Implementation and Evaluation of a Semi-Automatic Tumor Segmentation Method Master's Thesis Final Presentation

Jens Glasbrenner June 1, 2015 Pattern Recognition Lab (CS 5) Supervisors: Mario Amrehn M. Sc., Tim Horz M. Sc., Prof. Dr.-Ing. Joachim Hornegger

Outline

Motivation

Methods

Proposed Segmentation Method

Implementation

Results

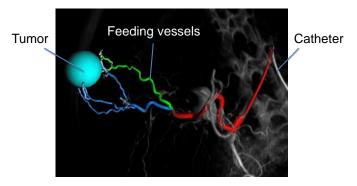
Outlook

Summary

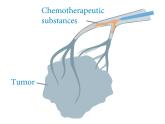
Motivation

June 1, 2015 | J. Glasbrenner | Pattern Recognition Lab (CS 5) | Semi-Automatic 3D Tumor Segmentation Method

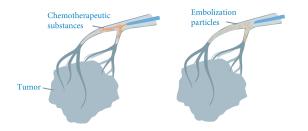
C-arm CT imaging with 3D reconstruction



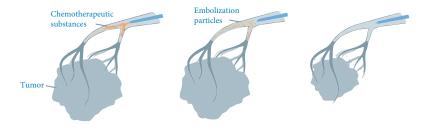
Vessel tree and corresponding ROI (cyan sphere)



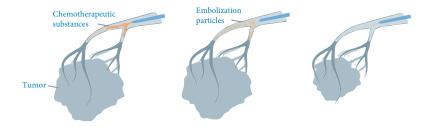
Schematic TACE for hepatocellular carcinoma (HCC)



Schematic TACE for hepatocellular carcinoma (HCC)



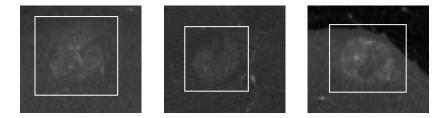
Schematic TACE for hepatocellular carcinoma (HCC)



Schematic of the TACE for hepatocellular carcinoma (HCC). \Rightarrow Goal: Fast and accurate segmentation of various types of tumors

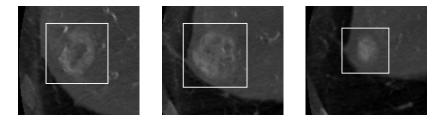
Challenges of Tumor Segmentation

- High diversity no typical shape
- Intensity overlaps between tumor and surrounding tissue
- · Different intensity patches necrotic regions



Challenges of Tumor Segmentation (cont.)

Appearance of a tumor may even vary within different slices



Automatic vs. Interactive Segmentation

Automatic segmentation

- Requires a large ground truth database
- "Semantic-gap" problem

Interactive segmentation

- Requires a large amount of user interaction
- Interobserver-variability

Automatic vs. Interactive Segmentation

Automatic segmentation

- Requires a large ground truth database
- "Semantic-gap" problem

Interactive segmentation

- Requires a large amount of user interaction
- Interobserver-variability

 \Rightarrow Solution: Interactive segmentation with automatic initialization

Methods

GrowCut Segmentation

- \Rightarrow Based on cellular automaton theory
- \Rightarrow Discrete in space and time
- \Rightarrow Voxels are treated as cells

GrowCut Segmentation

- \Rightarrow Based on cellular automaton theory
- \Rightarrow Discrete in space and time
- \Rightarrow Voxels are treated as cells

A cellular automaton is a quad-tuple

$$\boldsymbol{A} = (\boldsymbol{P}^n, \boldsymbol{S}, \boldsymbol{N}, \boldsymbol{\delta})$$

- Pⁿ: Cellular space
- S: State set
- N: Neighborhood system
- δ : Local transition rule

- \Rightarrow Based on cellular automaton theory
- \Rightarrow Discrete in space and time
- \Rightarrow Voxels are treated as cells

