical im-
ages ā and at by applying a binary threshold αm . The obtained static masks b̄i and
dynamic masks b̌i for voxel ι equal

b̄ι
i
=

{
1, if āt

ι > αm

0, otherwise
and b̌ι

i
=

{
1, if at

ι > αm

0, otherwise
. (10.14)

The influence of the static and dynamic anatomical image approximation changes
smoothly with the parameter wSD(i) depending only on the iteration step i with

bt =
1
2

(
wSD(i)b̄ + (1−wSD(i))b̌t

)
, where wSD(i) = 1/iβ. (10.15)

The evolution of wSD(i) over iteration steps is visualized in Figure 10.3(c). Figure
10.3(d) illustrates the final vessel masks bt.

10.3 Implementation and Experiments

This section describes the details of the MuFloCoS algorithm implementation as
well as the experimental setup.

10.3.1 MuFloCoS Implementation Details

The algorithm is included into the described C++ reconstruction framework. The
linked version directly processes the raw data after acquisition using the inline
data processing pipeline. The MuFloCoS algorithm seeks to find a solution x̂ for
the problem as stated in Eq. (10.9).

The complete MuFloCoS algorithm is represented in the flow chart in Figure
10.4 as well as in a detailed step overview in Algorithm 10.1. The preprocessing
steps 1 through 2 include shared coil profile calculation, initialization of the vessel
mask, calculation of the temporal weights and assembling of the encoding matrix.
Then, the iterative process is started.

Considering the size of the optimization problem with NNp unknowns, a
limited-memory BFGS solver [Noce 80] is used. Replacement with further solvers
such as the conjugate gradient method is possible without introducing structural
changes. For all gradient-based solvers, evaluation of both the objective function
and its gradient are required within each iteration to determine with direction and
step size. Finally, the vessel mask matrix is updated. The parameters were chosen
equally for all datasets and experiments as Ni = 10, αm = 0.1 maxι āι, σ = 1.8 and
λtmw = 0.004. The ε = 0.001 ensures computational efficiency, as the differences
are calculated only in the relevant kernel of w(t, tj).

For the proposed TMW regularization, as described in the methods section and
given in Algorithm 10.1, the finite differences are multiplied with the weighting
matrix and subsequently the mask matrix, resulting in a total of N2N2

pNt + N2N2
p

multiplications. The computational effort thus adds up to O(N2N2
pNt). Regarding

the calculation of the anatomical images with Ns−1Nt required subtractions and
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Algorithm 10.1 MuFloCoS algorithm (theoretical)
Require: m,u,LMuf,∇LMuf, w(t, tj), ε,λtmw, Ni,wSD(i)

INPUT: x0

1: Calculate combined coil profiles ct
γ

2: Obtain direct reconstruction with S(mt,s)
3: Calculate āt and b̄t

4: Initialize mask matrix M
5: Assemble weighting matrix W
6: Assemble encoding matrix E with et,s

(γ,κ),ι = ut,s
κ eikt,s

κ rιct
(γ,ι)

7: for all i = 1 to Ni do
8: Perform optimizer step with the objective function LMuf(xi−1) and its gradi-

ent ∇LMuf(xi−1)
9: Calculate the data fidelity term H(xi−1)

10: Assemble FD vector ∇t = (∇1
t , . . . ,∇Nt

t )
11: Calculate R(xi) =

∣∣∣∣MW∇txi−1
∣∣∣∣

L1

12: Update xi

13: Update ā, at, b̄, b̌t

14: Combine b̄ and b̌t to bt using wSD(i)
15: Update mask matrix M
16: end for

OUTPUT: xNi

Return: x

Weighted temporal
regularization term
R(xi) = ||MW∇tx||L2

Perform Ni iterations using the objective function
LMuf:

Multi-dimensional
data fidelity
H(xi) =

∣∣∣∣Exi −m
∣∣∣∣2

L2

Update mask M using wSD

Require: Pattern u, Raw data m

Shared coil sensitivity calculation cγ

Initial mask M from static anatomical images ā.

Assemblage of the weighting matrix W

Figure 10.4: Schematic representation of the MuFloCoS algorithm
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multiplications, the total computational cost adds up to O(N2N2
pNt). The imple-

mentation, however, differs from this theoretically calculated complexity, as the
weighting matrix is not calculated a priori, but evaluated for all vector elements as
shown in Algorithm 10.2. The complexity thus lays within O(NNsN2

t ) for the eval-
uation of the TMW regularization term. The squared consideration of the num-
ber of time steps is due to the theoretical calculation of the finite differences with
all possible step length. The introduction of the Gaussian weighting and the ε
fixes the number of used temporal steps to N′t < Nt. The following calculations,
are, however, given for the worst case of N′t = Nt. The evaluation of the multi-
dimensional data fidelity term lays within O(NpNγN log N) as discussed in Section
9.3. In total, the complexity of the per-iteration complexity, considering again a
limited number of function evaluations, is bounded by O(NpNγN log N+NNsN2

t ).
For Ni iterations of the linearly scaled lBFGS algorithm, the total complexity lays
within O(NiNpNγN log N + NiNNsN2

t ).

Algorithm 10.2 MuFloCoS algorithm (implemented)
Require: m,u,LMuf,∇LMuf, w(t, tj), ε,λtmw, Ni,wSD(i)

INPUT: x0

1: Calculate combined coil profiles ct
γ

2: Obtain direct reconstruction with S(mt,s)
3: Calculate āt and b̄t

4: Initialize mask matrices Mt as column vectors mt

5: for all i = 1 to Ni do
6: Perform optimizer step with the obj. function LMuf(xi−1) and its gradient

∇LMuf(xi−1)
7: Calculate the data fidelity term H(xi−1) as illustrated in Figure 4.4
8: for all s = 1, ..., Ns do
9: for all t = 1, ..., Nt do

10: for all tj = 1, .., Nt do
11: for all ι = 1, .., N do
12: if s = 1 then
13: h = h + w(t, tj)(∇

tj,s
t )ι

14: else
15: h = h + (1− (mt)ι)w(t, tj)(∇

tj,s
t )ι

16: end if
17: end for
18: end for
19: end for
20: end for
21: Update xi

22: Update ā, at, b̄, b̌t

23: Combine b̄ and b̌t to bt using wSD(i)
24: Update mask vectors mt

25: end for
OUTPUT: xNi
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Reconstruction method ∆Q [%] ∆Qi [%] ∆Qo [%]

Reference 2.72 ± 0.10 -0.73 ± -0.16 -1.16 ±0.10

MuFloCoS 3.31 ±0.07 2.45 ±0.73 2.23 ± 0.46

Table 10.1: Quantitative evaluation of the phantom data. The flow deviations ∆Q in the
slices and between neighbouring slices regarding both inflow ∆Qi and outflow ∆Qo are
calculated for all slices in the phantom experiment. The deviations are given in percent.

10.3.2 Quantitative and Physiological Evaluation of the TMW
Regularization

The fully sampled phantom data sets were reconstructed with the conventional
SoS technique to obtain a reference volume. The I-VT pattern with acceleration fac-
tor 9 was applied retrospectively and the under sampled data was reconstructed
using our proposed MuFloCoS method. Table 10.1 presents the deviation results
for the reference reconstruction and for MuFloCoS in percent, which are all below
4%.

Quantitative flow parameters obtained with the proposed reconstruction al-
gorithm are compared to previously reported literature values and to the results
of different state of the art iterative algorithms to ensure the validity of the pro-
posed method for enhanced image quality and quantification purposes. Six recon-
structions were therefore performed: the fully sampled data set was reconstructed
using the SoS technique to obtain a Reference. The remaining five reconstructions
were performed using an acceleration factor of 9.0 for different iterative techniques
all reconstructed using the proposed I-VT sampling. Furthermore, the same for-
mulation of the data fidelity term in Eq. (10.9) was used for all reconstructions,
the algorithms thus varied in the choice of the regularization. All emerging opti-
mization problems were solved using the same lBFGS method with Ni = 10 which
has been shown to be very stable and especially well suited for large optimization
problems as the present. The considered algorithms are

• Iterative SENSE (ISENSE) without regularization, corresponding to λtmw =
0 in Eq. (10.9).

• Spatially L1 regularized CS with spatial regularization. State of the art L1
Compressed Sensing algorithm, regularized in the present case with wavelet
decomposition and TV, in combination with the data fidelity term to recon-
struct under sampled k-space data. This method was proposed by several
authors, including for example Lustig et al. [Lust 07] with wavelets and by
Hsiao et al. [Hsia 12] and Holland et al. [Holl 10] with TV, wavelets and
curvelets as well for PCI. It will be referred to by S-CSTV-W in the following
sections.

• kt-SPARSE SENSE was proposed specifically for dynamic MRI by Otazo et
al. [Otaz 10] and includes temporal regularization which is in most cases
temporal Fourier transform. This is typically combined with a spatial regu-
larization component, such as Wavelets in the study by Lustig et al. [Lust 06],



128 Multi-dimensional Flow-Preserving Compressed Sensing (MuFloCoS)

or with PCA by Kim et al. [Kim 12a]. It will be referred to by S-CSW-vtFT in
the following sections.

• The MDFCS algorithm previously proposed by Hutter et al. [Hutt 13b]. A
box function instead of the Gaussian weighting is used and the vessel mask
is obtained uniquely based on the dynamic images.

• The proposed MuFloCoS algorithm with λtmw = 0.004.

The sparsity weights for S-CSTV-W and S-CSW-vtFT were optimized individ-
ually for each technique regarding NRMSE over the parameter space λt, λw,
λf ∈ [10−5, 10−3] as described in Section 11.3.2. The resulting values λt = 0.00005
and λw = 0.00001 for S-CSTV-W and λf = 0.00002 and λw = 0.00001 for S-CSW-vtFT
were used for all data sets.

10.3.3 Comparison Against State of the Art in CS for Carotid PCI
The aim of this experiment is the comparison of MuFloCoS against the only known
further state of the art algorithm proposed for the same application, in-vivo imag-
ing of the carotid arteries, the method by Tao et al. [Tao 13]. The key algorithmic
elements are

• R: A pattern which is fully sampled in the central region and randomly under
sampled in the periphery. The same percentage of central lines as in the
study of Tao et al. (20 / 192) were used for the present data sets (26/ 256).
The pattern was not varied over encodings but includes random variations
over time.

• L1yf: L1 minimization in the yf-space for each encoding separately was pro-
posed as regularization.

Different reconstructions, stated in Table 10.2, evaluating these components
against the corresponding MuFloCoS parts, the I-VT sampling and the TMW reg-
ularization were evaluated for acceleration factor 3 as proposed in the study of Tao
et al. and factor 9 as used for MuFloCoS. To ensure fair comparison, the weights
were optimized regarding NRMSE for each of these experiments, but kept fixed
over all data sets.

10.3.4 Parameter and Robustness
The influence, stability and robustness of different algorithmic aspects and pa-
rameter choices are evaluated based on quantitative image measures and recon-
struction parameters. For Experiment II, three elements were investigated: The
regularization weight λtmw, the sampling strategy and the use of the shared coil
profile calculation. The parameter λtmw was varied between 0.0005 and 0.0125,
the sampling pattern was chosen to be fixed for all phases and temporal phases or
interleaved and permuted with regular permutations with length 1 or interleaved
and permuted as proposed by the I-VT sampling strategy of MuFloCoS. The basis
pattern parameters oc, dc, a and b were chosen identical for both. Furthermore, the
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Regularization

Reconstruction method L1yf TMW

R3 TAO3 R+TMW3

R9 TAO9 R+TMW9

I-VT3 I-VT+L1yf3 MuFloCoS3

I-VT9 I-VT+L1yf9 MuFloCoS9

Table 10.2: The different elements from the study by Tao et al. and the presented MuFlo-
CoS algorithm are shown. This includes the random and I-VT sampling pattern, evaluated
for both acceleration ξ = 3 and ξ = 9 as well as the L1yf and the TMW regularization strat-
egy.

influence of the internal coil sensitivity calculation was evaluated by using either
the shared version or by acquiring an external reference scan, both resulting in a
total of 16 used reference lines. Feasible acceleration factors for this application are
determined, the used acceleration factor was therefore varied between 3, 6, 9, 12
and 15. The reconstructions were performed with fixed λtmw = 0.004.

The deviation is calculated for the volumetric flow Qv(t) and for the peak ve-
locity Vp(t). The TNRMSE for the mean velocity Vm(t) equals TNRMSE(Qv(t))
by definition of these values. Those results are illustrated with Bland-Altman dia-
grams for graphical illustration of all data sets and for each combination between
MuFloCoS and state of the art methods. The results are ordered by the absolute
values for the volumetric flow and the peak velocity of the data sets. This illustra-
tion aids to identify any systematic errors or outliers.

10.4 Results

In this section, the results for all presented experiments are given and illustrated.

