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Abstract

This paper proposes a new system for offline writer iden-
tification and writer verification. The proposed method uses
GMM supervectors to encode the feature distribution of
individual writers. Each supervector originates from an in-
dividual GMM which has been adapted from a background
model via a maximum-a-posteriori step followed by mixing
the new statistics with the background model.

We show that this approach improves the TOP-1 accuracy
of the current best ranked methods evaluated at the ICDAR-
2013 competition dataset from 95.1% [13] to 97.1%, and
from 97.9% [11] t0 99.2% at the CVL dataset, respectively.
Additionally, we compare the GMM supervector encoding
with other encoding schemes, namely Fisher vectors and
Vectors of Locally Aggregated Descriptors.

1. Introduction

Similarly to faces [8] or speech [21], handwritten texts
can serve as a biometric identifier. Naturally, the question
of authenticity of documents plays an important role for law
enforcement agencies. However, writer identification and
verification have recently also gained attention in the field
of historical document analysis [4, 5]. Writer identification
attempts to identify the author of a document, given a known
set of writers. In contrast, writer verification seeks to an-
swer the question of authenticity, i.e. whether two given
documents are written by the same author or not.

Methods for writer identification (and verification) can
be roughly categorized into two groups [6]: The first group
contains methods which use global statistics to describe
handwriting, e.g. the angle of direction and the scribe
width [4, 6, 24]. These are also denoted as textural fea-
tures. The second group consists of methods operating on
the level of allographs, i.e. the writer is described by the
vocabulary of small parts of letters [0, | 1, 13, 23, 24]. The
proposed method belongs to this second group.

We propose to model the characteristics of each writer
by describing the global distribution of feature vectors com-

x2 x  Writer samples
Adapted Mixture
UBM

\
$1’

Figure 1: The Universal Background Model (blue) is adapted
to samples from one document.

puted from local image patches by a generative model. We
use the so-called GMM-UBM-supervector method, a well-
known approach in the field of speaker verification. In
speech analysis, the overall distribution of short-time spec-
tral feature vectors of all speakers is modeled by a Gaussian
Mixture Model (GMM). The GMM captures the domain’s
speech style in general, and is therefore termed the Uni-
versal Background Model (UBM). In order to describe the
speaker of a particular utterance, a maximum-a-posteriori
(MAP) adaptation of the UBM to the feature vectors from
that utterance is performed [21]. It turns out that stacking the
parameters of the adapted GMM (i. e. means, covariances,
and weights) in a so-called supervector yields an excellent
feature vector for characterizing the given speaker, be it
for identification [7] or other purposes such as age determi-
nation [3]. We adapt this approach by replacing the short
time spectral feature vectors by RootSIFT descriptors [1]
and using their distribution to characterize the writer of an
unknown document.

We show that the combination of RootSIFT descriptors
and GMM supvervector encoding outperforms the current
state of the art on two publicly available databases, namely
the ICDAR 13 database [16] and the CVL database [15]. Fur-
thermore, we show that the GMM supervector encoding
scheme surpasses other recently proposed encoding schemes
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like Fisher vectors [
Descriptors (VLAD) [
the evaluated cases.
The paper is organized as follows: Sec. 2 describes related
work. The details of our proposed method are presented in
Sec. 3. The datasets and evaluation are included in Sec. 4.

] or Vectors of Locally Aggregated
, 2] on these databases in most of

2. Related Work

Siddiqi and Vincent [24] have presented a method which
uses three different kinds of features: global features, poly-
gon features and codebook features. A universal codebook,
computed with the k-means clustering algorithm, and ad-
ditionally, a local codebook, computed for each document
individually by hierarchical clustering, is formed from image
patches. The authors achieved higher results by using the
universal codebook. In contrast to this work we adapt an
UBM to form an individual codebook, which is described by
a GMM, for each new document.

The current best performing method proposed by Jain and
Doermann [13] also uses document specific codebooks. For
each document a vocabulary of contour gradient descriptors
is computed using k-means. The gradient descriptors are
computed from segmented characters or parts of characters
(allograph). The allographs themselves are computed from
vertical cuts or seam cuts.

Closest to our approach is the work by Schlap-
bach et al. [22] on online handwriting recognition. At first,
they build an UBM by estimating a GMM, and then adapt
a GMM for each recorded handwriting. The similarity be-
tween two recordings is measured by using the sum of pos-
terior probabilities of each mixture. In contrast to this work
we employ RootSIFT descriptors and construct supervectors
from the adapted GMMs, c. f. Sec. 3.