State of each cell p in cellular space P^n is a triplet

$$S_{p} = (I_{p}, \theta_{p}, \boldsymbol{c}_{p})$$

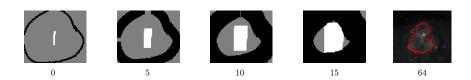
- *l_p*: Label of current cell *p*
- θ_p : Strength of current cell p
- cp: Feature vector

- \Rightarrow Based on cellular automaton theory
- \Rightarrow Discrete in space and time
- \Rightarrow Voxels are treated as cells

Initialization of the cellular automata (CA)

- Unlabeled voxels:
- Foreground voxels:
- Background voxels:
- $\begin{array}{ll} l_{\rho}=0, & \theta_{\rho}=0.0, & \boldsymbol{c}_{\rho}=i_{\rho} \\ l_{\rho}=1, & \theta_{\rho}=1.0, & \boldsymbol{c}_{\rho}=i_{\rho} \end{array} \end{array}$
- $l_{p} = -1, \ \theta_{p} = 1.0, \quad c_{p} = i_{p}$

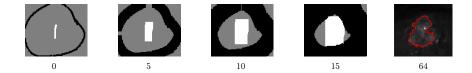
 \Rightarrow User defined seeds expand over the image



- \Rightarrow User defined seeds expand over the image
- \Rightarrow Cells try to occupy their neighbors iteratively

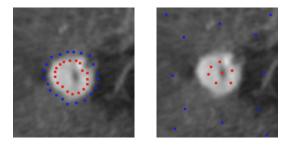
Attacking strength θ of neighboring cell q is weighted by

$$g_{\textit{lin}}(oldsymbol{c}_{
ho},oldsymbol{c}_{q}) = 1 - rac{\|oldsymbol{c}_{
ho}-oldsymbol{c}_{q}\|_{2}}{c_{max}} \geq 0$$



User Interaction Patterns

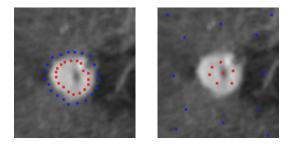
Problem: How to place the seeds efficiently?



- Volume seeds yield better results than surface seeds [Mo10]
- The more seeds the higher the segmentation quality [Mo10]

User Interaction Patterns

• Problem: How to place the seeds efficiently?



- Volume seeds yield better results than surface seeds [Mo10]
- The more seeds the higher the segmentation quality [Mo10]
- \Rightarrow Solution: Automatically compute a 3D seed template

Automatic Initialization

- \Rightarrow 3D seed template...
 - ... maximizes amount of initial seeds
 - ... spreads seeds throughout the volume
 - ... reduces the uncertainty of the user

Automatic Initialization

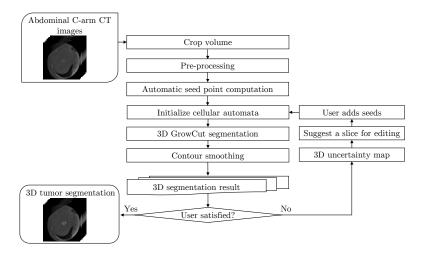
- \Rightarrow 3D seed template...
 - ... maximizes amount of initial seeds
 - ... spreads seeds throughout the volume
 - ... reduces the uncertainty of the user
- ⇒ Utilize Gaussian Mixture Model
 - Calculate an optimal threshold δ_{opt} to compute a seed template

Automatic Initialization

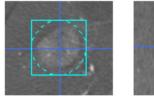
- \Rightarrow 3D seed template...
 - ... maximizes amount of initial seeds
 - ... spreads seeds throughout the volume
 - ... reduces the uncertainty of the user
- ⇒ Utilize Gaussian Mixture Model
 - Calculate an optimal threshold δ_{opt} to compute a seed template
 - Initialize seeds with plausible strength θ_p