10.4.1 Quantitative and Physiological Evaluation

The quantitative results for the image based measures of the study with 18 data
sets are shown in Table 10.3 for MuFloCoS and the four comparison methods. The
NRMSE of MuFloCoS is significantly reduced compared to the iterative SENSE
reconstruction and all further considered methods. Statistically, the NRMSE has
been improved by 47.6% compared to ISENSE, by 19.12% in comparison to S-
CSW-vtFT and by 19.12% compared to S-CSTV-W. The same is valuable for the
structural similarity SSIM, which was improved by 3.39% compared to the best
comparison method S-CSTV-W. The Contrast to Noise Ratio between the vessel
and the background could be improved for all data sets, in the mean by at least
24.24% and up to 54.69%. Table 10.4 shows the mean deviation from the phys-
iological parameters for each reconstruction technique. One data set (P16) was
excluded from the calculation of physiological parameters, as the overall image
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(a) Reference (b) ISENSE (c) S-CSTV-W

(d) S-CSW-vtFT (e) MDFCS (f) MuFloCoS

Figure 10.5: Magnitude reconstruction results for the through-plane encoding for volun-
teer P2 at peak systole: (a) Reference (b) ISENSE (c) S-CSTV-W (d) S-CSW-vtFT (e) MDFCS
and (f) MuFloCoS.

quality even for the reference did not allow for a stable evaluation. A signifi-
cant improvement was achieved for the peak velocity with 49.40% lower TNRMSE
compared to S-CSW-vtFT, 35.11% lower TNRMSE compared to MDFCS and 43.33%
lower TNRMSE compared to S-CSTV-W. Figure 10.5 and 10.6 illustrate two repre-
sentative results for peak systole. The magnitude result for s = 4 is, in the upper
row, shown for the reference, ISENSE, and S-CSTV-W and in the lower row for S-
CSW-vtFT, MDFCS and MuFloCoS. Representative time curves are shown in Figure
10.7, displaying the volumetric flow in the first row, the mean velocity in the sec-
ond row and the peak velocity in the last row for all reconstruction results. The
curves of the reference and MuFloCoS are very similar, while the other methods
except S-CSTV-W tend to overestimate volumetric flow and mean velocity in both
cases. The most significant difference is visible in the peak velocity plots, which
is heavily disturbed for comparison methods but well preserved for MuFloCoS.
Especially the S-CSTV-W method, which produced a lower error in volumetric flow
significantly underestimated the Peak Velocity. The Bland-Altman diagram for
the best comparison method S-CSW-vtFT is given in Figure 10.8. No outlier or sys-
tematic bias is visible in the MuFloCoS result, whereas the values for the other
methods are spread for both volumetric flow and peak velocity. Figure 10.10 illus-
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(a) Reference (b) ISENSE (c) S-CSTV-W

(d) S-CSW-vtFT (e) MDFCS (f) MuFloCoS

Figure 10.6: Magnitude reconstruction results for the through-plane encoding for volun-
teer P7 at peak systole: (a) Reference (b) ISENSE (c) CSwt (d) CSkt (e) MDFCS and (f)
MuFloCoS.

trates the 3D result for peak systole and early diastole at three selected locations
as depicted in Figure 8.2.

10.4.2 Comparison against Carotid PCI State of the Art

The results for this experiment are given in Table 10.5. Very good results were
achieved for an acceleration factor of 3 with the original method proposed by Tao
et al. [Tao 13], resulting in a SSIM of 0.939 ± 0.039, a NRMSE of 0.057 ± 0.012
and a TNRMSE of the volumetric flow of 0.098 ± 0.042 for the random pattern.
The results using the same regularization but the proposed I-VT sampling fur-
ther increase image quality and the accuracy of the physiological values with a
NRMSE of 0.042± 0.010 and TNRMSE of the peak velocity of 0.172± 0.069. For
the higher factor of 9, however, the proposed MuFloCoS algorithm outperforms
this method, particularly with respect to the TNRMSE of the physiological val-
ues and the NRMSE. However, the method of Tao et al. shows some advantages
regarding the SSIM value and the CNR. Comparing the results using the L1yt reg-
ularization in combination with either the random or the I-VT pattern, the I-VT
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Reconstruction method NRMSE SSIM CNRVT CNRVB

Reference 0.0± 0.0 1.0± 0.0 5.921± 2.7112 8.312± 2.333

ISENSE 0.105± 0.029 0.774± 0.126 4.341± 1.204 5.142± 1.403

S-CSTV-W 0.068± 0.022 0.856± 0.070 5.200± 1.515 6.492± 1.714

S-CSW-vtFT 0.068± 0.019 0.867± 0.078 5.060± 1.464 6.318± 1.759

MDFCS 0.074± 0.028 0.831± 0.098 5.315± 1.506 6.554± 1.683

MuFloCoS 0.055± 0.015 0.885± 0.064 6.084± 1.615 7.954± 1.998

Table 10.3: Quantitative image and physiology-based evaluation for the in-vivo study
comparing MuFloCoS to the reference and further iterative methods.

Reconstruction method TN(Qv) TN(Vp)

Reference 0.0± 0.0 0.0± 0.0

ISENSE 0.135± 0.068 0.228± 0.115

S-CSTV-W 0.085± 0.039 0.150± 0.096

S-CSW-vtFT 0.108± 0.059 0.168± 0.047

MDFCS 0.113± 0.058 0.131± 0.075

MuFloCoS 0.096± 0.045 0.085± 0.054

Table 10.4: Quantitative image and physiology-based evaluation for the in-vivo study
comparing MuFloCoS to the reference and further iterative methods.

pattern delivers more accurate flow results and better NRMSE, but lower SSIM
and CNR.

10.4.3 Robustness and Acceleration Studies

Image results for different λtmw values are shown in Figure 10.11 with a zoom to
the right carotid artery. The data fidelity term as well as the TMW regularization
term for selected choices of λtmw are illustrated in Figure 10.12(a) and 10.12(b).
This reconstruction resulted in the values illustrated in Table 10.6. The respective
images for s = 4 for early diastole (t3 = 136 ms) and difference images to the
complete MuFloCoS method are shown for the fixed pattern and the version with
external coil sensitivities in Figure 10.13 along with the corresponding difference
images to the normal MuFloCoS in the lower row. Volumetric flow and mean ve-
locity are illustrated in Figure 10.14. Reconstruction specific parameters including
the data fidelity term and the regularization term over time are illustrated in the
lower row of Figure 10.13(c). Both the data fidelity and the L1 norm show a sim-
ilar behaviour for the variants with and without the shared coil sensitivities, but
higher values for the variant without the interleaved and shifted pattern). Results
of varying acceleration factors of 3, 6, 9, 12 and 15 and fixed λtmw can be seen for
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Figure 10.7: Volumetric flow, mean velocity profile and peak velocity profiles illustrated
for volunteers P6 and P7.

s = 4 for the entire image and a zoom in Figure 10.16. The corresponding curves
for volumetric flow are illustrated in Figure 10.17(a), the peak velocity in Figure
10.17(b).

10.4.4 Patient Cases

The two patient cases, described in Chapter 8 were examined. The under sampled
data was reconstructed with MuFloCoS and evaluated with a special focus on the
pathology detection by analysing the peak velocities in the CCA and ICA at three
positions in the CCA, in close proximity to the stenosis and post-stenotic in the
ICA. For patient 1, the corresponding peak velocity plots are illustrated in Figure
10.18. A clear difference is visible between the velocities in the pre-stenotic CCA
and after the stenosis in the ICA. Especially on the right side, where the high-
degree stenosis has been diagnosed, a sharp increase in peak velocity is observ-
able, which correlates well with the reduced lumen at this position. The difference
between the high-grade stenosis on the right side to the low-grade stenosis on the
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Figure 10.8: Bland-Altman diagram for (a) volumetric flow and (b) peak velocity for the
in-vivo study for MuFloCoS and S-CSW-vtFT.

left side is well visible in the difference of the peak velocities. The results for pa-
tient 2 in Figure 10.19 indicate the unilateral stenosis diagnosed with DCE-MRI.
The stenotic profile in the ICA is corrupted by aliasing due to the high velocities.
No correction was applied to this, but could be done by unwrapping.

10.5 Discussion

Iterative reconstruction with the proposed MuFloCoS method was successful for
all phantom and in-vivo experiments and produced comparable and consistent
results. The high noise level both in the background and the tissue of the image
reconstructed with iterative SENSE was significantly reduced with the iterative
methods. While all methods managed to recover the image structures, the qual-
ity of the images as well as the accuracy of the physiological parameters were
objectively better for MuFloCoS. The image quality allowed in summary good vi-
sualization of the anatomy and corresponds to that of the fully sampled reference
image.

10.5.1 Quantitative Evaluation

The inter and intra-slice deviations in the phantom-experiment were all under 4%,
which illustrates the capability of MuFloCoS to preserve the flow values over the
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Figure 10.9: Bland-Altman diagram for (a) volumetric flow and (b) peak velocity for the
in-vivo study for MuFloCoS and MDFCS.

Figure 10.10: 3-D velocity vector field from the left carotid bifurcation region illustrated
with 3-D vectors at four different locations for peak systole and early diastole.

entire dataset. Concerning the in-vivo data, both the evaluation of the flow pa-
rameters showed good preservation of flow parameters and had a significantly
reduced deviation compared to the further methods in both the phantom exper-
iment and the volunteer study, see Table 10.1, Table10.3 and Table 10.4 for the
quantitative results.

The MuFloCoS volumetric flow Qv(t) and the mean velocity Vm(t) as well as
the peak velocity Vp(t) over time, see Figure 10.7, were in good agreement with
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Reconstruction method NRMSE SSIM CNRVT CNRVB

Reference 0.0± 0.0 1.0± 0.0 5.921± 2.7112 8.312± 2.333

TAO ξ = 3 0.057± 0.012 0.939± 0.039 6.265± 1.674 8.068± 2.177

TAO ξ = 9 0.082± 0.017 0.936± 0.044 6.212± 1.285 9.117± 1.919

I-VT+L1yf ξ = 3 0.042± 0.010 0.954± 0.031 6.326± 1.700 8.130± 2.166

I-VT+L1yf ξ = 9 0.058± 0.017 0.884± 0.070 5.261± 1.346 6.710± 1.572

MuFloCoS 9 0.055± 0.015 0.885± 0.064 6.084± 1.615 7.954± 1.998

Table 10.5: Quantitative image-based evaluation for the in-vivo study comparing MuFlo-
CoS against the results of carotid PCI state of the art.

(a) Reference (b) 0.0005 (c) 0.0045 (d) 0.0085 (e) 0.0125

Figure 10.11: Image results for a representative volunteer using different λtmw and
zooms to the right ICA for, from left to right, the reference and MuFloCoS with λtmw =
[0.0005, 0.0045, 0.0085, 0.0125].

the fully sampled directly reconstructed data sets in the CCA. Improvements to
further state of the art methods showed improvements in NRMSE, SSIM but espe-
cially in the peak velocity, which is an important diagnostic value in the classifica-
tion of stenosis. This indicates that both temporal and spatial resolution are well
preserved. Volumetric flow and mean velocity corresponded well to previously
reported values for the volumetric flow rate in Long et al. [Long 01] and for the
mean velocity in Ringgaard et al. [Ring 04]. The patient cases and the respective
peak velocity profiles in Figure 10.18 and Figure 10.19 confirmed the CT findings
and allowed even to differentiate between high and low-grade stenosis.

The improvement compared to MDFCS shows the positive influence of the
combined static and dynamic anatomical images as well as the Gaussian weight-
ing. The comparison against state of the art for CS methods applied to carotid PCI
indicated the improvements achieved with MuFloCoS regarding both image and
physiology based measures and especially its availability for higher acceleration
factors.
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Figure 10.12: Reconstruction parameter results for a representative volunteer using dif-
ferent λtmw. (a) The evolution of the data fidelity term and (b) the temporal masked and
weighted term are depicted for 20 iteration steps.

Measure NRMSE SSIM CNRVB TN(Qv) TN(Vp)

Reference 0.0 1.0 7.733 0.0 0.0

MuFloCoS 0.055± 0.022 0.848± 0.101 7.601± 1.018 0.074± 0.005 0.058± 0.010

Static pattern 0.059± 0.059 0.856± 0.100 6.703± 1.509 0.074± 0.005 0.081± 0.045

Ext. coil maps 0.058± 0.058 0.841± 0.107 7.371± 1.362 0.057± 0.007 0.054± 0.018

Table 10.6: Quantitative image based evaluation for different MuFloCoS variants.

10.5.2 Evaluation of I-VT, Shared Coil Profiles and TMW

The benefits of the masked temporal regularization and the I-VT pattern to exploit
the inherent data correlation both in velocity encoding and temporal direction be-
come evident with the results of their respective influence. The shared coil profile
calculation led to a very slight change in the results for NRMSE from 0.055 to 0.058
while it contributed to the final acceleration in substantial amount by allowing
real under sampling by factor four in the central k-space. Its influence, illustrated
in Figure 10.13(b), was barely visible in the difference image where the main devia-
tions occur outside the object. The influence of the interleaved and shifted pattern
was substantially higher, as shown in Table 10.6 and in image 10.13(c). The L1
norm plot in Figure 10.14 on the left illustrates that the higher similarity at the
beginning due to the same sampling, expressed through low L1 difference values,
increased with iterations and converged at higher values than the I-VT pattern
variant. This can be explained by the property of the I-VT pattern to allow a better
minimization for the whole objective function in Eq. (10.9) including data fidelity
term and regularization term. The NRMSE decreased from 0.059 to 0.055 com-
pared to the shifted and interleaved pattern.