Another form of encoding was employed by Fiel and
Sablatnig [11]. They first compute slightly modified SIFT
features. Then, a GMM is computed from a training set, serv-
ing as vocabulary. Using this vocabulary, the data of each
document is encoded using improved Fisher vectors [20].
The similarity between handwritten documents is computed
using the cosine distance of the corresponding Fisher vec-
tors.

3. Methodology

The general framework of our proposed approach works
as follows: first, RootSIFT features for each document
are computed. Descriptors from an independent document
dataset are used to train a vocabulary, i. e. our UBM, anal-
ogous to the typical bag-of-words approaches. Afterwards,
the UBM is adapted to each test document individually. The
new statistics are stacked into a so-called supervector to form
a feature vector for each document. The remainder of this
section provides the details of our features, the construction

of the UBM, the adaptation process, and the normalization
of the supervector.

Features: SIFT descriptors are widely used, e. g. in the
related fields of image forensics [9], or object retrieval [ 1, 2],
and have also been used for writer identification [11].

We employ RootSIFT features [ 1], i. e. a variant of SIFT
where the features are additionally normalized using the
square root (Hellinger) kernel. Since SIFT vectors are com-
posed of histograms, the Euclidean distance between two
vectors can be dominated by the large bin values. This effect
is reduced by using the Hellinger distance instead.

In practice this is achieved by applying the L1-norm
followed by an element-wise application of the square-
root. Note that the descriptors could also be densely sam-
pled [1, 2], however we evaluate the SIFT descriptors at the
originally proposed SIFT keypoints [17]. In this way, SIFT
features describing the document background are omitted.
This can be seen as analogous to the speech activity detector
for speaker recognition.

UBM: The UBM is created by estimating a GMM from
a set of SIFT descriptors X = {x; ...x7} computed from
training documents. Given a feature vector X, its likelihood
function is defined as

N
px|A) = Zwigi(x§ B X)) ey
i=1

It consists of a sum of N mixtures (weighted Gaussians
9i(x) = ¢i(x; p;, %;)), and is described by the set
of parameters A = {w;, pu;, ;i = 1,..., N}, where
N
Zi:l w; = 1
The GMM parameters are estimated using the
expectation-maximization (EM) algorithm [10]. The pa-
rameters A of the UBM are iteratively refined to increase the
log likelihood log p(X | A) = S, p(x: | A) of the model
for the set of training samples X. For computational effi-
ciency, the covariance matrix X; is assumed to be diagonal.
The vector of diagonal elements will be referred to as o2

GMM adaptation and mixing: The final UBM is adapted
to each document individually, using all M SIFT descriptors

computed at document W, Xy = {x1,...,xs}. For the
MAP estimation, first the posterior probabilities

W; g; (Xj)
N
> k=1 WkGk(X5)

are computed for all mixtures ¢ and each feature vector x;,
j € {1...M}. Up next, the mixture parameters are adapted.
Mixtures with high posteriors are adapted more strongly (c. f.

(i) = p(i]|x;) = ; 2



Fig. 1). This is controlled by a fixed relevance factor ™ for
the adaptation coefficients

- Z]M:1 (1)
of = 3
> =1 (i) + T

for each parameter 7 (7 € {w, p, 3}). Note that we set
fixed for each 7 as suggested by Reynolds et al. [21] (7 is
omitted subsequently). The mixture parameters are adapted
according to (for reasons of clarity, let x> = x ® x, u? =
1O p,and i = 1 ® fu, where © denotes the element-wise
multiplication):

M
W; :7(%27@(2')4—(1—%)%) 4@
j=1
N ij\il ;i (4)x;
P =oi—gr———— + (1 — ), )
S5ty mi(0)
~92 Zj\il Uy (Z)X?

Zj:l Tr.](l)

where 7y is a scaling factor ensuring that the weights of all
mixtures sum up to one.

For the task of writer identification the parameters of
the GMM adapted to one document are stacked into the
supervector

— ;) (0% + pl) — @i (6)

S= (W1, ..., 0N, il ... fin, 1, .. 60 (D)
Normalization: Each GMM supervector is normalized by

two normalization steps: first the square root is computed
element-wise and then each vector is L2-normalized. Note,
this is similar to the normalization scheme proposed by Per-
ronnin et al. [20] for Fisher vectors. For the distance between
two encoding vectors the cosine distance is employed.