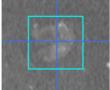
Proposed Segmentation Method

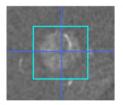
Overall Workflow



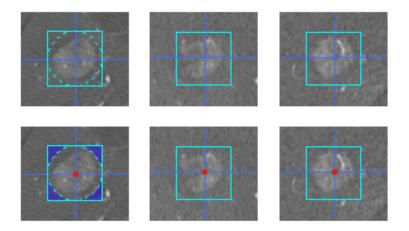
Volume of Interest



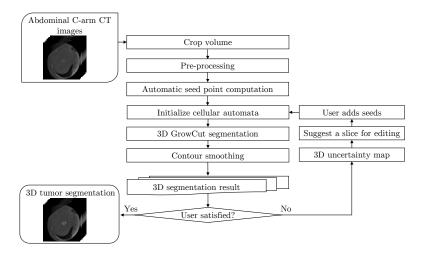




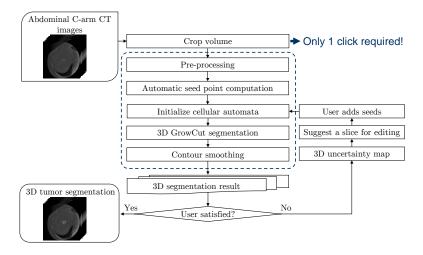
Volume of Interest



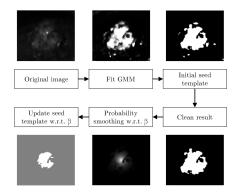
Overall Workflow



Overall Workflow

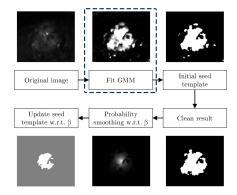


Automatic Initialization - Workflow



2D example of the procedure of automatized seed point calculation

Automatic Initialization - Workflow



2D example of the procedure of automatized seed point calculation

- \Rightarrow Weighted sum of Gaussian distributions
- \Rightarrow All mixing weights add up to one

$$egin{aligned} p(oldsymbol{x}_i) &= \sum_{k=1}^{K} p_k \, \mathcal{N}(oldsymbol{x}_i | \mu_k, oldsymbol{\Sigma}_k) \ &\sum_{k=1}^{K} p_k = 1 \end{aligned}$$

- *p_k*: The K mixture weights (priors)
- x_i: Feature vector
- μ_k : The K means
- Σ_k : The *K* covariance matrices

 \Rightarrow weighted sum of Gaussian distributions \Rightarrow all mixing weights add up to one

$$p(\mathbf{x}_i) = p_1 \mathcal{N}(\mathbf{x}_i | \mu_1, \mathbf{\Sigma}_1) + p_2 \mathcal{N}(\mathbf{x}_i | \mu_2, \mathbf{\Sigma}_2)$$

foreground background

- *p_k*: the K mixing weights
- *x_i*: feature vector ⇒ image intensities
- μ_k : the K means
- **Σ**_k: the *K* covariance matrices

 \Rightarrow Goal: Assign each pixel a probability that it belongs to the tumor

- Iteratively with Expectation Maximization (EM) algorithm
- · Maximizes the likelihood of the data given the GMM

$$\operatorname*{argmax}_{\theta} \sum_{i=1}^{m} \log p(x_i|\theta)$$

 \Rightarrow Goal: Assign each pixel a probability that it belongs to the tumor

- Iteratively with Expectation Maximization (EM) algorithm
- · Maximizes the likelihood of the data given the GMM

$$\operatorname*{argmax}_{\theta} \sum_{i=1}^{m} \log p(x_i | \theta)$$

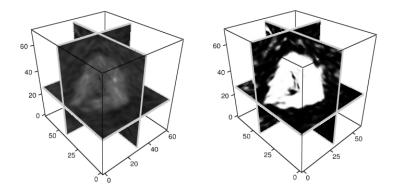
Parameters to fit to image data:

- Mean μ_k
- Covariance Σ_k
- Mixing weight pk

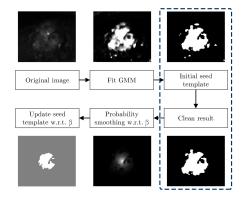
Gaussian Mixture Model: EM

- 1. Initialize parameters μ_k , Σ_k and p_k
- 2. Step 1: (E step) Given parameters, assign each pixel *x_i* a probability for each distribution k
- 3. Step 2: (M step) Given probabilities, update parameters μ_k , Σ_k , p_k for each distribution k
 - no closed form solution \rightarrow iterative scheme