Experiment III illustrated furthermore that the proposed TMW-L1 regulariza-
tion offers a very stable regularization option. Different choices of the weighting
factor λtmw led to comparable results both in terms of visual impression and in
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(a) MuFloCoS (b) Static pattern (c) Ext. coil profiles

Figure 10.13: Image results for the through-plane encoding comparing the reference and
MuFloCoS (a) with the I-VT pattern and the shared coil profiles, (b) without the I-VT pat-
tern and (c) with external coil profiles. The lower row illustrates the difference to MuFlo-
CoS scaled by a factor of 10.
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Figure 10.14: Physiological parameters for MuFloCoS with the I-VT pattern and the shared
coil profiles, without the I-VT pattern and with external coil profiles. (a) Volumetric flow
Qv(t) and (b) mean velocity Vm(t) are shown.

the physiological parameter estimation. Figures 10.12(a) and 10.12(b) illustrated
even a convergence for both the data fidelity term, as well as for the TMW-L1 term
independent of λtmw. For λtmw in the range of [0.0015, 0.0125], the term converged
to the same value after 20 iterations. No critical bound was obtained, the changes
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Figure 10.15: Reconstruction results for MuFloCoS with the I-VT pattern and the shared
coil profiles, without the I-VT pattern and with external coil profiles. (a) The evolution
of the data fidelity term and (b) the evolution of the TMW-L1 term are depicted for 20
iteration steps.

(a) Reference (b) ξ = 3 (c) ξ = 6 (d) ξ = 9 (e) ξ = 12 (f) ξ = 15

Figure 10.16: Image results for a representative volunteer for different acceleration factors
ξ = 1, ξ = 3, ξ = 6, ξ = 9, ξ = 12 and ξ = 15.

with growing λtmw are smooth as seen in Figure 10.11. All reconstructions for the
18 volunteers were performed with a fixed λtmw = 0.0040 and produced compa-
rable results, the parameter can therefore be assumed to be robust in a wide range
and stable over different data sets.

Experiment II illustrated furthermore the acceleration capacities of MuFloCoS.
Even for high factors, such as 15, resulting in using only around 6.7% of the data,
good physiological results could be achieved. This acceleration is significantly
higher than feasible with currently clinically used methods, which can achieve an
acceleration of 2-4 (25-50% of the data) in this application. The performed study
had the limitation that the reference values were calculated based on the fully sam-
pled PC MRI scans. This provided a reliable reference for the physiological values.
Further prospective sampled studies need to be done in the future. A further ex-
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Figure 10.17: Physiological parameters for a representative volunteer for different acceler-
ation factors ξ = 3, ξ = 6, ξ = 9, ξ = 12 and ξ = 15. (a) Volumetric flow Qv(t) and (b)
peak velocity Vp(t).
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Figure 10.18: Peak velocity profiles for patient 1 from the PCI scan, accelerated with factor
ξ = 9.0 and reconstructed using MuFloCoS.

tension could be direct comparison with a different modality such as a flow meter
or Doppler ultra sound.
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Figure 10.19: Peak velocity profiles for patient 2 from the PCI scan, accelerated with factor
ξ = 9.0 and reconstructed using MuFloCoS.

10.6 Summary and Conclusion

Acceleration factors of ξ = 9.0 in volunteers have been successfully applied to PCI,
leading to a significant speed up of the acquisition. The acquisition time for good
temporal and spatial resolution in the carotid artery region can be significantly re-
duced. For the concrete example of the patient data acquisition using three three-
directional 2D slices pre- and post-stenosis in the CCA and ICA, the acquisition
time could be reduced from 8 minutes 24 seconds to 56 seconds. This significant
reduction can be an important step in the clinical acceptance of this technique.
This saved time could also be invested in a higher spatial and/or temporal reso-
lution allowing to visualize especially pathological hemodynamic situations with
better accuracy. The proposed method is not limited to the introduced masked and
weighted temporal regularization, but is easily expendable to different regulariz-
ers such as TV, wavelet or more PCI specific constraints as divergence free flow
fields or phase constraint. Only intrinsic properties of the PCI acquisition were ex-
ploited which makes the proposed method ideally suited to be applied to different
body regions imaged with PCI.
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11.1 Motivation

Recently, the low rank sparse decomposition model, called L+S model, originally
presented in the context of video compression, was adapted to dynamic and multi-
slice MRI [Cand 11], [Maju 12],[Yin 12], [Trem 12]. In this approach the image in-
formation is modelled by two components called L and S. Thereby L is assumed
to have a low rank and S to be sparse. The concept is particularly well suited for
dynamic MRI, where L represents the static background and S the dynamic signal
such as the heart motion [Otaz 13]. The advantages of this concept are the enforced
sparsity of S compared to the global matrix as well as the possibility to apply more
specific regularizers. Whereas all L+S models proposed so far uniquely focus on
temporal dynamics, the novel Low rank and Sparse Decomposition Compressed
Sensing (LoSDeCoS) method, presented in this chapter, extends this concept. A
common vector space for both the temporal and the velocity encoding directions
is constructed. Correlations in both directions can thus be exploited to acceler-
ate the acquisition. In PCI, the final set of volumes contains information from Nt
different time points and Ns velocity encodings, resulting in Np = NtNs volumes
from the same anatomical position. Thus, the data exhibits correlation not only
between space and time, but also between space and flow encoding. In addition,

143
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dynamic and directional changes are limited to specific areas - the vessels - within
the volume. Therefore, the L+S model is well suited for this application. A Split-
Bregman algorithm [Aelt 10] was adapted to resolve the resulting minimization
problem with different regularization terms.

The experiments include different sparsity assumptions, combined with both
sparsity based Compressed Sensing (S-CS) and the novel LoSDeCoS algorithm to
assess the influence of the L+S model for PCI allowing comparison on a fair basis.
Furthermore, the data was reconstructed with fixed parameters for a fully sam-
pled reference, ISENSE, S-CS and LoSDeCoS to evaluate the proposed approach.
The described algorithm was presented in an earlier version in [Hutt 13e] and cor-
responds to [Hutt 14c].

11.2 LoSDeCoS

In this section, the LoSDeCoS algorithm is described in detail focusing on the used
low rank and sparsity assumptions and the adapted unconstrained Split Bregman
algorithm. With LoSDeCoS, as with MuFloCoS, the entire PCI data set is recon-
structed simultaneously using the common vector x ∈ CNNp . Here, the image
vector x is further written as the sum of two vectors l and s ∈ CNNp , representing
the column wise notation of the matrices L ∈ CN×Np and S ∈ CN×Np :

x = l + s, (11.1)

where s is the sparse component and l the low rank component of the common
vector x.

11.2.1 Influence of the Sampling on the Rank Minimization

Sampling strategies based on the relation between sparsity and incoherence have
been well investigated in the theory of Compressed Sensing [Cand 08]. For the
used low rank model in the st-vector space, the sampling strategy in s and t-
dimension is of particular interest. Figure 11.1 illustrates an under sampled, di-
rectly reconstructed and rank limited PCI data set using two different patterns.
The result with the static pattern, shown in Figure 11.1(a) and denoted by its cen-
ter mapping jS(t, s) in Section 9.2, is given in Figure 11.1(b). The outcome of the re-
construction with the proposed I-VT sampling strategy (jR(t, s)), recalled in Figure
11.1(c), is depicted in Figure 11.1(d). While the results obtained with the fixed pat-
tern include a significant amount of aliasing, the I-VT pattern based reconstruction
permits the recovery of the main structural elements of the PCI dataset by just lim-
iting the rank. Taking these observations into account, the used under sampling
strategy for LoSDeCoS involves both intra-volume and inter-volume variations in
the I-VT sampling.

11.2.2 Low Rank Assumption

Similar to the sparsity assumptions, a transform L is required to formulate the
low rank assumption in the adapted space, for PCI the st-vector space. Therefore,
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Figure 11.1: Illustration of the I-VT sampling pattern in comparison to a fixed pattern
for the reconstruction of an under sampled and directly reconstructed rank-limited PCI
dataset. (a) Illustration of the fixed pattern for all t and s and (b) reconstruction results
using the fixed pattern showing a significant amount of aliasing. (c) I-VT pattern showing
variations in both t and s direction and (d) reconstruction results with the I-VT pattern.
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Figure 11.2: Vectorization of the individual volumes for all time steps and velocity encod-
ings and composition of the st-matrix.

the vectorized individual volumes of the low rank part lt,s are arranged as column
vectors in a joint st-matrix. This is obtained using the transform L : CNNp 7→ CN×Np

as illustrated in Figure 11.2 and formulated as
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Figure 11.3: Low rank assumption illustrated on a fully sampled carotid datset with Nt =
11 time steps and Ns = 4 velocity encodings. Reference reconstruction with a zoom to
the right CCA for velocity encodings s=1 and s=3 and time step t=1 and t=2 using (a) all
singular values and (b) only the two largest singular value. The images and a zoom to the
ICA/ECA are illustrated for both cases.

The ιth-row in the st-matrix represents the image intensity for voxel ι in all time
steps and velocity encodings. If the PCI data is seen as a multidimensional tensor
with the dimensions time t, velocity encoding s and image domain ι, three ten-
sor unfoldings are possible [Trza 13]. Relevant for the present case of the same
anatomical position sampled for each time step and encoding is mainly the st− ι
unfolding as presented above.

Figure 11.3 illustrates the rank compressibility with a fully sampled and di-
rectly reconstructed carotid data set with Np = 44. Reconstruction results using
all singular values are shown in Figure 11.3(a) and the results considering only the
two biggest singular values are depicted in Figure 11.3(b) with a zoom to the right
CCA. The information loss with decreasing number of singular values, and there-
fore decreasing rank is depicted. While Figure 11.3(a) shows all details including
the temporal and directional changes in the flow pattern, Figure 11.3(b) suffers
from a reduced depiction of the temporal dynamics as can be well observed by
looking at the size of the CCA. Size changes between the depicted time steps due
to arterial filling is visible in the case with all singular values, but not with reduced
rank. The image quality concerning the surrounding tissue is well preserved in
both reconstructions.

11.2.3 Rank Minimization Using the Nuclear Norm

Be X ∈ CN×M, where N, M ∈ R, a matrix with entries xij ∈ C and eigenvalues
λi ∈ C. Its rank is denoted by r = rank(X) where r ∈ Z and corresponds to the
number of singular values above zero. The singular values are obtained by the
singular value decomposition:

X = UΣV∗, (11.3)
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consisting of the matrix Σ ∈ RN×M with the singular values σi ∈ Cmin{N,M} or-
dered by magnitude and two unitary matrices U ∈ CN×N and V∗ ∈ CM×M. The
operator norm is defined as the largest singular value of X: ||X|| = σ1. The trace
trace(X) is defined as the sum of the diagonal elements, which equals the sum of
the eigenvalues λi:

trace(X) =
N

∑
i=1

xii =
N

∑
i=1

λi. (11.4)

The trace, defined only for quadratic matrices, i.e. N = M, induces the inner prod-
uct 〈X, Y〉 = trace(XY∗), which makes the space of the complex matrices X∈CN×M

a Hilbert space. Another norm of interest is the Frobenius norm ||X||F

||X||F =
√
〈X, X〉 =

√√√√min{N,M}

∑
i=1

σ2
i , (11.5)

and the nuclear norm, or Schatten-1 norm, ||X||∗, which equals the sum of the sin-
gular values σi of X:

||X||∗ =
min{N,M}

∑
i=1

σi. (11.6)

The problem of rank minimization, written for a matrix X ∈ CN×M equals

min rank(X) subject to A(X) = b, (11.7)

where A : CN×M 7→ CN′ and b ∈ CN′ This problem is NP-hard and not convex
[Vand 96], relaxation methods are thus required. A well known relaxation tech-
nique, applicable for quadratic and positive semi definite X replaces the rank by
the trace of X:

min trace(X) subject to A(X) = b. (11.8)

The convex minimization problem in Eq. (11.8) corresponds for quadratic matrices
to the relaxation of the sparsity assumptions to the L1 norm, as

trace(X) =
N

∑
i=1

λi. (11.9)

Minimizing the number of eigenvalues λi > 0 leads thus to a low rank matrix X
[Faze 02].
This heuristic is, however, not applicable for the present case of a non-quadratic
matrix X ∈ CN×M with N > M. Generalization is possible using the nuclear norm
[Boyd 04], resulting in the following minimization problem:

X̂ = argmin ||X||∗ subject to A(X) = b. (11.10)

It can be proven, that the nuclear norm minimizes the convex hull of the rank for
matrices with ||X|| ≤ 1 [Faze 02]. Thereby, the convex hull of a rank(X) is defined
as the largest convex function

g(X) subject to g(X) ≤ rank(X) ∀ X ∈ CN×M. (11.11)
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The quality of the nuclear norm as a lower convex bound can be shown for matri-
ces with rank(X) ≤ r′:

||X|| ≤ ||X||F ≤ ||X||∗ ≤
√

r′ ||X||F ≤ r′ ||X|| . (11.12)

Which results in
||X||∗ ≤ r′ ⇔ ||X||∗ ≤ rank(X), (11.13)

for matrices with ||X|| ≤ 1 [Rech 10]. It can be shown that the nuclear norm is in
fact the best suited lower bound [Faze 02].

