

Seminar Automatic Question Answering Using IBM Watson

Project:

Medical Assistant(Chest X-ray Image Classifier)

By: Johar Kanti Sarker Arindam Chakraborty

Organization:

- > Project Objective
- Training of Classifier
- Creation of Chat bot
- Create Web Infrastructure
- Create Web based User Interface
- > Fuse the classifier and Chat bot in User Interface

Project Objective :

- Use Chest X-ray Image
- **Detect diseases**

√

- Integrate multiple classifier kernel with a web framework
- Provide a web based user interface for easy and mobile access
 - Use as an assistant tool for Doctors

Training of Classifier

Training of Classifier

- Data set selection
- Choosing Training Data
- Train Classifier

Dataset selection:

 Reviewed Dataset NIH Chest X-ray Dataset Over 112,000 Chest X-ray images from more than 30,000 unique patients National Institutes of Health Chest X-Ray Dataset + last updated 6 months ago 							
Overview Data Kernels Discussion	Activity	Download (42 GB)					
Tags machine learning medicine lar	ge featured						
Top Contributors	Kernels >	Discussion >					
Kevin Mader 1st	Lung deseases data analysis 23 votes - 4 months ago	Patient Age / Follow-up Number 1 reply - a month ago					
Stephane Bernadac 2nd	Train Simple XRay CNN 12 votes - 4 months ago	List of papers and posts 4 replies - a month ago					
paultimothymooney 3rd							

Source: https://www.kaggle.com/nih-chest-xrays/data/version/1

Choosing Training Data 1/5:

With huge data, comes huge Problem

Choosing Training Data 2/5:

With huge data, comes huge problem

Choosing Training Data 3/5:

Hand picked images

- with better contrast
- Images having visually better feature

Choosing Training Data 4/5:

- I12,000 images
- 14 classes

Selected diseases:

Classes:

Lung Hernia

Image Source: https://www.urmc.rochester.edu/

Choosing Training Data 5/5:

Creation of Chat bot

Creation of Chatbot:

Watson /

Plan: free Upgrade
Plan: free Upgrade
Plan: free Upgrade
Plan: free Upgrade
Show Configure credentials

Creation of Chat bot:

For each of the classes we have created :

- Intent, Entity, dialogue
- > Each entity has values:
- definition, causes, symptoms, diagnosis and treatment
- Dialogue nodes contains dialogues for each of the classes along with greetings node

Creation of Chat bot:

- > The chat bot interface is developed in Java
- We created a .jar file from the class and then executed anywhere we needed such as inside python or Java script

```
🕗 WatsonChat.java 🖾
 34
 35 @SuppressWarnings("serial")
 36 public class WatsonChat extends JFrame {
 37
 38
 39
         private static final String WATSON CONVERSATION USERNAME = "62ee3d3a-b3f8-4a01-b85b-97c0358b1dc7":
         private static final String WATSON_CONVERSATION_PASSWORD = "za8u4Xld2Cqb";
 40
         private static final String WATSON CONVERSATION WORKSPACE ID = "24e99336-59ef-4602-9cb8-cllfcbblae87";
 41
 42
         //-----
 43
 44
         private static final String WCS CLIENT ID = "user id johar";
 45
 46
         private static final int WIDTH PX = 640;
         private static final int HEIGHT PX = 480;
 47
 48
 499
         private final WcsClient mWatson = new WcsClient(
 50
                WATSON CONVERSATION USERNAME,
 51
                WATSON CONVERSATION PASSWORD,
 52
                WATSON CONVERSATION WORKSPACE ID);
 53
 54
         private final ExecutorService mExecutor = Executors.newSingleThreadExecutor():
 55
         private final StringBuilder mSb = new StringBuilder();
 56
 57
         private final JTextArea mTextArea = new JTextArea();
 58
         private final JTextField mTextBox = new JTextField(""): //client text box
 50
```


Creation of Chat bot:

- Chat bot in action
- > We also used 3rd party Chatlio service for web integration

Chat with Medical Assistant	
Chat History:	Clear
Assistant:Hello, I am your Medical Assistant chat bot. YOU:hi Assistant:Hello, Welcome to the chat. YOU:thanks, I want to know about pelural effusion. Assistant:What do you want to know about Pleural effusion? For further informat effusion such as causes, symptoms, treatment and diagnosis, please mention any o them.	ion on one of
Input Text: (press ENTER-KEY to send)	
tell me the diagnosis of pelural effusion.	

Creating Web Application Infrastructure

For creating Web Application Infrastructure

Web Framework (Django)

Architecture Pattern (MTV)

configure for classifier integration

configure for server communication

Web User Interface for user interaction

Django Web Framework

- A high-level Python Web framework
- Can be focused separately on:

business logic and presentation layer

Focus on automation

Widely supported with many deployment options

Django Web Framework

Architecture Diagram

MTV Architecture

- MTV stands for Model Template View
- Django Components
 - Model Django ORM
 - Templates Django Template Engine (HTML)
 - Views Python function

MTV Architecture

Deploying Classifier kernel

- Put the classifier packages in the same folder with static folder
- Multiple classifier packages can be deployed
- Configure and Map static and Media directory in settings.py
- Create model files and folder to store image data
- Create interface file(*_upd.py) to interact with the classifier
- Create view files(tfExec.py) to handle request and response
- Map the view resource with the url pattern in urls.py

Web User Interface

- Create static pages using HTML
- HTML, CSS and other static resources in static folder
- The view generates the dynamic components
- User uploads the image through the UI
- Provide facilities for image cropping of selected image to discard unnecessary data for more accurate classification
- Map url pattern with static html as template view in urls.py

Technologies used

- Python For view and core logic
- HTML For static view
- Jquery For presentation layer logic
- Yethon Image Library(PIL) For preprocessing of image
- Tensorflow library For preparing image tensors for classifiers
- Used a plug-in 'Chatlio' for js based chatbot integration

Classifiers : MobileNet Vs Inception

TensorFlow:

- An open source software library for numerical computation using dataflow graphs.
- Nodes in the graph represents mathematical operations, while graph edges represent multidimensional data arrays (aka tensors) communicated between them.
- The flexible architecture allows to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API

Classifiers : Inception

- A deep convolutional neural network architecture
- Hallmark of this architecture is the improved utilization of the computing resources inside the network
- This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant.

Classifiers : Mobilenet

- MobileNet V2 is a family of neural network architecture
- Efficient on- device image classification and related tasks
- Originally published by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen: "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation", 2018.

Which Model : Inception vs Mobilenet

- Performance of MobileNet model relative to Inception V3 is usually lower since MobileNet is optimized for speed whereas Inception aims for correctness.
- MobileNet has a much lower model size compared to Inception model
- MobileNet training accuracy can sometimes be better in case of reduced training sets
- MobileNet has shorter prediction time compared to Inception

Web User Interface: select file

Chest X-Ray Analyzer	×	Chatlio - Live chat for Slack X	# * semwatson semwatson Slack ×	+		
\leftrightarrow > C' \textcircled{a}		i 127.0.0.1:8000/ui		🔽 🏠 🔍 Search		
			X-Ra	y Image Diagnosis Tool		
			Please select a classifier			
			Step1: Please select image file			
				Browse		

Web User Interface: crop & upload for classification

Web User Interface: using single classifier

Web User Interface: performance comparison

Future Work:

- Add more classes
- Add image pre-processing facility
- Improve GUI and Chat-bot
- Better classification model
- Add heat map

Thank You :)

Questions ?