Initialization - 3D Probability Map

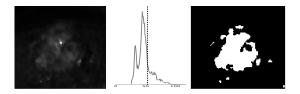


Automatic Initialization - Workflow



2D example of the procedure of automatized seed point calculation

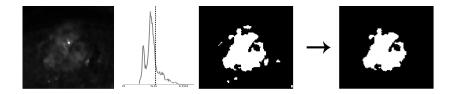
Initialization - Seed Template



Optimal threshold δ_{opt} is the average of the means μ_k

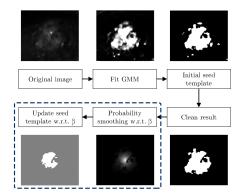
$$\delta_{opt} = \frac{1}{K} \sum_{k=1}^{K} \mu_k$$

Initialization - Seed Template



- Morphological erosion would erode seed template
- · Maximum of extracted regions accounted as tumor
- Remove all outliers smaller than the mean size of all regions

Automatic Initialization - Workflow



2D example of the procedure of automatized seed point calculation

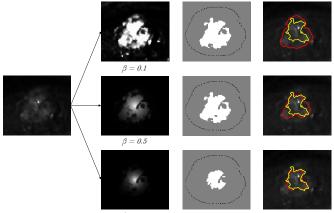
Initialization - Probability Smoothing

- \Rightarrow Probability being tumor proportional to distance from the VOI center
 - Smooth probabilities far from the VOI center

$$p_{k_{smoothed}} = \exp\left(-\beta(\|u-v\|)^2\right)$$

- u: arbitrary voxel
- v: VOI center

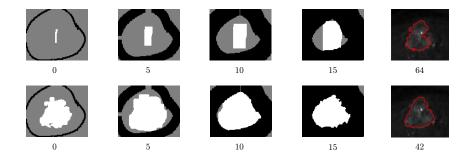
Initialization - Probability Smoothing



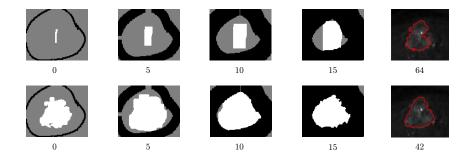
 $\beta = 0.9$

Influence of the probability smoothing illustrated for an axial slice

Comparison - Label Propagation



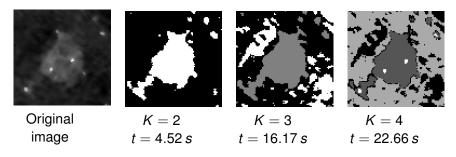
Comparison - Label Propagation



\Rightarrow modified method performes better and converges faster

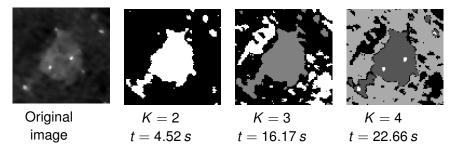
Number of GMM Components

 \Rightarrow Empirically set to K = 2 compontents



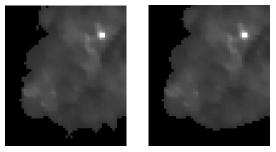
Number of GMM Components

- \Rightarrow Empirically set to K = 2 compontents
 - Computation time increases with K
 - Foreground seeds only change slightly



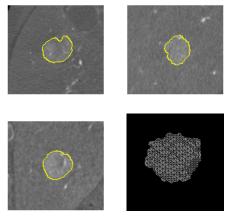
Segmentation Contour Smoothing

- Smooth ragged segmentation countour
- Morphological operation: binary opening
- Structureing element: 3D sphere



Contour smoothing shown in an axial slice

3D Segmentation Result

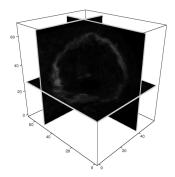


3D segmentation example

Workflow - Editing of the Segmentation

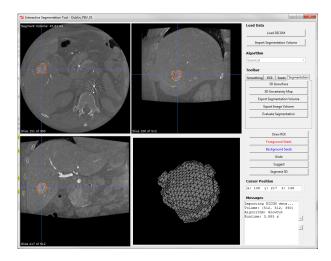
Segmentation uncertainty: number of label changes per cell