A condition for the treated problem in Eq. (11.10), where the nuclear norm
guarantees to retrieve the X with rank r, is formulated using the r-Restricted isom-
etry property (rRIP). Thereby, the r-restricted isometry constant is defined as the
smallest δr(A) ∈ R such that

(1− δr) ||X||2F ≤ ||A(X)||
2
L2
≤ (1 + δr) ||X||2F . (11.14)

The theorem has been formulated analogously to the known RIP for sparsity
assumptions in Eq. (3.45) and states: Be X0 a matrix of rank r, be X∗ the solution of
A(X) = A(X0). If a constant δr(A) with δr(A) ∈ R and δr(A) < 1/10 exits, than
holds X∗ = X0 [Rech 10].
The search for suited δr(A) for specific A is NP-hard itself, there are, however
statistical proofs exists for specific transforms A including random transforms
[Rech 10].

11.2.4 Objective Function

In addition to the data fidelity term in Eq. (9.9), the objective function LLos in-
cludes all regularization terms, formulating the low rank and sparsity assump-
tions used within the reconstruction:

LLos(s, l) =
1
2
||E(s + l)−m||2L2︸ ︷︷ ︸
Data fidelity term

+λt ||∇(s)||L2,1︸ ︷︷ ︸
Total variation

+ λw ||W(s)||L1︸ ︷︷ ︸
Wavelet decomposition

+ λf
∣∣∣∣Fv

t,s(s)
∣∣∣∣

L1︸ ︷︷ ︸
Temporal Fourier Transform

+ λn ||L(l)||∗︸ ︷︷ ︸
Nuclear Norm

. (11.15)

The parameters λt, λw, λf ∈ R regulate the influence of the sparsity terms, λn ∈ R

respectively the weight of the rank term.
The minimization problem for LoSDeCoS thus equals

(ŝ, l̂) = argmin
(s,l)

LLos(s, l). (11.16)

The sparsity of the sparse matrix s in a transform domain Φ(s), expressed as the
number of non-zero entries ||Φ(s)||L0

, is commonly approximated by the L1 norm.
The investigated sparsity transforms for LoSDeCoS include isotropic total varia-
tion (TV), wavelet decomposition and temporal Fourier transform as described in
Section 9.1.
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11.2.5 Minimization Using the Split Bregman Algorithm

The wide range of algorithms for the minimization of the nuclear norm with con-
straints were proposed, including interior point methods [Liu 09b], iteratively re-
weighted least squares approaches [Forn 11] and fixed point algorithms [Gold 11].
The present algorithm solves the objective function in Eq. (11.15) coupling L2, L1
and nuclear norm terms using the unconstrained Split Bregman algorithm. The
unconstrained Split Bregman algorithm was presented in Section 4.4.3. The cou-
pling of the individual sub-problems is performed with additional variables dx,
dy, dz, dw, df and dn. They are equal to the actual values of the corresponding reg-
ularization terms dx = (∇xs), dy =

(
∇ys

)
, dz = (∇zs), dw = W(s), df = Fv

t,s(s)
and dn = L(l). Furthermore, variables for the residual errors bx, by, bz, bw, bf and
bn ∈ CN are defined.

The algorithm is initialized with s, l, dx, dy, dz, dw, dn, df , bx, by, bz, bn, bf = 0
and, directly resulting, x = 0. The minimization problem equals

(ŝ, l̂, d̂x, d̂y, d̂z, d̂w, d̂f , d̂n) =

argmin
s,l,dx,dy,dz,dw,df ,dn

µ

2
||E(s + l)−m||2L2

+λt
∣∣∣∣(dx, dy, dz)

∣∣∣∣
L2
+λw ||dw||L1

+λf
∣∣∣∣df
∣∣∣∣

L1
+λn ||L(l)||∗

+
αλt

2

(
||dx−∇xs||2L2

+
∣∣∣∣dy−∇ys

∣∣∣∣2
L2
+ ||dz−∇zs||2L2

)
+

αλw

2
||dw−W(s)||2L2

+
αλf

2

∣∣∣∣df−Fv
t,s(s)

∣∣∣∣2
L2
+

αλn

2
||dn−L(l)||2L2

. (11.17)

The first Split Bregman step, as specified in Eq. (4.45), equals for the stated prob-
lem

(ŝ, l̂, d̂x, d̂y, d̂z, d̂w, d̂f , d̂n) =

argmin
s,l,dx,dy,dz,dw,df ,dn

µ

2
||E(s + l)−m||2L2

+λt
∣∣∣∣(dx, dy, dz)

∣∣∣∣
L2
+λw ||dw||L1

+λf
∣∣∣∣df
∣∣∣∣

L1
+λn ||L(l)||∗

+
αλt

2

(∣∣∣∣∣∣dx−∇xs−bj
x

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dy−∇ys−bj

y

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dz−∇zs−bj

z

∣∣∣∣∣∣2
L2

)
+

αλw

2

∣∣∣∣∣∣dw−W(s)−bj
w

∣∣∣∣∣∣2
L2

+
αλf

2

∣∣∣∣∣∣df−Fv
t,s(s)−dj

f

∣∣∣∣∣∣2
L2
+

αλn

2

∣∣∣∣∣∣dn−L(l)−dj
n

∣∣∣∣∣∣2
L2

. (11.18)
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The second Split Bregman step, formulated in its general form in Eq.(4.46), is for
the concrete problem given as

bj+1
x = bj

x+∇xsj+1−dj+1
x , (11.19)

bj+1
y = bj

y+∇ysj+1−dj+1
y , (11.20)

bj+1
z = bj

z+∇zsj+1−dj+1
z , (11.21)

bj+1
w = bj

w+W(sj+1)−dj+1
w , (11.22)

bj+1
f = bj

f +F
v
t,s(s

j+1)−dj+1
f and (11.23)

bj+1
n = bj

n+L(lj+1)−dj+1
n . (11.24)

In each Split Bregman iteration j, where j ∈ {1, . . . , Nj}, three steps are performed,
the first formulated in Eq. (11.25) as an L2 minimization of the data fidelity term
and the L2 terms for each of the chosen regularization terms. This L2 minimization
problem is minimized with Ni iterations of the lBFGS algorithm [Noce 06] with

(sj+1, lj+1) = argmin
(s,l)

LLos-L2(s, l) (11.25)

where

LLos-L2(s, l) =
µ

2
||E(s + l)−m||2L2

+
αλt

2

(∣∣∣∣∣∣dj
x−∇x(s)−bj

x

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dj

y−∇y(s)−bj
y

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dj

z−∇z(s)−bj
z

∣∣∣∣∣∣2
L2

)
+

αλw

2

∣∣∣∣∣∣dj
w−W(sj)−bj

w

∣∣∣∣∣∣2
L2

+
αλf

2

∣∣∣∣∣∣dj
f−F

v
t,s(s)−bj

f

∣∣∣∣∣∣2
L2
+

αλn

2

∣∣∣∣∣∣dj
n−L(l)−bj

n

∣∣∣∣∣∣2
L2

. (11.26)

In the second step, the regularization terms are minimized with tailored strategies
using the results from the first step sj+1, lj+1:

(dj+1
x , dj+1

y , dj+1
z ) = argmin

dx,dy,dz

αλt

2

∣∣∣∣∣∣dx−∇x(sj+1)−bj
x

∣∣∣∣∣∣2
L2
+

αλt

2

∣∣∣∣∣∣dy−∇y(sj+1)−bj
y

∣∣∣∣∣∣2
L2

+
αλt

2

∣∣∣∣∣∣dz−∇z(sj+1)−bj
z

∣∣∣∣∣∣2
L2
+λt

∣∣∣∣(dx, dy, dz)
∣∣∣∣

L2
, (11.27)

(dj+1
w ) = argmin

dw

αλw

2

∣∣∣∣∣∣dw−W(sj+1)−λwbj
w

∣∣∣∣∣∣2
L2
+||dw||L1

, (11.28)

(dj+1
f ) = argmin

dw

αλf

2

∣∣∣∣∣∣df−Fv
t,s(s

j+1)−bj
f

∣∣∣∣∣∣2
L2
+λf

∣∣∣∣df
∣∣∣∣

L1
and (11.29)

(dj+1
n ) = argmin

dw

αλn

2

∣∣∣∣∣∣dn−L(lj+1)−bj
n

∣∣∣∣∣∣2
L2
+λn ||dn||L1

. (11.30)

The isotropic TV in Eq. (11.27) is minimized using the generalized shrinkage for-
mula formulated with s1 and the wavelet transform using the soft thresholding
s2 as presented in Section 4.4.3. The temporal vtFTsub problem in Eq. (11.29) is
equivalently solved using soft thresholding, which results in

(dj+1
f ) = s2

(
sj+1, bj

f ,
1
α

)
, (11.31)
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where

(dj+1
f )ι =

(Fv
t,s(s

j+1))ι∣∣∣(Fv
t,s(sj+1))ι

∣∣∣ (
∣∣∣(Fv

t,s(s
j+1))ι

∣∣∣− 1
α
)+. (11.32)

Finally, the nuclear norm in Eq. (11.30) is minimized using singular value thresh-
olding [Cai 10]

(dj+1
n ) = s3

(
sj+1, bj

n,
1
α

)
, (11.33)

with
dj+1

n = UΣ̄jV∗ (11.34)

with Σ̄j = diag((σ− ( 1
α )

j)+).

11.3 Implementation and Experiments

Details about the implementation of the LoSDeCoS algorithm and the performed
experiments are given below.

11.3.1 LoSDeCoS Implementation Details

The LoSDeCoS algorithm was implemented into the previously explained Iter-
Recon framework. The flow chart in Figure 11.4 and Algorithm 11.1 illustrate the
LoSDeCoS method.

The complexity of LoSDeCoS is analysed first for one iteration of the Split Breg-
man algorithm, consisting of the L2 minimization step and the shrinkage steps.
The L2 step with Ni iterations and the objective function LLos-L2 includes the eval-
uation of the data fidelity term, which lays within O(NiNpNγN log N) as discussed
in Section 9.3. For each penalty term two subtractions as well as the evaluation of
the transform are required. The transform costs for TV, and wavelet are within
O(NpN) and for temporal Fourier transform within O(NsNNt log Nt). The SVD
calculation for the matrix of size N × Np lies within O(4N2Np + 8NN2

p + 9N3
p) if

calculation of V and U is required. The total cost for Nj Bregman iterations thus
lies within O(Nj(NpN log Nt + N2Np + NN2

p + N3
p + NiNpNγN log N)).

11.3.2 Sparsity and Parameter Study

Different experiments were performed to evaluate the performance of the novel
LoSDeCoS algorithm regarding the fidelity compared to fully sampled reference
acquisitions in terms of image quality, NRMSE, SSIM and SNR, as well as accuracy
in the calculation of physiological values.

Different analyses were conducted based on the volunteer and patient data
to compare the results achieved with LoSDeCoS to state of the art methods and
to evaluate the robustness of the proposed method with respect to parametriza-
tion. Improvements compared to reconstruction without the L+S model were anal-
ysed qualitatively and quantitatively. The fully sampled reference data was recon-
structed (Reference) using SoS. The data was then retrospectively under sampled
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Algorithm 11.1 LoSDeCoS algorithm
Require: u, m, λt, λw, λf, λn, LLos-L2, Ni, Nj

INPUT: s0, l0

1: Calculate combined coil profiles ct
γ

2: for all j = 1 to Nj do
3: s0 = sj−1

4: l0 = lj−1

5: for all i = 1 to Ni do
6: Perform optimizer step with the obj. function LLos-L2(si−1, li−1) and its

gradient ∇LLos-L2(si−1, li−1)
7: Calculate the data fidelity term H(si−1, li−1) as illustrated in Figure 4.4
8: Evaluate the TV penalty term TVi(si−1)
9: Perform wavelet decomposition and evaluate the L1 wavelet penalty

term WV(si−1)
10: Update si, li

11: end for
12: Set sj = sNi

13: Set lj = lNi

14: Perform the shrinkage operations
15: (dj

x, dj
y, dj

z) = s1(sj, bj−1
x , bj−1

y , bj−1
z , 1

α )

16: dj
w = s2(sj, bj−1

w , 1
α )

17: dj
f = s2(sj, bj−1

f , 1
α )

18: dj
n = s3(lj, bj−1

n , 1
α )

19: Update the residual errors
20: bj

x = bj−1
x +∇xsj − dj

x

21: bj
y = bj−1

y +∇ysj − dj
y

22: bj
z = bj−1

z +∇zsj − dj
z

23: bj
w = bj−1

w + W(sj)− dj
w

24: bj
f = bj−1

f +Fv
t,s(s

j)− dj
f

25: Perform tensor unfolding with the transform L
26: bj

n = bj−1
n + L(lj)− dj

n
27: end for

OUTPUT: xNj = sNj + lNj

.
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Shared coil sensitivity calculation cγ

Require: Pattern u, Raw data m

Return: x

Penalty terms for
wavelet, TV, temporal
Fourier transform and
nuclear norm

Perform Ni iterations using the objective function
LLos-L2

Multi-dimensional
data fidelity
H(xi) =

∣∣∣∣Exi −m
∣∣∣∣2

L2

Soft isotropic TV thresholding dx, dy

Soft thresholding dw

Soft thresholding df

Singular value thresholding dn

Update bx, by, bw, bf , bn

Figure 11.4: Flow chart diagram of the LoSDeCoS algorithm including preprocessing, min-
imization and post processing steps.

using an acceleration factor of ξ = 9, which corresponds to 29/25 lines out of
256/224, and reconstructed with different reconstruction settings.