The GMM supervector of a query document can thus be
used for the comparison with other supervectors computed
from documents of known authorship. For the identification
of the authorship, each distance from the query supervec-
tor to all other supervectors of the database is computed.
The resulting list of distances is then sorted. Either the list
can be further analyzed, e. g. inspecting the first 10 docu-
ments, or the author belonging to the smallest distance is
assigned to the query document. For writer verification, the
distance between the supervector of the query document and
a supervector of a document of known authorship is com-
puted and upon a decision threshold it is decided whether the
document is written by the same person or not. A suitable
decision threshold is typically chosen from the ROC curves,
c.f. Sec. 4.2, in a manner so that it fits a certain guideline,
e. g. to meet a specific verification rate.

4. Evaluation

We compare our results with two other encoding methods:
Fisher vector (FV) encoding [ | 9] and the encoding in Vectors
of Locally Aggregated Descriptors (VLAD) [14].

Fisher vectors are derived from Fisher kernels. The idea
is to transform samples, whose distribution is described by
a generative model, to a high dimensional feature space,
namely the gradient space of the model parameters. The
Fisher vectors used in this evaluation are in principle the
Fisher scores of the samples normalized by the square-root
of the Fisher information matrix [19]. These vectors can then
be used for classification using a discriminative classifier or
can simply be compared using e. g. the cosine distance. As
suggested by Perronnin et al. [20] the Fisher vectors are also
further L2-normalized to improve their performance.

In a supervised setting, when the generative model con-
tains the class label as a latent variable, Jaakkola and Haus-
sler [12] have shown that a discriminative classifier using
Fisher kernels is at least as good as the MAP labeling using
the generative model. However, the Fisher vectors we use
lose this advantage since the generative model is estimated
in an unsupervised manner.

In contrast to Fisher vectors, VLAD is a non probabilis-
tic version of the Fisher kernel encoding only first order
statistics [14]. However, Arandjelovi and Zisserman show
that additional normalization steps can improve the perfor-
mance and consequently outperform systems using Fisher
vectors [2]. Note that we do not employ cluster center adap-
tation since we do not have large variety between the training
set and the testing set. However we used intra-normalization
(component-wise L2-normalization). Also note that the
VLAD encodings are computed from the UBM, i.e. the
clusters are not quantized in a hard way. Instead, a soft quan-
tization scheme is computed using the posteriors computed
from the UBM.

In the following subsections, we first introduce the three
evaluation datasets and then describe our evaluation metrics.
After the determination of suitable GMM parameters and
adaptation parameters, we present our results for writer iden-
tification, verification, and compare our methods with the
state of the art.

4.1. Benchmark datasets and evaluation procedure

For the evaluation the publicly available CVL, ICDAR13
and IAM datasets were used. Example lines are shown in
Fig. 2.

ICDAR13 [16] is part of the ICDAR 2013 Writer Identifi-
cation Competition. It consists of an experimental dataset
and a benchmark dataset. The experimental dataset consists
of 100 and the benchmark set of 250 writers with four docu-
ments per writer. Two documents were written in Greek, the
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Figure 2: Example lines of the three datasets, from top to
bottom: CVL, ICDAR13 and IAM.

other two in English. The documents of the dataset are in
binary image format.

CVL [15] consists of handwritten English texts by 309
writers, with five documents per writer. One document is
written in German and the remaining four are written in
English. In contrast to the ICDAR13 dataset the documents
are captured in color. However, in the evaluation the color
of the handwriting is ignored and grayscale versions of the
images are used.

CvVL +ICDAR13: from the ICDAR13 benchmark set and
the CVL dataset we created a combined dataset consisting of
559 scribes with four documents per writer resulting in 2236
documents, i.e. we omitted one document for each writer
of the CVL database. Note, in the remainder of the text we
refer to this dataset as MERGED.

Vocabularies: For the generation of the UBM for the CVL
and the ICDAR13 evaluation, we used both times the IC-
DAR13 experimental dataset. To see the influence of the
background model, we also trained a second UBM using
samples from the IAM dataset [18]. There, a subset of 356
writers, which contributed one page each, was used. Thus,
for the experiments conducted on the MERGED database
we show the results using a) the UBM estimated from
the ICDAR 13 experimental and b) estimated from the [AM
database.