- Store # label changes per cell during propagation process
- · Normalize to maximum number of label changes



Implementation

Interactive Segmentation Tool - GUI



Implementation

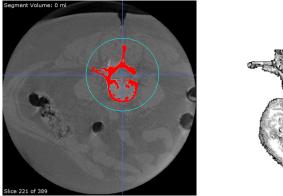
Python

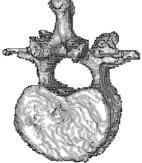
- Concise syntax \Rightarrow Code reuse
- Cython: Interface with fast C/C++ code
- WinPython: Scientific standalone Python distribution

SciPy/NumPy

- NumPy: powerful N-dimensional array object
- Scikit-learn for machine learning algorithms
- Scikit-image for image processing algorithms

Interactive Segmentation Tool - Capabilities





Segmentation of a vertebra

Results

Quantitative Evaluation

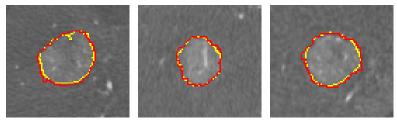
- No manually drawn seeds used
- · Ground truth via manual annotation by a clinical expert

Segmentation algorithm	ARI (%)	DC (%)	MI (%)	RAVD (%)
Proposed method	80.58	85.32	68.88	-0.18
Original GrowCut	72.96	78.46	63.00	-0.26
Random Walker	51.12	57.34	45.46	-0.52
Seeded Watershed	53.28	59.44	47.04	-0.46

Table: Averaged segmentation results for all datasets

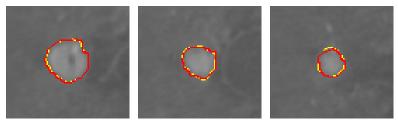
Segmentation Results

Large intensity overlap between cancerous and healthy tissue



Segmentation result of proposed method (yellow) and ground truth (red)

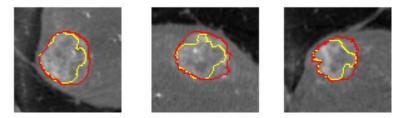
Homogenous intensity distribution \rightarrow clear borders



Segmentation result of proposed method (yellow) and ground truth (red)

Necrotic tumor \rightarrow inhomogeneous intensities

Algorithm might stop label propagation at necrotic borders



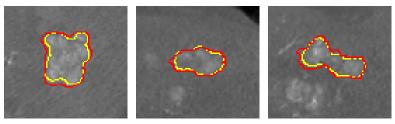
Segmentation result of original GrowCut (yellow) and ground truth (red)

Necrotic tumor, inhomogeneous intensities



Segmentation result of proposed method (yellow) and ground truth (red)

Arbitrary shape with proliferations



Segmentation result of proposed method (yellow) and ground truth (red)

Outlook

Outlook

Extend segmentation method

- · Parallelization of segmentation algorithm on the GPU
- Seperate segmentation of necrotic regions for further investigations

Extend evaluation

- Sensitivity to user interaction w.r.t. the VOI placement
- Evaluation on a larger ground truth database

Summary

Summary

Fast and reliable tumor segmentation is important for

- Quantitative therapy monitoring, e.g. after TACE
- Efficient planing of follow-up treatments

An extention of the CA based segmentation algorithm

- · Is realized with a probabilistic model: GMM
- Reduces user interaction to a minimum only one click
- Reduces uncertainty of the user
- Reduces runtime of the overall segmentation process

Thank you for your attention!

Bibliography I

Vezhnevets, Vladimir and Konouchine, Vadim GrowCut: Interactive multi-label ND image segmentation by cellular automata.

Graphicon, 2005.

Moschidis, E. and Graham, J.

A Systematic Performance Evaluation of Interactive Image Segmentation Methods Based on Simulated User Interaction. IEEE international conference on Biomedical imaging, 2010.