Neural Network Nearest-Neighbour Transformation for Segmentation of Retinal Blood Vessels

Bachelor's Thesis Introductory Talk

Anne-Marie Strauch Supervisors: Lennart Husvogt, Tino Haderlein, Andreas Maier 25.07.2016 Pattern Recognition Lab (CS 5)

- Motivation
- Introduction
- Method
- Process

- Motivation
- Introduction
- Method
- Process

Fundus Photography

- important modality for examining eye
- diagnosis of diseases (e.g. glaucoma, diabetic retinopathy)
- segmentation supports computer-aided diagnosis

[DRIVE database]

Neural Networks

• good performance in computer vision tasks

- Motivation
- Introduction
- Method
- Process

Neural Networks

Convolutional Neural Networks

- inputs are images
- learnable filters
- parameter sharing \rightarrow less parameters to train
- neurons not fully connected

Convolutional Neural Networks

1st hidden layer

2nd hidden layer [Zeiler & Fergus, 2013]

3rd hidden layer

• each following layer detects more abstract features

Neural Networks - Problems

- image transform too complex for network to learn explicitly
- underfitting effects
- overfitting effects
- complex/deep network hard to train (local minima)

- Motivation
- Introduction
- Method
- Process

N⁴-Fields

N⁴-Fields: Neural Network Nearest Neighbor Fields for Image Transforms

Yaroslav Ganin, Victor Lempitsky Skolkovo Institute of Science and Technology (Skoltech)

- architecture for natural edge detection/thin object segmentation
- neural network and nearest-neighbour search applied sequentially
- process images patch-by-patch

N⁴-Fields

- run patch through convolutional neural network
 - \rightarrow receive neural code
- compare with dictionary entries through nearest-neighbour search
 - \rightarrow retrieve output patch
- average all output patches to segmented image

- Motivation
- Introduction
- Method
- Process

Process

- train convolutional neural network (GPU)
- evaluate on DRIVE database
 - = digital retinal images for vessel extraction

• Play with it!

- \rightarrow adjust hyperparameters (learning rate, regularization, ...)
- \rightarrow try to improve performance

Thank you for your attention!

TECHNISCHE FAKULTÄT

References

- Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Advances in Neural Information . . . (2012) 1–9
- Mnih, V., Hinton, G.E.: Learning to detect roads in high-resolution aerial images. In: Computer Vision–ECCV 2010. Springer (2010) 210–223
- LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a backpropagation network. In: NIPS. (1989) 396–404
- Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks. (2012)
- Ganin, Y. and Lempitsky, V.S.: N⁴-Fields: neural network nearest neighbor fields for image transforms. In: ACCV. (2014) 536–551

References

- http://cs231n.github.io/assets/nn1/neural_net2.jpeg
- http://cs231n.github.io/assets/nn1/neuron_model.jpeg