4.2. Evaluation Metrics

We will express the results of our evaluation in mean
average precision (mAP), receiver operating characteristic
(ROC) and cumulative match characteristic (CMC) curves.

Mean average precision is a measure used in the context
of information retrieval. First, the average precision (aP) for
each query of size ), of which R documents are relevant, is
calculated by

Q

aP = & ; Pr(k) - rel(k) (8)
where Pr(k) is the precision at rank k of the query (i. e. num-
ber of relevant documents in the first £ query items divided

[TOP-1] SV FV  VLAD

SIFT 0.943 0.828 0.861
RootSIFT 0972 0945 0.931

Table 1: Comparison of SIFT and RootSIFT for the three
proposed encoding schemes.

by k), and rel(k) is a binary function that is 1 when the doc-
ument at rank k is relevant, and 0 otherwise. Consequently,
the soft TOP-k accuracy refers to the aP at a specific rank k.

The mAP is calculated by averaging over the aP values
of all queries. mAP assigns higher values to methods that
return relevant documents at low ranks in a query. Note, this
is related to the writer retrieval criterion which has recently
beenused [11, 15].

The ROC curve describes the verification rate, i.e. it
compares two adapted GMMs in a two class classification
problem, where the question is whether the GMMs describe
the same writer or not. Hereby, the verification rate (or true
positive rate) is plotted as a function of the false positive
rate for different cut-off points. Each point on the ROC
curve represents a pair corresponding to a particular decision
threshold, i. e. a cut-off threshold on the distances between
the GMMs. The closer the ROC curve is to the upper left
corner, the higher the overall accuracy of the test.

The CMC curve depicts the 1 : k identification rate. It
plots the identification rate as a function of the rank £, i. e.
it shows the probability that a subject is under the first k
scribes with the corresponding % highest scores. Note, this
is related to to the soft Top-k criterion of the ICDAR 2013
competition [16].

4.3. SIFT vs. RootSIFT

This and the following experiment have been conducted
on the ICDAR13 dataset. Unless being evaluated, the param-
eters are set to: r = 16, N = 64 and a full supervector, i. e.
weights, means, and variances are taken.

Arandjelovic and Zisserman [!] showed that the SIFT
descriptor profits from an additional normalization scheme
using the square root (Hellinger) kernel. Table 1 shows the
benefit of using this Hellinger normalization over the normal
SIFT descriptor. Especially the Fisher vectors and VLAD
encodings improve by a large margin.

4.4. Method Parameters

In this experiment the optimal values for the GMM param-
eters are evaluated. The experiment is divided into evaluating
the number of mixtures IV, the relevance factor r and the
feature combinations for the GMM supervector (SV) con-
struction, i. e. a supervector solely formed by the covariances
(c), or means (m), or by the combination of both (mc), or by
adding the weights (w). The optimal parameters in terms of
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Figure 3: Evaluation of the GMM and mixing parameters on ICDAR13
TOP-1 mAP TOP-1 TOP-2 TOP-3 TOP-4 mAP
N\ 0.97  0.666 CVI[Il] 0978 0956 0.894 0.758 -
SV + SR normalization 0971 0.671 CS[13] 0.979 0.90 0.71 0.483 -
L VLAD 098 0954 0871 0.720 0.936
Table 2: Influence of GMM supervector (SV) normalization. FV 0.984 0.952 0.880 0756 0.940
Top: plain GMM supervector + L2 normalization, bottom: SV 0'992 0.981 0'958 0.887 0'971

GMM supervector + (element wise) square root normaliza-
tion + L2 normalization.

TOP-1 accuracy on the ICDAR13 dataset are found to be a
number of mixtures N = 100 with a relevance factor r = 28
and a supervector consisting of all the weights, means and
covariances (c. f. Fig. 3).

4.5. GMM Supervector Normalization

We conducted a small experiment to show the benefit of
a appropriate normalization. The GMM supervectors are
first normalized by taking the square root element-wise (SR)
followed by the L2 normalization of the whole vector, we
compare this with the results when omitting the SR normal-
ization, i. e. the supervectors are only normalized by their
L2 norm. Table 2 shows that in terms of mAP the method
greatly improves using this normalization scheme.

4.6. Results

We now present the results, first in terms of writer iden-
tification and then in terms of writer verification. Where
possible, we compare our approach with the current state of
the art. Furthermore, we compare to the two other encoding
schemes: Fisher vectors and VLAD.

