Lumen Segmentation of Cerebral Vasculature in Three-dimensional C-arm Angiography Images

Master's Thesis Introductory Talk

Andreas Leibold Main-Supervisor: Marco Bögel 30.05.2016 Pattern Recognition Lab (CS 5)

Clinical Background

Digital Subtraction Angiography (DSA)

- Imaging method based on radiation (X-ray)
- Radiologists inject contrast agent into blood vessels of patient
- Subtraction of image prior to and after contrast agent injection
- Third dimension obtained using Computed Tomography principle
- Useful to detect e.g. brain tumor, atherosclerosis and aneurysms

Brain Arteries

Vessels of example dataset

4

Segmentation

Vessel Segmentation Methods

- Region growing
- Active Contours
- Centerline based
- Stochastic frameworks

Our Segmentation Approach

- Based on F. Lugauers approach which was applied on coronar arteries
- Centerline based
- Machine learning based decision
- Uses ray casting in combination with Markov Random Fields (MRF)

Our Segmentation Approach: Preprocessing

Our Segmentation Approach: Boundary Detection

- Step 3: Boundary map generation
 - Ray-casting (1-D search in polar coord.)

- Step 4: Decision based on machine learning approach
 - Feature vector **x** calculated out of local intensities and gradient-based features at a certain position p
 - Training by manually segmented datasets
 - Classifier: Probabilistic boosting tree or random forest
 - After training classifier can predict boundary probability for each feature vector x at position p

Our Segmentation Approach: Segmentation

- Step 5: Graph construction
 - Reformulate segmentation as network graph problem: transform boundary map into a MRF
 - Assign neighborhood dependencies for smoothness

- Step 6: Contour extraction from the partitioned graph
 - Select best suiting boundary by max-flow-min-cut algorithm

Our Segmentation Approach: Evaluation

- Manual segmented datasets (= gold standard)
- Comparison to at least one other approach (e.g. threshold based)

Goals

Goals

- Reliable and fast segmentation
- To be used e.g. for diameter calculation of flow computation

Summary

Summary

- 3-D DSA datasets used
- 3 major steps
 - Preprocessing (centerline)
 - Boundary detection (machine learning)
 - Segmentation (graph construction)

Thank you for your attention!