The used reconstructions differ in the employed regularization, the use of the
low rank assumption and the chosen minimization algorithm. The first iterative
experiment was the unregularized SENSE algorithm (ISENSE). Furthermore, re-
constructions including uniquely sparsity constraints, referred to by S-CS and the
proposed method including low rank and sparse assumptions LoSDeCoS were
performed. For S-CS, the following objective function was used:

LLos(x) =
1
2
||Ex−m||2L2︸ ︷︷ ︸

Data fidelity term

+λt ||∇(x)||L2,1︸ ︷︷ ︸
Total variation

+ λw ||W(x)||L1︸ ︷︷ ︸
Wavelet decomposition

+ λf
∣∣∣∣Fv

t,s(x)
∣∣∣∣

L1︸ ︷︷ ︸
Temporal Fourier Transform

. (11.35)
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For the proposed LoSDeCoS algorithm including both low rank and sparse terms,
solved with the Split Bregman method, the respective L2 problem reads

LLos-L2(s, l)

=
µ

2
||E(s + l)−m||2L2

+λSB
t
∣∣∣∣(dx, dy, dz)

∣∣∣∣
L2
+λSB

w ||dw||L1
+λSB

f
∣∣∣∣df
∣∣∣∣

L1
+λSB

n ||l||∗

+
αλSB

t
2

(∣∣∣∣∣∣dx−∇xs−bj
x

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dy−∇ys−bj

y

∣∣∣∣∣∣2
L2
+
∣∣∣∣∣∣dz−∇zs−bj

z

∣∣∣∣∣∣2
L2

)
+

αλSB
w

2

∣∣∣∣∣∣dw−W(s)−bj
w

∣∣∣∣∣∣2
L2
+

αλSB
f

2

∣∣∣∣∣∣df−Fv
t,s(s)−dj

f

∣∣∣∣∣∣2
L2

+
αλSB

n
2

∣∣∣∣∣∣dn−L(l)−dj
n

∣∣∣∣∣∣2
L2

, (11.36)

with µ = 1.0 and α = 2.0 and the weights λSB
t , λSB

w , λSB
f , λSB

n ∈ R to differentiate
them from the weights λt, λw, λf, λn used for the S-CS algorithm.
The regularization weights need to be carefully chosen to allow for a fair compar-

ison between the S-CS and LS-CS methods. Three variants can be thought of:

• Use of the same weights for both the sparse and the sparse + low rank
method.

• Find optimal weights such that NRMSE(x) is minimized.

• Choose weights such that the difference between the data fidelity term of the
L+S model and of the sparsity based algorithm is minimized.

The parameters were optimized using the low NRMSE(x) method for the follow-
ing experiments. Combinations of the included sparsity transforms wavelet, TV
and temporal Fourier transform were performed with the parameters optimized
using a grid search over λt, λw, λf = [0.00001, ..., 0.0002]. First, an experiment
involving three different combinations of sparsity transforms, was performed to
evaluate the influence of these regularization terms. For each combination, the
data was reconstructed with both S-CS and LoSDeCoS to analyse influence of
the low rank component in a fixed setting. This results in the reconstructions S-
CSTV-W, S-CSTV-vtFT, S-CSW-vtFT for the sparsity based version and LoSDeCoSTV-W,
LoSDeCoSTV-vtFT, LoSDeCoSW-vtFT for the novel LoSDeCoS version. Specifically
for TV, additional reconstruction were performed to assess the inferior results ob-
tained for the combinations including TV. These included the evaluation of the TV
regularization for different λt. The impact of the low rank regularization weight
λn was assessed with another experiment, keeping λt, λw and λf fixed and vary-
ing λn between 0.00001 and 0.1. The number of iterations Nj and Ni for LoSDeCoS
and Ni for S-CS was the focus of the next experiment, analysing the errors over
the first Ni = 15 or respectively Ni ·Nj = 15 iterations for fixed λt, λw, λf, λn val-
ues. Finally, the results obtained from these experiments were used to provide a
broader comparison.
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Method NRMSE SSIM CNRVT CNRVB

Reference 0.0 1.0 5.58 6.40

ISENSE 0.078 0.67 4.46 5.29

S-CSW-vtFT 0.051 0.76 3.64 4.81

LoSDeCoSW-vtFT 0.033 0.87 5.09 5.72

S-CSTV-vtFT 0.051 0.78 4.54 5.51

LoSDeCoSTV-vtFT 0.038 0.87 5.46 6.61

S-CSTVW 0.052 0.87 4.82 6.01

LoSDeCoSTVW 0.043 0.86 5.87 6.53

Table 11.1: Quantitative evaluation for different regularization combinations in the S-CS
and the LoSDeCoS algorithm.

11.4 Results

The results for the sparsity and parameter study as well as for the comparison
study are given in this section.

11.4.1 Sparsity and Parameter Study

The results of the sparsity transform study are shown in Table 11.1. The SSIM and
NRMSE show improved values for all S-CS and LoSDeCoS variants compared to
ISENSE. Comparing S-CS and LoSDECoS, the NRMSE was reduced and the CNR
improved for all LoSDeCoS variants compared to the respective S-CS reconstruc-
tions. For example, the NRMSE was reduced from 0.078 in the non-regularized
version to 0.033 for LoSDeCoSW-vtFT and to 0.051 for S-CSW-vtFT. This corresponds
to an error reduction of 57% for LoSDeCoS against 34% for S-CS. The comparison
of the sparsity variants reveals the lowest NRMSE (0.033) for S-CSW-vtFT compared
to S-CSTV-vtFT and S-CSTV-W (0.038 and 0.043). In contrary, the CNR is higher for
the latter. The deviations over encodings and time steps are visualized in Figure
11.5, showing the NRMSE for all 6 combinations and the unregularized SENSE
over 11 time steps for each of the four velocity encodings. In each case, the direct
comparison between the S-CS and the LoSDeCoS methods reveals a reduced error
for LoSDeCoS reconstructions compared to S-CS. The lowest error, combined with
low inter-encoding deviations is obtained for the LoSDeCoSW-vtFT algorithm.

The results of the TV reconstruction reveal a trade off between the NRMSE and
the TNRMSE for PCI data. While the NRMSE drops significantly with growing TV
weight, the TNRMSE grows, which corresponds to the visible under-estimation of
the velocity within the vessels as depicted in Figure 11.8 and in the image results in
Figure 11.9 shown in colour scale to better illustrate the differences. Figure 11.9(a)
gives the result for λt = 0.0001, Figure 11.9(b) for λt = 0.0005 and finally Figure
11.9(c) depicts the absolute magnitude difference between both.
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Figure 11.6: (a) NRMSE for S-CS and LoSDeCoS over the first 15 iterations and (b) nor-
malized NRMSE, SSIM, CNRVB and CNRVT plotted against λn in a logarithmic scale.

The influence of the number of iterations is illustrated in Figure 11.6(a), show-
ing the evolution of the NRMSE for S-CSW-vtFT and LoSDeCoSW-vtFT for the first
15 iterations. While S-CSW-vtFT reaches a minimum of around 0.05 for i = 9 and
retains a relatively stable error for more iterations, LoSDeCoSW-vtFT converges to
a lower error of just above 0.03. To ensure a fair comparison Ni ·Nj = 9 iterations
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Figure 11.7: Peak velocity over time calculated for different nuclear norm weights λn.
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Figure 11.8: Peak flow evaluation for different TV weights from 0.0001 to 0.0005.

(a) λt = 0.0001 (b) λt = 0.0005 (c) Difference images

Figure 11.9: Results and difference image for TV weights from 0.0001 to 0.0005.

were used for all comparisons. Figure 11.6(b) illustrates the effects of the nuclear
norm weight λn. The NRMSE, SSIM, CNRVB and CNRVT values were normal-
ized to values between 0 and 1 and are shown against the chosen weights in a
logarithmic scale. It can be observed that an increasing influence of the nuclear
norm leads to an increase in CNR and SSIM. It should be noted that the NRMSE
reaches a relatively stable minimum for λn ∈ [0.0001, 0.001], while the errors for
smaller and larger λn values are about a factor 10 larger. Figure 11.7 illustrates
as well the effects of high values of λn, showing the peak velocities over time for
the reference and different λn choices. For all depicted values of λn, the shape of
the profile was qualitatively comparable. However, growing λn correlates with an
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Method NRMSE SSIM CNRVT CNRVB

Reference 0.0 1.0 7.145± 2.115 8.640± 2.593

ISENSE 0.087± 0.019 0.78± 0.114 4.767± 1.460 5.843± 1.512

S-CSW-vtFT 0.064± 0.018 0.85± 0.068 5.425± 1.775 6.663± 1.957

LoSDeCoSW-vtFT 0.041± 0.012 0.91± 0.040 6.174± 1.767 7.315± 1.940

Table 11.2: Quantitative evaluation of the in-vivo volunteer data for LoSDeCoSW-vtFT, S-
CSW-vtFT and ISENSE.

Method NRMSE SSIM CNRVT CNRVB

Reference 0.0 1.0 6.082± 1.198 7.165± 1.979

ISENSE 0.126± 0.019 0.955± 0.019 3.331± 1.092 3.826± 1.226

S-CSW-vtFT 0.094± 0.021 0.976± 0.008 4.121± 1.252 5.013± 1.380

LoSDeCoSW-vtFT 0.072± 0.012 0.989± 0.003 4.861± 1.018 6.034± 1.423

Table 11.3: Quantitative evaluation of the in-vivo patient data.

under estimation of the absolute velocities. As a result of these parameter studies
a value of λn = 0.001 was chosen to obtain both valid velocity values and good
NRMSE, SSIM and CNR values.

11.4.2 Comparison

The results for the comparison between different reconstruction algorithms for all
volunteers are reported in Table 11.2. The results for the patients are given in
Table 11.3. Exemplary image results are shown for volunteer P7 in Figure 11.10.
These results illustrate the reduced noise level in LoSDeCoSW-vtFT compared to
ISENSE and S-CSW-vtFT. Furthermore, the small vessels in proximity of the CCA,
indicated by arrows, are better depicted. The L+S decomposition in Figure 11.12
shows a good depiction of the structures and the background with a very low
noise level for the low rank component and a separation of dynamically varying
and background tissue for the sparse part. The quantitative results in Table 11.2
show a reduction of the NRMSE from 0.087 (ISENSE) to 0.041 for LoSDeCoSW-vtFT.
Compared to the S-CSW-vtFT result (0.064), an NRMSE improvement of 35% as well
as an SSIM increase by 6.7 % are achieved. The standard deviation over all datasets
for LoSDeCoSW-vtFT is very low with 0.04 for SSIM and 0.012 for the NRMSE.
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(a) Reference (b) ISENSE (c) S-CSW-vtFT

(d) LoSDeCoSW-vtFT λn1 (e) LoSDeCoSW-vtFT λn2

Figure 11.10: Magnitude reconstruction results for the through-plane encoding for volun-
teer P7 at peak systole: (a) Reference (b) ISENSE (c) S-CSW-vtFT (d) LoSDeCoSW-vtFT with
λn1 = 0.001 and (e) LoSDeCoSW-vtFT with λn2 = 0.0001.

11.5 Discussion

11.5.1 Parameter Choices and Comparison

The results of the sparsity experiment illustrate the advantages of the L+S model
compared to a reconstruction relying uniquely on sparsity in a well defined setting
with the same choice of weights, iterations numbers and acceleration. The case
of wavelet-TV combination, where the difference was less significant, indicates
that the success of the L+S model partially relies on the use of temporal sparsity
transforms such as vtFT. The smoothing effect of TV regularization leads to in-
creased CNR both in the tissue and background, but this effect is counteracted by
the higher NRMSE, showing that the smoothing does not represent the true image
contents, which are of importance for the calculation of physiological values.

The experiments with different influences of the nuclear norm in Figure 11.6(a)
and Figure 11.7 reveal an interesting trade-off between image quality and accu-
racy. An increasing influence of the low rank part generates a measurable im-
proved image quality (high SSIM, high CNR) but a less accurate reconstruction of
the reference (as indicated in the NRMSE) and an under estimation of the physi-
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Figure 11.11: Volumetric flow, mean velocity profile and peak velocity profiles illustrated
for volunteer P7.

