DMIP - Exercise
 Sinograms and Filtered Backprojection (FBP) for Fan Beam

Marco Bögel, Yan Xia

Pattern Recognition Lab (CS 5)

Fan-Beam Reconstruction

- Start with parallel FBP equation:

$$
f(x, y)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} p(s, \Theta) h(x \cos (\Theta)+y \sin (\Theta)-s) d s d \Theta
$$

- Use following identities:

$$
\begin{gathered}
x=r \cos (\varphi) \\
y=r \sin (\varphi) \\
r(\cos (\varphi) \cos (\Theta)+\sin (\varphi) \sin (\Theta))=r \cos (\Theta-\varphi)
\end{gathered}
$$

- This gets us the polar-coordinate representation:

$$
f(r, \varphi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} p(s, \Theta) h(r \cos (\Theta-\varphi)-s) d s d \Theta
$$

Fan-Beam Reconstruction

- Change of variables (We want to get rid of Θ and s)

$$
f(r, \varphi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} p(s, \Theta) h(r \cos (\Theta-\varphi)-s) d s d \Theta
$$

- Use following identities:

$$
g(t, \beta)=g(\gamma, \beta)=p(s, \Theta)
$$

$$
s=\frac{D}{\sqrt{D^{2}+t^{2}}} t=\cos (\gamma) t
$$

$$
\Theta=\beta+\tan ^{-1}(t / D)=\beta+\gamma
$$

Fan-Beam Reconstruction

- Change of variables: After some magical math [Zeng09]

$$
f(r, \varphi)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{U^{2}} \int_{-\infty}^{\infty} \frac{D}{\sqrt{D^{2}+t^{2}}} g(t, \beta) h(\hat{t}-t) d t d \beta
$$

- With cosine weight:

$$
c(t, \beta)=\frac{D}{\sqrt{D^{2}+t^{2}}}=\cos (\gamma)
$$

- With distance weight:

$$
U=\frac{D+r \sin (\beta-\phi)}{D}
$$

Fan-Beam Backprojection

- Similar approach as in parallel beam, however:
- Projection of pixels onto detector not parallel
- Intersection of rays need to be computed for each pixel
- We have to perform cosine weighting before backprojection
- During the backprojection we need to apply distance weighting
- The distance weight depends on the projection angle and pixel position
- \rightarrow Distance weight needs to be calculated for each pixel

Fan-Beam Backprojection

- Intersection of two lines (Hesse normal form)

$$
\begin{aligned}
\text { X-ray line: } & \vec{x}^{\mathrm{T}} \vec{n}_{r}-d_{r}=0 \\
\text { Detector line: } & \vec{x}^{\mathrm{T}} \vec{n}_{s}-d_{s}=0
\end{aligned}
$$

- Reshape to matrix form

$$
\left(\begin{array}{cc}
n_{r_{1}}^{\overrightarrow{ }} & \overrightarrow{n_{r_{2}}} \\
\overrightarrow{n_{s_{1}}} & \vec{n}_{s_{2}}
\end{array}\right)\binom{x}{y}=\binom{d_{r}}{d_{s}}
$$

- Solve by calculating the inverse

$$
\binom{x}{y}=\left(\begin{array}{cc}
\overrightarrow{n_{r_{1}}} & \overrightarrow{n_{r_{2}}} \\
\overrightarrow{n_{s_{1}}} & \vec{n}_{s_{2}}
\end{array}\right)^{-1}\binom{d_{r}}{d_{s}}
$$

