DMIP - Exercise: *RANSAC*

Yan Xia, Marco Bögel Pattern Recognition Lab (CS 5)

- Badly localized points (noise)
- Wrong correspondence

RANSAC – RANdom Sample Consensus

RANSAC assumes that a model built with a minimum number of data points for this model **does not contain outliers**.

Algorithm:

• Determine the minimum number n_{mdl} of data points required to build the model \rightarrow A line is completely defined by two points $\rightarrow n_{mdl} = 2$

• For n_{it} iterations do

- a) Choose randomly n_{mdl} points out of your data to estimate the model
- b) Determine the error of the current model using all data points
- Choose model with lowest error

Task: complete the function fitline: This will be used for fitting a line through a set of points.

Find the line parameter *m* and *t*, so that all points (x_i, y_i) , i = 1,...,7, approximately fulfill the line equation $y_i = mx_i + t$

 \rightarrow Solve the following optimization problem

$$\left\| [X \ 1] \cdot \left(\begin{array}{c} m \\ t \end{array} \right) - Y \right\| = \left\| M \cdot \left(\begin{array}{c} m \\ t \end{array} \right) - Y \right\| \to 0$$

The least square solution of this equation is given (Moore-Penrose pseudo-inverse)

$$\left(\begin{array}{c} m \\ t \end{array} \right) = M^{\dagger}Y$$

Task: lineerror: This will be our specialized errFct for our line model mdl considering all samples in pts. Think about a proper error metric.

 Pick two points on the line and calculate direction:

$$\vec{r} = c\vec{Pt}2 - c\vec{Pt}1$$

Yan Xia, Marco Bögel | Pattern Recognition Lab (CS 5) | DMIP - Exercise

Yan Xia, Marco Bögel | Pattern Recognition Lab (CS 5) | DMIP - Exercise

Implementation hints:

- How to pick two points and compute
 r x = [-min(pts(:,1))-5 max(pts(:,1))+5];
 y = m*x + t;
 cPt1 = [x(1) y(1)]; *cPt2* = [x(2) y(2)];
 r = *cPt2 cPt1*;
- Use * for scalar product! Do not use loop!
- Dimension size: $ec{n}$: 2x1 vector d : 1x1 scalar $ec{ds}$: nx1 vector

 Pick two points on the line and calculate direction:

$$\vec{r} = c\vec{Pt}2 - c\vec{Pt}1$$

2) Calculate normal vector to direction and normalize it: $\vec{n} = \begin{pmatrix} -y_{\vec{r}} \\ x_{\vec{r}} \end{pmatrix}$ $\vec{n} = \vec{n}/\text{norm}(\vec{n})$ 3) Distance to origin is givenby the scalar product ofsome point on the line andthe normal:

$$\boldsymbol{d} = \boldsymbol{c} \vec{Pt} \boldsymbol{1}^T \cdot \vec{n}$$

4) Hesse normal form $\vec{ds} = \vec{pts}_i^T \cdot \vec{n} - d$ $err = sum(\vec{ds} > thr)/n$

Number of iterations

Probability for an outlier p_o

Number of iterations

Probability for an outlier

 p_o

Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_o\right)^{n_{mdl}}$

Number of iterations

Probability for an outlier

 p_o

Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_o\right)^{n_{mdl}}$

Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_o\right)^{n_{mdl}}\right)^{n_{it}}$

Number of iterations

Probability for an outlier

 p_o

Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_o\right)^{n_{mdl}}$

Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_o\right)^{n_{mdl}}\right)^{n_{it}}$

This should not be higher than a given probability

$$(1 - (1 - p_o)^{n_{mdl}})^{n_{it}} \le 1 - P_{corr}$$

Number of iterations

Probability for an outlier

 p_o

Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_o\right)^{n_{mdl}}$

Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_o\right)^{n_{mdl}}\right)^{n_{it}}$

This should not be higher than a given probability

$$(1 - (1 - p_o)^{n_{mdl}})^{n_{it}} \le 1 - P_{corr}$$

$$\Rightarrow n_{it} = \left\lceil \frac{\log(1 - P_{corr})}{\log(1 - (1 - p_o)^{n_{mdl}})} \right\rceil$$

Number of iterations

Probability for an outlier

 p_o

Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_o\right)^{n_{mdl}}$

Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_o\right)^{n_{mdl}}\right)^{n_{it}}$

This should not be higher than a given probability

$$(1 - (1 - p_o)^{n_{mdl}})^{n_{it}} \le 1 - P_{corr}$$

$$\Rightarrow n_{it} = \left\lceil \frac{\log(1 - P_{corr})}{\log(1 - (1 - p_o)^{n_{mdl}})} \right\rceil$$

Estimate probability for an outlier using relative frequencies. Minimum number of points for the model is given.

 \rightarrow Choose probability for having at least one iteration without outliers

Task: commonransac: In it iterations choose randomly mn points out of data. Use them to estimate the model with mdlEstFct. Estimate the error for this model using errFct.

For each iteration, do

- 1. Randomly choose mn points from data
 - → could use randperm()
- 2. Use them to estimate the model with mdlEstFct()
- 3. Compute the error for this model using errFct()