4.6.1 Writer identification

Writer identification attempts to find the author of a docu-
ment from a set of known authors. The identification rate
can be described in terms of a soft evaluation, i.e. under
the first £ documents at least one document of the author in
question must occur. This is depicted in the CMC curves of
Fig. 4. Comparing Fig. 4a with Fig. 4b it can be noticed that

Table 3: Hard criterion evaluated on CVL. The proposed
method (SV) is compared with the state of the art CV, CS
and with two other encoding methods FV, VLAD.

in general the ICDAR13 dataset is more challenging than
the CVL database. In all three experiments the proposed
GMM supervectors achieve the highest identification rates.
At the CVL database the other two encoding schemes (Fisher
vectors and VLAD) outperform the current best performing
method by Fiel and Sablatnig [ 1] (CV) as well. In contrast,
when evaluating the methods on ICDAR13, the current best
performing method, denoted as CS, by Jain et al. [13] is bet-
ter than using Fisher vectors and VLAD. Still, our proposed
method performs overall the best on ICDAR13.

Fig. 4c depicts that GMM supervectors are better than
Fisher vectors followed by VLAD. It also shows that using
the UBM trained on ICDAR13 is slightly better than the
UBM computed from the TAM.

For a better comparison with the state of the art we show
the measurements in terms of hard TOP-1-3 and hard TOP-1-
4 for the ICDAR13 and CVL databases, respectively. Given a
query document, the hard TOP- rates denote that under the
first £ nearest retrieved documents from the database exactly
k documents are written by the same author. Furthermore,
we present the mAP value for all three datasets to express
the overall retrieval performance of each method.

Table 3 shows the results of the hard criterion evaluated on
the CVL database. We compare the three encoding schemes:
GMM supervectors (SV), Fisher vectors (FV), and VLAD.
Additionally, we list the best ranked method of the ICDAR13
competition, denoted as “CS” [13], as well as the best ranked
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Figure 4: CMC Curves showing the writer identification performance of the proposed method (SV)
evaluated at three different datasets in comparison to two other encoding schemes FV and VLAD.
Additionally, the identification rater of the current best method of the ICDAR13 competition by
Jain et al. [13] (CS), taken from the ICDAR13 competition evaluation [16], and the current best
method of the CVL database by Fiel and Sablatnig [1 1] (CV) are included. Note that only the values
for TOP-1, TOP-2, TOP-5, and TOP-10 were given for these two methods. For the MERGED database
(c) we compare the encoding schemes using two different vocabularies, computed from i) ICDAR13

and ii) TAM.
TOP-1 TOP-2 TOP-3 mAP
CVI[Il] 0909 0448 0.245 -
CS[13] 0951 0.196 0.071 -
VLAD 0926 0429 0.248 0.651
FV 0942 0475 0.25  0.677
SV 0971 0428 0.238 0.671

Table 4: Hard criterion evaluated on ICDAR13. The pro-
posed method using GMM supervectors (SV) is compared
with the methods by Fiel and Sablatnig [11] (CV) and
Jain et al. [13] (CS) as well as with Fisher vectors (FV)
and VLAD.

method of the CVL database, denoted as “CV” [11]. As
Table 3 shows, the proposed method clearly surpasses the
current best ranked methods. It is followed by the other two
encoding schemes Fisher vectors and VLAD which do not
differ much in their performance.

The results from the evaluations using the ICDAR13
benchmarking set are shown in Table 4. Here, a slightly
different outcome can be noted. The proposed method using
GMM supervectors is still the best in terms of TOP-1 accu-
racy. However Fisher vector encoding is slightly better in
terms of mAP, TOP-2 and TOP-3.

Naturally, the results on the MERGED dataset slightly dif-
fer depending on whether the vocabulary was computed from
the ICDAR13 experimental set or the IAM dataset, c. f. Ta-
ble 5. In terms of mAP the vocabulary computed from the

TOP-1 TOP-2 TOP-3 mAP
VLAD-ICDAR 0957 0.713 0571 0.814
FV-ICDAR 0966 0.738 0.588 0.833
SV-ICDAR 0982 0.733 0.624 0.841
VLAD-IAM 0951 0.719 0593 0.818
FV-IAM 0966 0.751 0.608 0.841
SV-IAM 0981 0.745  0.638 0.849

Table 5: Hard criterion evaluated on the MERGED DB. In the
top three experiments, the UBM has been created using the
IcDAR13 experimental, in the bottom three, the UBM has
been created using the IAM dataset. The proposed method
using GMM supervectors (SV) is compared with Fisher
vectors (FV) and VLAD.

completely independent dataset IAM slightly improved the
results of all three methods. However, the TOP-1 rates of
VLAD and the GMM supervectors deteriorate slightly.