(a) L (b) S (c) S+L

Figure 11.12: Magnitude reconstruction results for the sparse and low rank part as well as
for the combination of both for volunteer P7 at peak systole: (a) Sparse part S, (b) low rank
part L and (c) combination of both S+L .

ological values. This effect is easily understood by the model assumptions them-
selves. The L part, representing the low rank background components, is modelled
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to be smooth, with minor changes between velocity encodings and time steps as
velocity-spatio-temporal correlations are assumed. The S part, on the other hand,
contains the dynamics over time, and by decreasing their influence compared to
the background (corresponding to increasing λn), the images tend to be smoother
over time and across velocity encodings, which explains the under estimation of
physiological values as well as the growing NRMSE. The observable NRMSE min-
imum between 0.0001 and 0.001, where both effects are balanced, indicate a stable
and optimal parameter choice.

The comparison results show that LoSDeCoSW-vtFT provides accurate recon-
struction results even for a high under sampling factor of 9. This factor is the net
reduction, as no external acquisition of low resolution data for coil profiles is re-
quired. The low standard deviations in the volunteer study, combined with the
possibility to use fixed parameters for all volunteers further indicate the stability
and robustness of the technique.

11.5.2 Limitations

The scope of this study was to show the benefit of variations in the sampling strat-
egy in both t and s directions, combined with the interleaved center acquisition
to obtain coil sensitivity information from the data itself. The proposed pattern
provides good artifact and image content separation, illustrated both in the recon-
struction results and the low rank experiment in Figure 11.1. However, further
pattern choices are possible.

The presented study focused on specific parameters, relevant for the L+S de-
composition model such as the nuclear norm weight and evaluated three different
regularizations in multiple combinations. Further parameter combinations could
be evaluated, including different choices for the thresholding parameters and reg-
ularization weights.

Retrospective under sampling was chosen for these experiments to be able to
compare the results with the fully sampled reference. This may be a limitation in
terms of ignoring additional effects that might be encountered with prospective
under sampling such as eddy currents. Nevertheless, the direct comparison with
the reference values extracted from the same data set for all time steps and encod-
ings is relevant for PCI for two reasons. First, the calculation of accurate velocity
values relies on the combination of different encodings and/or time steps, and the
accuracy of all of them should be of highest interest, which can only be achieved
with a fully sampled scan acquired in the same physiological state. Second, no fur-
ther method is able to acquire non-invasive anatomy-mapped 3-D velocity fields
as a reference. Velocity values obtained with US or Fractional Flow Reserve may
be beneficial for comparison in the future, but would not represent a suitable refer-
ence for the chosen application. Furthermore, the use of different regularizations,
ranging from very general to more specific assumptions, can be integrated into the
Split Bregman algorithm framework. The incorporation of flow or phase related
assumptions such as proposed by Zhao et al. [Zhao 12] might be useful.
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11.6 Summary and Conclusion

It was demonstrated that the proposed LoSDeCoS reconstruction method was ca-
pable of significantly accelerating the Phase Contrast acquisition by allowing an
acceleration of at least factor 9, decreasing acquisition time from about 9 minutes
in the carotid artery bifurcation to below 1 minute. The image quality and the
CNR are well preserved, which was shown by comparison to the fully sampled
reference data sets in a volunteer study. Moreover, the diagnostic value of the
LoSDeCoS reconstruction method was demonstrated in two patient cases. Fur-
thermore, the study has shown that the use of dedicated sparsity transforms is
advantageous in combination with the L+S model.

The LoSDeCoS method is by no means restricted to the shown application, but
can also be employed for different body regions or even acquisition types with
multiple contrasts.
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Summary

The focus of this work is the acceleration of non-contrast-enhanced Magnetic
Resonance Angiography (nceMRA) examinations. These can be divided into two
groups of methods, (i) morphological acquisitions using Time of Flight (TOF)
and magnetization-prepared balanced Steady State Free Precession (mp-bSSFP)
and (ii) functional acquisitions with Phase Contrast Imaging (PCI). While the first
group provides non-invasive alternatives to established clinical techniques, PCI
has the unique advantage to provide three-directional velocity fields simultane-
ously to the morphological information which is not yet clinical standard. All these
nceMRA techniques suffer from long acquisition times, which limit at present its
wider clinical use. Hence, acceleration is a problem of major interest and with
great potential impact. The techniques presented in this thesis focus on decreas-
ing imaging times by under sampling k-space below the Nyquist criteria and re-
constructing the Sub-Nyquist data with adapted Compressed Sensing (CS) and
parallel MRI (pMRI) based techniques.

The first part of this thesis focuses on the theoretical and methodological back-
ground. In Chapter 1, the human vessel system along with the relevant vascular
diseases and common angiographic techniques is presented. NceMRA acquisi-
tions are introduced as fully non-invasive alternatives to commonly used CTA,
ceMRA, DSA and US methods and the carotid artery bifurcation, the peripheral
arteries as well as the renal vasculature are targeted as applications for the devel-
oped techniques.

The relevant bases of MRI physics are presented in Chapter 2 concentrating on
the used acquisition techniques TOF for the peripheral arteries, mp-bSSFP for the
renal arteries and PCI for the carotid bifurcation.

Compressed Sensing and parallel MRI techniques are in the focus of Chapter 3.
First, signal processing background to the MRI reconstruction, detailing the finite,
discrete nature of MRI sampling and its limits resulting in aliasing and reduced
resolution, is given. The approach to limit the number of phase encoding steps
is introduced to accelerate the acquisition. Second, established pMRI methods
for MRI acquisition relying on spatial encoding with multiple coils are presented
and the method used within this thesis, SENSE, is formulated as a linear problem.
Third, CS, as a concept to obtain signals from sub-sampled measurements using
transform sparsity assumptions and non-linear reconstruction algorithms is intro-
duced and motivated for MRI. The principles of incoherence and sparsity with
their corresponding application in MR acquisition are explained. Finally, the joint
pMRI-CS problem is presented and relevant state of the art reported.
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Part II focuses on methods, experiments and results for morphological nceMRA
reconstruction techniques. The novel MultI-Coil Compressed Sensing (MICCS)
sampling pattern is introduced as a Cartesian analytical sampling scheme com-
bining the requirements for pMRI and CS in Chapter 4. The used objective func-
tion is developed with its data fidelity term and sparsity constraints. The Split
Bregman algorithm is adapted to the present problem as a promising alternative
to traditional gradient based algorithms as it allows for incorporation of specific
minimization strategies.
Subject of Chapters 5 and 6 is the application of the proposed methodical elements
to two applications, the visualization of the renal and peripheral arteries. They
differ in the dimensionality, as peripheral TOF is due to physiological reasons an
ECG triggered 2-D application and 3-D renal angiography with mp-bSSFP are res-
piratory triggered 3-D acquisitions. However, they share common challenges and
the need for significant acceleration while maintaining excellent image quality to
allow for their wider clinical usage. Chapter 5 reports the results obtained for the
proposed MICCS pattern evaluation, compared to five further sampling options
with the same number of acquired lines. Clear advantages of the MICCS strategy
especially regarding the vessel sharpness and the significantly reduced NRMSE
are observed. The reconstruction results of the adapted Split Bregman solver in
combination with the MICCS sampling proves the ability of the novel method to
produce excellent image quality and vessel sharpness even for a high under sam-
pling factor of 12. This corresponds to a reduction of the acquisition time by 83%,
which allows a wider use of the TOF acquisition for the visualization of the pe-
ripheral vasculature.
The application of the proposed algorithm to free-breathing renal acquisitions is
shown in Chapter 6 in combination with a dedicated organ-based evaluation strat-
egy. The study of possible acceleration factors reveal stable results even for higher
factors, reducing the effective scan time from over 8 minutes to less than 1 minute.
The combination with the Split Bregman algorithm shows advantages in the mea-
sured quantitative values both regarding NRMSE, SSIM and the vessel sharpness.
Finally, the comparison to the clinically established methods SENSE and GRAPPA,
using the same acceleration factor of 6, demonstrates the superior performance of
the iterative methods.

The focus of Part III are methods for the acceleration of PCI acquisitions. Chap-
ter 7 presents the multi-dimensionality and the required processing pipeline from
moving spins to physiological values as challenges of PCI and focuses on their
implications on the reconstruction. The dynamic nature of the data and the need
for multiple velocity encodings increase the computational effort but provide as
well possibilities for dedicated sampling and regularization strategies. The need
to process the reconstructed volumes further increases the importance of the tem-
poral and spatial accuracy of the complex reconstructed volumes.
The visualization of the region around the carotid bifurcation is chosen as targeted
application and presented in Chapter 8. The high prevalence of stenosis and cal-
cifications in the carotids with implications on further important cardiovascular
diseases such as strokes raises the clinical importance of this application. But it
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also provides an excellent example of the challenges of PCI, as the small vessel di-
ameters combined with high blood flow velocities increase the need for high spa-
tial and temporal resolution, which in consequence leads to long acquisition times
and the need for dedicated acceleration strategies. Phantom and in-vivo volunteer
data from 18 volunteers, acquired to evaluate the robustness and accuracy regard-
ing clinical values as well as physiological flow conservation laws are presented.
Furthermore two patient cases with severe ICA stenosis are acquired to show the
diagnostic usefulness of the proposed algorithms in presence of pathologies.

The joint iterative reconstruction problem for PCI is presented in Chapter 9
as well as the novel interleaved velocity encoding temporal sampling strategy,
called I-VT, which exploits all available dimensions. The developed PCI part of
the IterRecon framework is introduced, which includes a wide range of sampling,
regularization, optimization and evaluation possibilities.

Chapter 10 presents a novel regularization strategy, called temporal masked
and weighted L1 regularization (TMW), which focuses on exploiting intrinsic
properties of PCI to provide a regularization yielding good image quality com-
bined with high accuracy of the temporal evolution of the calculated physiological
values. Specific methodological elements are the calculation of the vessel masks
from a combination of dynamic and static images to obtain a more robust algo-
rithm as well as the masked and temporally weighted regularization. Over all
data sets, the results show a significantly improved image quality as well as accu-
racy of the physiological values. Furthermore, different variants and choices of the
regularization parameter detail specific advantages of the proposed method. The
results of patient cases, accelerated from over 3 minutes to less than 1 minute cor-
respond well to the diagnostic information available from CTA or ceMRA results.
Finally, the application of the low rank sparse decomposition on the PCI data is
motivated and developed in the LoSDeCoS algorithm in Chapter 11. LoSDeCoS
extends the concept of low rank sparse decomposition, previously presented for
dynamic MRI to the multi-dimensional case by proposing a joint temporal encod-
ing vector space. The nuclear norm is presented along with its justification to ap-
proximate the low rank case. Furthermore, the influence of the sampling pattern
on the rank compressibility is demonstrated. The unconstrained Split Bregman
algorithm is adapted to incorporate the different sparsity transforms and the nu-
clear norm. The results demonstrate the capability of LoSDeCoS to reconstruct
highly under sampled PCI data with good image quality and high Contrast to
Noise Ratio. Evaluation of the results in comparison to gradient based algorithms
is provided for different sparsity assumption combinations.

In Chapter 13 ideas on future work as well as combinations with further meth-
ods are discussed.
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Outlook

This chapter presents ideas for future work in both morphological and func-
tional nceMRA. The discussions from previous chapters are recalled and directions
for further research are presented.

Sampling Strategy and Coil Sensitivity Calculation

The proposed analytical MICCS pattern can be extended to incorporate further
sampling strategies such as Poisson distribution based approaches. Furthermore,
the combined coil sensitivity strategy, presented in the context of the I-VT pattern,
could be improved by sharing the coil sensitivity information not only over veloc-
ity encoding, but over adjacent time steps as well.

Regularization strategies

Further regularizations than the presented total variation and wavelet for the static
nceMRA data sets can be used. These include for peripheral TOF the proposed
vessel specific types such as vessel prior knowledge as shown in [Hutt 12b] and by
Stinson et al. [Stin 13]. Furthermore, multi-slice regularization can be thought of as
presented in [Hutt 13c]. But further, more general assumptions such as ridgelets,
curvelets as proposed by Al Zubi et al. [AlZu 11] can be of benefit for the chosen
application. For the renal acquisition, the discussion of the NRMSE over the y-
coordinate revealed an increased influence of the total variation regularized Split
Bregman algorithm in the slices within the kidneys. This result could be used to
design adapted regularization terms.

The different ways to incorporate the velocity encoding dimension within the
temporal Fourier term were discussed in Chapter 9, the vector based method was
chosen for the conducted experiments. However, investigation of different com-
binations can be beneficial, for example in combination with the group sparsity
approach presented by Huang et al. [Huan 09]. Specific flow based sparsity as-
sumptions such as the divergence free condition as proposed for non-iterative re-
construction by Busch et al. [Busc 12] and the different treatment for phase and
magnitude terms as shown by Zhao et al. [Zhao 12] may be of interest.

Combining MuFloCoS and LoSDeCoS

The masked and temporal weighted regularization strategy proposed in MuFlo-
CoS has shown to improve the accuracy of both image quality and physiological
parameters. Incorporating this into the low rank sparse decomposition proposed

169



170 Outlook

in LoSDeCoS could further accelerate the acquisition and improve the reconstruc-
tion results.

