DMIP - Exercise:

RANSAC

Yan Xia, Marco Bögel
Pattern Recognition Lab (CS 5)

not

Problem in calibration: inaccuracies in observations and outliers.

- Badly localized points (noise)
- Wrong correspondence

Linear Regression

Problem in calibration: inaccuracies in observations and outliers.

- Badly localized points (noise)
- Wrong correspondence

Linear Regression

Problem in calibration: inaccuracies in observations and outliers.

- Badly localized points (noise)
- Wrong correspondence

Linear Regression

Problem in calibration: inaccuracies in observations and outliers.

- Badly localized points (noise)
- Wrong correspondence

Linear Regression

RANSAC - RANdom Sample Consensus

RANSAC assumes that a model built with a minimum number of data points for this model does not contain outliers.

Algorithm:

- Determine the minimum number $\mathrm{n}_{\text {mal }}$ of data points required to build the model
\rightarrow A line is completely defined by two points $\rightarrow \mathrm{n}_{\text {mal }}=2$
- For $n_{i t}$ iterations do
- a) Choose randomly $\mathrm{n}_{\text {mal }}$ points out of your data to estimate the model
- b) Determine the error of the current model using all data points
- Choose model with lowest error

RANSAC

Task: complete the function fitline: This will be used for fitting a line through a set of points.

Find the line parameter m and t, so that all points $\left(x_{i}, y_{i}\right), \mathrm{i}=1, \ldots, 7$, approximately fulfill the line equation $y_{i}=m x_{i}+t$
\rightarrow Solve the following optimization problem

$$
\|\left[\begin{array}{ll}
X & 1]
\end{array} \cdot\binom{m}{t}-Y\|=\| M \cdot\binom{m}{t}-Y \| \rightarrow 0\right.
$$

The least square solution of this equation is given (Moore-Penrose pseudo-inverse)

$$
\binom{m}{t}=M^{\dagger} Y
$$

RANSAC

Task: lineerror: This will be our specialized errFct for our line model mdl considering all samples in pts. Think about a proper error metric.

1) Pick two points on the line and calculate direction:

$$
\vec{r}=c \overrightarrow{P t} 2-c \overrightarrow{P t} 1
$$

1) Pick two points on
2) Calculate normal the line and calculate
vector to direction direction:
and normalize it:

$$
\vec{r}=c \overrightarrow{P t} 2-c \overrightarrow{P t} 1
$$

$$
\begin{aligned}
& \vec{n}=\binom{-y_{\vec{r}}}{x_{\vec{r}}} \\
& \vec{n}=\vec{n} / \operatorname{norm}(\vec{n})
\end{aligned}
$$

1) Pick two points on the line and calculate direction:

$$
\vec{r}=c \overrightarrow{P t} 2-c \overrightarrow{P t} 1
$$

2) Calculate normal vector to direction and normalize it:

$$
\begin{aligned}
& \vec{n}=\binom{-y_{\vec{r}}}{x_{\vec{r}}} \\
& \vec{n}=\vec{n} / \operatorname{norm}(\vec{n})
\end{aligned}
$$

3) Distance to origin is given by the scalar product of some point on the line and the normal:

$$
d=c \overrightarrow{P t} 1^{T} \cdot \vec{n}
$$

1) Pick two points on the line and calculate direction:

$$
\vec{r}=c \overrightarrow{P t} 2-c \overrightarrow{P t} 1
$$

2) Calculate normal vector to direction and normalize it:

$$
\begin{aligned}
& \vec{n}=\binom{-y_{\vec{r}}}{x_{\vec{r}}} \\
& \vec{n}=\vec{n} / \operatorname{norm}(\vec{n})
\end{aligned}
$$

3) Distance to origin is given by the scalar product of some point on the line and the normal:

$$
d=c \overrightarrow{P t} t 1^{T} \cdot \vec{n}
$$

4) Hesse normal form
$\overrightarrow{d s}=\overrightarrow{t s} \vec{i}_{i}^{T} \cdot \vec{n}-d$

Implementation hints:

- How to pick two points and compute r
$x=[-\min (p t s(; 1))-5 \max ($ pts $(; 1))+5] ;$ $y=m^{*} x+t$;
cPt1 $=[x(1) y(1)] ; \quad c$ Pt2 $=[x(2) y(2)] ;$ $r=c P t 2-c P t 1$;
- Use * for scalar product! Do not use loop!
- Dimension size: $\vec{n}: 2 \times 1$ vector
d : 1×1 scalar
$\overrightarrow{d s}: \mathrm{nx1}$ vector

1) Pick two points on the line and calculate direction:

$$
\vec{r}=c \overrightarrow{P t} 2-c \overrightarrow{P t} 1
$$

2) Calculate normal vector to direction and normalize it:

$$
\begin{aligned}
& \vec{n}=\binom{-y_{\vec{r}}}{x_{\vec{r}}} \\
& \vec{n}=\vec{n} / \operatorname{norm}(\vec{n})
\end{aligned}
$$

3) Distance to origin is given by the scalar product of some point on the line and the normal:

$$
d=c \overrightarrow{P t} 1^{T} \cdot \vec{n}
$$

4) Hesse normal form
$\overrightarrow{d s}=p \overrightarrow{t s}{ }_{i}^{T} \cdot \vec{n}-d$
$e r r=\operatorname{sum}(\overrightarrow{d s}>t h r) / n$

RANSAC

Number of iterations

Probability for an outlier
p_{o}

RANSAC

Number of iterations

Probability for an outlier
p_{o}
Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_{o}\right)^{n_{m d l}}$

RANSAC

Number of iterations

Probability for an outlier
p_{o}
Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_{o}\right)^{n_{m d l}}$
Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}}$

RANSAC

Number of iterations

Probability for an outlier
p_{o}
Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_{o}\right)^{n_{m d l}}$
Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}}$
This should not be higher than a given probability $\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}} \leq 1-P_{\text {corr }}$

RANSAC

Number of iterations

Probability for an outlier
p_{o}
Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_{o}\right)^{n_{m d l}}$
Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}}$
This should not be higher than a given probability
$\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}} \leq 1-P_{\text {corr }}$
$\Rightarrow n_{i t}=\left\lceil\frac{\log \left(1-P_{\text {corr }}\right)}{\log \left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)}\right\rceil$

RANSAC

Number of iterations

Probability for an outlier
p_{o}
Probability for not having outliers in the minimum number of points required to build the model $\left(1-p_{o}\right)^{n_{m d l}}$
Probability of having at least one outlier in the minimum number of points for given iterations $\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}}$
This should not be higher than a given probability
$\left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)^{n_{i t}} \leq 1-P_{\text {corr }}$
$\Rightarrow n_{i t}=\left\lceil\frac{\log \left(1-P_{\text {corr }}\right)}{\log \left(1-\left(1-p_{o}\right)^{n_{m d l}}\right)}\right\rceil$
Estimate probability for an outlier using relative frequencies. Minimum number of points for the model is given.
\rightarrow Choose probability for having at least one iteration without outliers

RANSAC

Task: commonransac: In it iterations choose randomly mn points out of data. Use them to estimate the model with mdlEstFct. Estimate the error for this model using errFct.

For each iteration, do

1. Randomly choose mn points from data
\rightarrow could use randperm ()
2. Use them to estimate the model with mdlEstFct ()
3. Compute the error for this model using errfct ()