4.6.2 Writer verification

Writer verification decides for each pair of documents
whether they were written by the same author or not. In
contrast to the identification problem, this is a binary classi-
fication and thus can be evaluated with a ROC curve.

The ROC curve of Fig. 5a depicts the verification rates
when evaluating the GMM supervectors (SV), Fisher vec-
tors (FV) and VLAD on the CVL database. While the pro-
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Figure 5: ROC curves showing the writer verification performance of the proposed encoding scheme
(SV) evaluated at three datasets. They are compared with Fisher vectors (FV) and VLAD. For the
MERGED database we compare the encoding schemes using two different vocabularies, computed

from i) ICDAR13 and ii) IAM. Please note the logarithmic scaling of the z-axis.

posed method is by a large margin better than Fisher Vectors
and VLAD at lowe false positive rates, these two encoding
schemes perform very similar.

The results for the evaluation of the ICDAR13 dataset
are depicted in Fig. 5b. As earlier in Fig. 5a, the proposed
method exceeds the other two encoding schemes.

Comparing the two databases ICDAR13 and CVL with
each other, the ICDAR13 database seems to be much more
competitive than the CVL database. Two explanations may
be given for this: on one hand, the ICDAR13 dataset contains
only binary data, while the CVL database is composed of
colored images. Although the color information is lost due
to the grayscale conversion, the gradient magnitudes are
still more variable among the dataset, and thus, the SIFT
descriptors might be more discriminative for a single author.
On the other hand, the ICDAR13 images contain less text
than the CVL database. Consequently, fewer feature vectors
per images are computed for the ICDAR13 database.

As Fig. 5c shows, the performance of the methods de-
pends on the dataset used for training the UBM when evalu-
ating on the MERGED dataset. While the IAM dataset seems
to be favorable in terms of mAP, c.f. Table 5, the GMM
supervectors slightly lose the accuracy at low false positive
rates. In contrast, Fisher vector encoding, and especially
VLAD, improve using this database as vocabulary. VLAD
even outperforms the Fisher vector encoding, which cor-
roborates the results of Arandjelovi et al. [2], i. e. with an
additional center normalization the results of VLAD could
be improved if the vocabulary has been trained on a dataset
with different characteristics from the test set.

If the ICDAR13 experimental set is used as UBM, the
results for the supervector encoding slightly improve at very
low false positive rates, while the other two databases lose

performance. Please also note that in terms of equal error
rate (EER), i. e. where the false positive rate is equal to the
verification rate, no big difference can be determined, all
three methods have an EER of a) CvL 0.20 b) ICDAR13
0.25 and ¢) MERGED 0.25 (note the x-axis is denoted with
logarithmic scale, thus the EER does not lie on the diagonal
of the plot).

5. Conclusion

We have presented a system for the problem of writer
identification and writer verification that is based on build-
ing a generative model from similar data. The model is used
to extract features for individual documents following the
supervector idea, which is adapted from the field of speaker
recognition. As an universal background model a GMM
is used that is later adapted to each query document indi-
vidually. Adaptation is achieved by first performing one
MAP step followed by mixing the new computed statistics
with the ones of the UBM. The parameters of the adapted
GMM are stacked together to form the GMM supervector.
After suitable normalization the supervector is used as a
discriminating feature vector for one document.

We could show that this approach achieves the best scores
in terms of writer identification and verification, outperform-
ing the current best methods. In particular, we could show
that thanks to the adaptation and mixing step the proposed
supervector encoding outperforms the two other tested en-
coding schemes: Fisher vectors and VLAD. On the ICDAR13
and CVL datasets our method improves the TOP-1 accuracy
from the best previously published results from 95.1% to
97.1%, and from 97.9% to 99.2%, respectively.

As part of our future work, we want to evaluate the effect
of replacing SIFT with other feature descriptors. Further-



more, the GMM supervector encoding could be further im-
proved by combining multiple GMM supervectors, adapted
from different vocabularies.
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