Dynamic Morphological NceMRA

The presented morphological nceMRA examinations are applications. Dynamic
acquisitions to evaluate not only the vessel lumen, but also the blood flow dynam-
ics in certain heart phases could be incorporated. These applications provide the
bridge to the presented PCI algorithms. For these, the temporal as well as the flow
encoding dimension are fully taken into account. The incorporation of temporal
regularization to dynamic morphological nceMRA into the framework is thus pre-
pared.

Processing Pipeline for PCI Data

Considering the processing pipeline for PCI data in Chapter 7, this thesis focused
on the reconstruction presented in step (B) of Figure 7.1. While a couple of steps
in the pipeline, such as the calculation of anatomical and phase difference images
(C) and the calculation of velocity maps (E) are straight forward, other steps would
benefit from further work. One example is the vessel segmentation step (D), where
state of the art segmentation algorithms could be considered. Examples are given
by Sundareswaran et al. and Odille et al. For step (F), the calculation of phys-
iological values, the volumetric flow, mean and peak velocity were considered.
While these are important clinical measures, further derived quantities such as
wall shear stress as proposed by Stalder et al. [Stal 08], which are of interest in
current research could be implemented.

Prospective Subsampling and Clinical Evaluation

Peripheral TOF data sets from 10 volunteers, 3-D bSSFP renal data sets from 10 and
PCI data sets from 18 volunteers were acquired and used for the evaluation. Fur-
thermore, the diagnostic usability of the produced results was assessed in two PCI
patient data sets. The retrospective under sampling approach was used through-
out the experiments to provide reliable references for the evaluation of the image
based and physiological measures. There is, however, a need for prospective ex-
periments to translate the gain in acquisition speed to practice and to be able to
evaluate further patient cases with an increased spatial or temporal resolution.
This could further demonstrate the benefits of the accelerated reconstruction and
generate new information for the clinical work flow.

Framework

The presented algorithms were implemented within the presented C++ frame-
work, which offers access to the manufacturer’s pipeline allowing to incorporate
data from the scanner and operates as a standalone platform for further evalua-
tions. The current implementation allows reconstruction in reasonable times for
evaluating different algorithms. It allow to reconstruct 3-D renal volumes of size
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N = 192× 68× 156 with Nγ = 10 coils in around 19 minutes, which is a reason-
able reconstruction time for performing evaluations. Increasing the reconstruction
speed is possible using acceleration strategies and implementation on graphical
processing units (GPUs) as proposed for example by Nam et al. and Smith et al.
[Nam 13] and [Smit 12].
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reconstruction for accelerated dynamic MRI with seperation of back-
ground and dynamic components”. pp. 88581Z–88581Z–8, 2013.

[Pelc 91] N. Pelc, M. Bernstein, A. Shimakawa, and G. Glover. “Encoding strate-
gies for three-direction phase-contrast MR imaging of flow”. Journal of
Magnetic Resonance Imaging, Vol. 1, No. 4, pp. 405–413, Jul-Aug 1991.

[Peng 10] H. H. Peng, S. Bauer, T. Y. Huang, H. W. Chung, J. Hennig, B. Jung,
and M. Markl. “Optimized parallel imaging for dynamic PC-MRI with
multidirectional velocity encoding”. Magnetic Resonance in Medicine,
Vol. 64, No. 2, pp. 472–480, Aug 2010.

[Picc 11] D. Piccini, A. Littmann, S. Nielles-Vallespin, and M. O. Zenge. “Spi-
ral phyllotaxis: The natural way to construct a 3D radial trajectory in
MRI”. Magnetic Resonance in Medicine, Vol. 66, No. 4, pp. 1049–1056,
Apr 2011.

[Pike 94] G. B. Pike, C. H. Meyer, T. J. Brosnan, and N. J. Pelc. “Magnetic res-
onance velocity imaging using a fast spiral phase contrast sequence”.
Magnetic Resonance in Medicine, Vol. 32, No. 4, pp. 476–483, Oct 1994.

[Pivz 06] A. Pižurica, A. Wink, E. Vansteenkiste, W. Philips, and J. Roerdink. “A
Review of Wavelet Denoising in MRI and Ultrasound Brain Imaging”.
Current Medical Imaging Reviews, Vol. 2, No. 2, pp. 247–260, May 2006.

[Plon 11] G. Plonka and J. Ma. “Curvelet-Wavelet Regularized Split Bregman
Iteration for Compressed Sensing”. International Journal of Wavelets,
Multiresolution and Information Processing, Vol. 9, No. 1, pp. 79–110, Jan
2011.

[Prin 09] M. R. Prince, H. L. Zhang, G. H. Roditi, T. Leiner, and W. Kucharczyk.
“Risk factors for NSF: a literature review”. Journal of Magnetic Reso-
nance Imaging, Vol. 30, No. 6, pp. 1298–1308, Dec 2009.

[Prue 06] K. P. Pruessmann. “Encoding and reconstruction in parallel MRI”.
NMR in Biomedicine, Vol. 19, No. 3, pp. 288–299, May 2006.

[Prue 99] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger.
“SENSE: sensitivity encoding for fast MRI.”. Magnetic Resonance in
Medicine, Vol. 42, No. 5, pp. 952–962, Nov 1999.

[Qu 07] P. Qu, J. Luo, B. Zhang, J. Wang, and G. X. Shen. “An improved iter-
ative SENSE reconstruction method”. Concepts in Magnetic Resonance
Part B: Magnetic Resonance Engineering, Vol. 31B, pp. 44–50, Feb 2007.

[Rama 11] S. Ramani and J. A. Fessler. “Parallel MR Image Reconstruction Us-
ing Augmented Lagrangian Methods.”. IEEE Transactions on Medical
Imaging, Vol. 30, No. 3, pp. 694–706, Mar 2011.

[Ravi 11] S. Ravishankar and Y. Bresler. “MR Image Reconstruction From Highly
Undersampled k-Space Data by Dictionary Learning”. IEEE Transac-
tions on Medical Imaging, Vol. 30, No. 5, pp. 1028–1041, May 2011.



Bibliography 197

[Rech 10] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed Minimum-Rank So-
lutions of Linear Matrix Equations via Nuclear Norm Minimization”.
SIAM Review, Vol. 52, No. 3, pp. 471–501, Aug. 2010.

[Rich 04] Y. Richter, A. Groothuis, P. Seifert, and E. Edelman. “Dynamic flow
alterations dictate leukocyte adhesion and response to endovascular
interventions”. The Journal of Clinical Investigation, Vol. 113, pp. 1607–
1614, Jun 2004.

[Riff 13] P. Riffel, U. I. Attenberger, S. Kannengiesser, M. D. Nickel, C. Arndt,
M. Meyer, S. O. Schoenberg, and H. J. Michaely. “Highly accelerated
T1-weighted abdominal imaging using 2-dimensional controlled alias-
ing in parallel imaging results in higher acceleration: a comparison
with generalized autocalibrating partially parallel acquisitions paral-
lel imaging”. Investigative Radiology, Vol. 48, No. 7, pp. 554–561, Jul
2013.

[Ring 04] S. Ringgaard, S. Oyre, and E. Pedersen. “Arterial MR Imaging Phase-
Contrast Flow Measurement: Improvements with Varying Velocity
Sensitivity during Cardiac Cycle”. Radiology, Vol. 232, No. 1, pp. 289–
294, Jul 2004.

[Roem 90] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. M.
Mueller. “The NMR phased array.”. Magnetic Resonance in Medicine,
Vol. 16, No. 2, pp. 192–225, Nov 1990.

[Rubi 10] R. Rubinstein, A. Bruckstein, and M. Elad. “Dictionaries for Sparse
Representation Modeling”. Proceedings of the IEEE, Vol. 98, No. 6,
pp. 1045–1057, June 2010.

[Rubi 12] G. Rubin and N. Rofsky. CT and MR Angiography: Comprehensive Vas-
cular Assessment. Wolters Kluwer Health, 2012.

[Sant 13] C. Santelli, T. Schaeffter, and S. Kozerke. “Radial k-t SPIRiT: Autocali-
brated parallel imaging for generalized phase-contrast MRI”. Magnetic
Resonance in Medicine, Vol. -, No. -, pp. –, Nov 2013.

[Sche 11] O. Scherzer. Inverse Problems - Methods. Springer, Berlin, Germany,
2011.

[Sher 11] M. Sherif, M. Abdel-Wahab, H. Beurich, B. Stoecker, D. Zachow,
V. Geist, R. Toelg, and G. Richardt. “Haemodynamic evaluation of
aortic regurgitation after transcatheter aortic valve implantation using
cardiovascular magnetic resonance”. Eurointervention, Vol. 7, No. 1,
pp. 57–63, May 2011.

[Sigf 12] A. Sigfridsson, S. Petersson, C. J. Carlhall, and T. Ebbers. “Four-
dimensional flow MRI using spiral acquisition”. Magnetic Resonance
in Medicine, Vol. 68, No. 4, pp. 1065–1073, Oct 2012.

[Sigo 11] M. Sigovan, M. D. Hope, P. Dyverfeldt, and D. Saloner. “Comparison
of four-dimensional flow parameters for quantification of flow eccen-
tricity in the ascending aorta”. Journal of Magnetic Resonance Imaging,
Vol. 34, No. 5, pp. 1226–1230, Nov 2011.



198 Bibliography

[Smit 12] D. S. Smith, J. C. Gore, T. E. Yankeelov, and E. B. Welch. “Real-Time
Compressive Sensing MRI Reconstruction Using GPU Computing and
Split Bregman Methods”. International Journal of Biomedical Imaging,
Vol. 2012, p. 864827, Jan 2012.

[Sodi 97] D. K. Sodickson and W. J. Manning. “Simultaneous acquisition of
spatial harmonics (SMASH): fast imaging with radiofrequency coil ar-
rays.”. Magnetic Resonance in Medicine, Vol. 38, No. 4, pp. 591–603, Oct
1997.

[Stad 09] A. Stadlbauer, W. van der Riet, S. Globits, G. Crelier, and E. Sa-
lomonowitz. “Accelerated phase-contrast MR imaging: comparison
of k-t BLAST with SENSE and Doppler ultrasound for velocity and
flow measurements in the aorta”. Journal of Magnetic Resonance Imag-
ing, Vol. 29, No. 4, pp. 817–24, Apr. 2009.

[Stal 08] A. F. Stalder, M. F. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and
M. Markl. “Quantitative 2D and 3D phase contrast MRI: optimized
analysis of blood flow and vessel wall parameters.”. Magnetic Reso-
nance in Medicine, Vol. 60, No. 5, pp. 1218–1231, Nov 2008.

[Stin 13] E. Stinson, E. Borisch, C. Johnson, J. Trzasko, P. Young, and S. Riederer.
“Vascular masking for improved unfolding in 2D SENSE-accelerated
3D contrast-enhanced MR angiography”. Journal of Magnetic Resonance
Imaging, Vol. -, pp. –, - 2013.

[Stor 12] P. Storey, R. Otazo, R. P. Lim, S. Kim, L. Fleysher, N. Oesingmann, V. S.
Lee, and D. K. Sodickson. “Exploiting sparsity to accelerate noncon-
trast MR angiography in the context of parallel imaging”. Magnetic
Resonance in Medicine, Vol. 67, No. 5, pp. 1391–1400, May 2012.

[Tao 13] Y. Tao, G. Rilling, M. Davies, and I. Marshall. “Carotid blood flow mea-
surement accelerated by compressed sensing: Validation in healthy
volunteers”. Magnetic Resonance Imaging, Vol. 31, No. 9, pp. 1485 –
1491, Nov 2013.

[Thom 04] R. B. Thompson and E. R. McVeigh. “Flow-gated phase-contrast MRI
using radial acquisitions”. Magnetic Resonance in Medicine, Vol. 52,
No. 3, pp. 598–604, Sep 2004.

[Thun 03] P. Thunberg, M. Karlsson, and L. Wigstrom. “Accuracy and repro-
ducibility in phase contrast imaging using SENSE”. Magnetic Reso-
nance in Medicine, Vol. 50, No. 5, pp. 1061–1068, Nov 2003.

[Thun 12] P. Thunberg, K. Emilsson, P. Rask, and A. Kahari. “Flow and peak ve-
locity measurements in patients with aortic valve stenosis using phase
contrast MR accelerated with k-t BLAST”. European Journal of Radiol-
ogy, Vol. 81, No. 9, pp. 2203–2207, Sep 2012.

[Toni 09] P. Tonino, B. D. Bruyne, N. Pijls, U. Siebert, F. Ikeno, M. van ‘t Veer,
V. Volker, G. Manoharan, T. Engström, K. Oldroyd, P. V. Lee, P. Mac-
Carthy, and W. Fearon. “Fractional Flow Reserve versus Angiography
for Guiding Percutaneous Coronary Intervention”. The New England
Journal of Medicine, Vol. 360, No. 3, pp. 213–224, Jan 2009.



