General Information:

Exercises (1 SWS): Mo 12:15-13:30 (H10 lecture hall building) and Tue 08:45-10 (0.151-113)
Certificate:
Contact:
Oral exam at the end of the semester
sebastian.kaeppler@fau.de, nooshin.haji@fau.de

Support Vector Regression

Exercise 1 In the lecture, you learn how an SVM can be used for classification. In this exercise, we consider Support Vector Regression (SVR). Let $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{N}, y_{N}\right)\right\}, \boldsymbol{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$ be a set of observations. The task for regression is to predict y_{i} from \boldsymbol{x}_{i} according to the linear regression function:

$$
\begin{equation*}
F(\boldsymbol{x})=\boldsymbol{\alpha}^{T} \boldsymbol{x}+\alpha_{0}, \tag{1}
\end{equation*}
$$

for a weight vector $\boldsymbol{\alpha} \in \mathbb{R}^{d}$ and the bias $\alpha_{0} \in \mathbb{R}$. The intuition behind SVR is to penalize only deviations that are larger than ϵ.

Figure 1: ϵ-tube of the SVR

The primal optimization problem for SVR is given by the following inequalityconstraint minimization:

$$
\begin{aligned}
\boldsymbol{\alpha}^{*} & =\underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{\alpha}\|^{2}+C \sum_{i}\left(\xi_{i}+\hat{\xi}_{i}\right), \text { s.t. } \\
y_{i} & \leq\left(\boldsymbol{\alpha}^{T} \boldsymbol{x}_{i}+\alpha_{0}\right)+\epsilon+\xi_{i} \\
y_{i} & \geq\left(\boldsymbol{\alpha}^{T} \boldsymbol{x}_{i}+\alpha_{0}\right)-\epsilon-\hat{\xi}_{i} \\
\xi_{i}, \hat{\xi}_{i} & \geq 0
\end{aligned}
$$

Here, $\xi_{i}, \hat{\xi}_{i}$ are slack variables (see also SVM classification) and ϵ specifies uncertainty of the regression function.
(a) Write down the Lagrangian L of the primal optimization problem using Lagrange multipliers $\lambda_{i}, \hat{\lambda}_{i}, \mu_{i}, \hat{\mu}_{i}$.
Hint: bring the constraints to the standard form $f_{i}(\boldsymbol{x}) \leq 0$
(b) Write down the Karush-Kuhn-Tucker (KKT) conditions for the primal optimization problem given above.
(c) Derive the dual optimization problem. To derive the dual optimization problem, you have to eliminate $\boldsymbol{\alpha}, \boldsymbol{\xi}$, and $\hat{\boldsymbol{\xi}}$ from L using the gradient of L. Preliminary solution:

$$
\begin{aligned}
L\left(\boldsymbol{\alpha}, \alpha_{0}, \boldsymbol{\xi}, \hat{\boldsymbol{\xi}}, \boldsymbol{\lambda}, \hat{\boldsymbol{\lambda}}, \boldsymbol{\mu}, \hat{\boldsymbol{\mu}}\right)= & \frac{1}{2}\|\boldsymbol{\alpha}\|^{2}+C \sum_{i}\left(\xi_{i}+\hat{\xi}_{i}\right)+\sum_{i}\left(-\mu_{i} \xi_{i}-\hat{\mu}_{i} \hat{\xi}_{i}\right)+ \\
& \sum_{i} \lambda_{i}\left(y_{i}-\boldsymbol{\alpha}^{T} \boldsymbol{x}_{i}-\alpha_{0}-\epsilon-\xi_{i}\right)+ \\
& \sum_{i} \hat{\lambda}_{i}\left(-y_{i}+\boldsymbol{\alpha}^{T} \boldsymbol{x}_{i}+\alpha_{0}-\epsilon-\hat{\xi}_{i}\right)
\end{aligned}
$$

(d) Which property must be fulfilled for support vectors in SVR? Hint: replace $\boldsymbol{\alpha}$ in Equation (1).