Bibliography 199

[Trem 12] B. Tremoulheac, D. Atkinson, , and S. Arridge. “Motion and Contrast
Enhancement Separation Model Reconstruction from Partial Measure-
ments in Dynamic MRI”. In: (Proceedings) MICCAI Workshop on Spar-
sity Techniques in Medical Imaging, Oct 5, Nice, France, Oct 2012.

[Trza 13] J. D. Trzasko and A. Manduca. “A Unified Tensor Regression Frame-
work for Calibrationless Dynamic, Multi-Channel MRI Reconstruc-
tion”. In: G. E. Gold, Ed., Proceedings of the 21st annual meeting of the
ISMRM, Salt Lake City, USA, Apr 20-26, 2013.

[Tsao 05] J. Tsao, S. Kozerke, P. Boesiger, and K. P. Pruessmann. “Optimizing
spatiotemporal sampling for k-t BLAST and k-t SENSE: application to
high-resolution real-time cardiac steady-state free precession.”. Mag-
netic Resonance in Medicine, Vol. 53, No. 6, pp. 1372–1382, Jun 2005.

[U Ki 09] J. U-King-Im, V. Young, and J. Gillard. “Carotid-artery imaging in the
diagnosis and management of patients at risk of stroke.”. Lancet Neu-
rology, Vol. 8, No. 6, pp. 569–80, Jun 2009.

[Ueck 08] M. Uecker, T. Hohage, K. T. Block, and J. Frahm. “Image reconstruction
by regularized nonlinear inversion–joint estimation of coil sensitivities
and image content.”. Magnetic Resonance in Medicine, Vol. 60, No. 3,
pp. 674–682, Sep 2008.

[Ueck 09] M. Uecker. Nonlinear Reconstruction Methods for Parallel Manetic Reso-
nance Imaging. PhD thesis, Georg-August-Universität Göttingen, 2009.

[Ufla 06] R. Uflacker. Atlas of Vascular Anatomy: An Angiographic Approach. Lip-
pincott Williams & Wilkins, Philadelphia, USA, 2nd ed. Ed., 2006.

[Usma 11] M. Usman, C. Prieto, T. Schaeffter, and P. G. Batchelor. “k-t Group
sparse: a method for accelerating dynamic MRI”. Magnetic Resonance
in Medicine, Vol. 66, No. 4, pp. 1163–1176, Oct 2011.

[Vaal 93] J. J. van Vaals, M. E. Brummer, W. T. Dixon, H. H. Tuithof, H. Engels,
R. C. Nelson, B. M. Gerety, J. L. Chezmar, and J. A. den Boer. “Keyhole
method for accelerating imaging of contrast agent uptake”. Journal of
Magnetic Resonance Imaging, Vol. 3, No. 4, pp. 671–675, Jul-Aug 1993.

[Vand 96] L. Vandenberghe and S. Boyd. “Semidefinite Programming”. SIAM
Review, Vol. 38, No. 1, pp. 49–95, Mar 1996.

[Veli 10] J. Velikina, K. Johnson, W. Block, and A. Samsonov. “Design of Tempo-
rally Constrained Compressed Sensing Methods for Accelerated Dy-
namic MRI”. In: Proceedings of the Joint Annual Meeting ISMRM - ESM-
RMB, Stockholm, Sweden, May 1–7, p. 4865, 2010.

[Wang 04] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. “Image Quality As-
sessment: From Error Visibility to Structural Similarity”. IEEE Trans-
actions on Image Processing, Vol. 13, No. 4, pp. 600–612, Apr 2004.

[Wang 09] H. Wang, D. Liang, and L. Ying. “Pseudo 2D random sampling for
compressed sensing MRI”. In: IEEE, Ed., IEEE Confererence Proceedings
of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Sept
3–6, pp. 2672–2675, 2009.



200 Bibliography

[Whea 12] A. J. Wheaton and M. Miyazaki. “Non-contrast enhanced MR angiog-
raphy: physical principles”. Journal of Magnetic Resonance Imaging,
Vol. 36, No. 2, pp. 286–304, Aug 2012.

[Wiks 07] J. Wikström, L. J. S., Karacagil, and H. Ahlström. “Correlation of
femoral artery flow velocity waveform with ipsilateral iliac artery
stenoses assessed with magnetic resonance imaging”. Acta Radiolog-
ica, Vol. 48, No. 4, pp. 422–430, May 2007.

[Wort 12] P. W. Worters, M. Saranathan, A. Xu, and S. S. Vasanawala. “Inversion-
recovery-prepared dixon bSSFP: initial clinical experience with a novel
pulse sequence for renal MRA within a breathhold”. Journal of Mag-
netic Resonance Imaging, Vol. 35, No. 4, pp. 875–881, Apr 2012.

[Wrig 14] K. L. Wright, G. R. Lee, P. Ehses, M. A. Griswold, V. Gulani, and
N. Seiberlich. “Three-dimensional through-time radial GRAPPA for
renal MR angiography”. Journal of Magnetic Resonance Imaging, Vol. -,
pp. –, - 2014.

[Wrig 97] G. Wright. “Magnetic resonance imaging”. IEEE Signal Processing Mag-
azine, Vol. 14, No. 1, pp. 56–66, Jan 1997.

[Wytt 07] R. Wyttenbach, A. Braghetti, M. Wyss, M. Alerci, L. Briner, P. San-
tini, L. Cozzi, M. D. Valentino, M. Katoh, C. Marone, P. Vock, and
A. Gallino. “Renal artery assessment with nonenhanced steady-state
free precession versus contrast-enhanced MR angiography.”. Radiol-
ogy, Vol. 245, No. 1, pp. 186–195, Oct 2007.

[Ye 07] J. C. Ye, S. Tak, Y. Han, and H. W. Park. “Projection reconstruction
MR imaging using FOCUSS”. Magnetic Resonance in Medicine, Vol. 57,
No. 4, pp. 764–775, Apr 2007.

[Yell 83] J. Yellott. “Spectral consequences of photoreceptor sampling in the
rhesus retina”. Science, Vol. 221, No. 4608, pp. 382–385, Jul 1983.

[Yin 12] X. Yin, B.W., K. Ramamohanarao, A. Baghai-Wadji, and D. Abbott.
“Exploiting sparsity and low-rank structure for the recovery of multi-
slice breast MRIs with reduced sampling error.”. Medical & Biological
Enginering & Computing, Vol. 50, No. 9, pp. 991–1000, Sep 2012.

[Zhao 12] F. Zhao, D. Noll, J. Nielsen, and F. Fessler. “Separate Magnitude and
Phase Regularization via Compressed Sensing.”. IEEE Transactions on
Medical Imaging, Vol. 31, No. 9, pp. 1713–1723, Sep 2012.



Bibliography 201


	Cover
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Clinical Background
	1.1.2 Diagnostic Angiography

	1.2 Thesis Overview
	1.2.1 Focus of Research and Scientific Contributions
	1.2.2 Organization of the Thesis


	I Background
	2 Magnetic Resonance Angiography
	2.1 From Spin to Image - MRI in a Nutshell
	2.1.1 Spins and Magnetization
	2.1.2 Echo Generation
	2.1.3 K-space and Spatial Encoding

	2.2 Non-contrast-enhanced MRA Methods
	2.2.1 Time of Flight
	2.2.2 Magnetization Prepared Balanced Steady State Free Precession
	2.2.3 Velocity Encoded Phase Contrast Imaging

	2.3 Summary Conclusions

	3 Compressed Sensing MRI Reconstruction
	3.1 MRI Reconstruction: Signal Equation to Discrete Finite Sampling
	3.1.1 Discrete Formulation
	3.1.2 Discrete Sampling and Aliasing
	3.1.3 Finite Sampling and Resolution

	3.2 Parallel MRI and Extensions to Spatio-Temporal Correlations
	3.2.1 Spatial sensitivity information
	3.2.2 SENSE reconstruction as a linear problem

	3.3 Compressed Sensing in MRI
	3.3.1 Compressed Sensing
	3.3.2 Sparsity and Incoherence in MRI

	3.4 Parallel MRI Reconstruction in Compressed Sensing
	3.4.1 Problem Formulation
	3.4.2 State of the Art

	3.5 Summary and Conclusions


	II Compressed Sensing in MR Angiography
	4 Highly Accelerated Static NceMRA
	4.1 Motivation
	4.2 State of the Art
	4.3 Regularization and Sampling Strategy
	4.3.1 Regularization
	4.3.2 MICCS Sampling Strategy

	4.4 Reconstruction Algorithms
	4.4.1 Gradient Based Optimization
	4.4.2 Split Bregman Algorithm
	4.4.3 Formulation of Split Bregman for the pMRI CS Problem

	4.5 Implementation
	4.5.1 Complexity Analysis
	4.5.2 Parameter Choices

	4.6 Summary and Conclusion

	5 Accelerated 2-D Peripheral NceMRA
	5.1 Motivation
	5.2 Data and Evaluation
	5.2.1 Peripheral TOF Data Acquisition
	5.2.2 Volume Based Evaluation
	5.2.3 Organ Based Evaluation

	5.3 Evaluation of the MICCS Sampling Strategy
	5.3.1 Experimental Setup
	5.3.2 Results

	5.4 Highly Accelerated NceMRA of the Peripheral Arteries
	5.4.1 Experimental Setup
	5.4.2 Results

	5.5 Summary and Conclusions

	6 Accelerated 3-D Renal NceMRA
	6.1 Motivation
	6.2 Data and Evaluation
	6.2.1 Renal mp-bSSFP Data Acquisition
	6.2.2 Evaluation Strategy

	6.3 Acceleration Study
	6.4 Highly Accelerated NceMRA of the Renal Arteries
	6.4.1 Experimental Setup
	6.4.2 Results

	6.5 Comparison With Clinical State of the Art
	6.5.1 Experimental Setup
	6.5.2 Results

	6.6 Discussion
	6.7 Summary and Conclusion


	III Compressed Sensing in MR Phase Contrast
	7 Processing Pipeline and State of the Art in Phase Contrast MRI
	7.1 Motivation
	7.2 From Moving Magnetization to Physiological Values
	7.2.1 Acquisition and Reconstruction
	7.2.2 Postprocessing

	7.3 State of the Art in Accelerated PCI Reconstruction
	7.3.1 Non-iterative Reconstruction
	7.3.2 Iterative Methods
	7.3.3 Sampling

	7.4 Summary and Conclusion

	8 Experimental Setup
	8.1 Motivation for Carotid PCI
	8.2 Data
	8.2.1 Phantom Experiment
	8.2.2 In-vivo Study
	8.2.3 Patient Cases

	8.3 Evaluation Strategy
	8.3.1 Volume Based Evaluation
	8.3.2 Physiology Based Evaluation

	8.4 Summary and Conclusion

	9 Iterative Reconstruction for PCI
	9.1 Joint Regularized Iterative Reconstruction
	9.1.1 Joint Iterative Reconstruction
	9.1.2 Regularization Strategy

	9.2 Interleaved Velocity Encoding and Temporal Sampling
	9.2.1 Pattern Formulation
	9.2.2 Interleaved Central k-Space Sampling
	9.2.3 Peripheral Decreased Density Sampling

	9.3 Implementation
	9.4 Summary and Conclusion

	10 Multi-dimensional Flow-Preserving Compressed Sensing (MuFloCoS)
	10.1 Motivation
	10.2 MuFloCoS
	10.2.1 Vessel Masked and Temporal Weighted L1 Regularization
	10.2.2 Anatomy Based Sub Division

	10.3 Implementation and Experiments
	10.3.1 MuFloCoS Implementation Details
	10.3.2 Quantitative and Physiological Evaluation of the TMW Regularization
	10.3.3 Comparison Against State of the Art in CS for Carotid PCI
	10.3.4 Parameter and Robustness

	10.4 Results
	10.4.1 Quantitative and Physiological Evaluation
	10.4.2 Comparison against Carotid PCI State of the Art
	10.4.3 Robustness and Acceleration Studies
	10.4.4 Patient Cases

	10.5 Discussion
	10.5.1 Quantitative Evaluation
	10.5.2 Evaluation of I-VT, Shared Coil Profiles and TMW

	10.6 Summary and Conclusion

	11 Low Rank Sparse Decomposition based Compressed Sensing (LoSDeCoS)
	11.1 Motivation
	11.2 LoSDeCoS
	11.2.1 Influence of the Sampling on the Rank Minimization
	11.2.2 Low Rank Assumption
	11.2.3 Rank Minimization Using the Nuclear Norm
	11.2.4 Objective Function
	11.2.5 Minimization Using the Split Bregman Algorithm

	11.3 Implementation and Experiments
	11.3.1 LoSDeCoS Implementation Details
	11.3.2 Sparsity and Parameter Study

	11.4 Results
	11.4.1 Sparsity and Parameter Study
	11.4.2 Comparison

	11.5 Discussion
	11.5.1 Parameter Choices and Comparison
	11.5.2 Limitations

	11.6 Summary and Conclusion


	IV Summary and Outlook
	12 Summary
	13 Outlook
	List of Figures
	List of Abbreviations and Symbols
	List of Tables
	Bibliography


