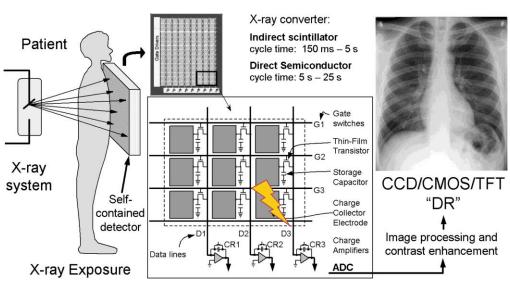
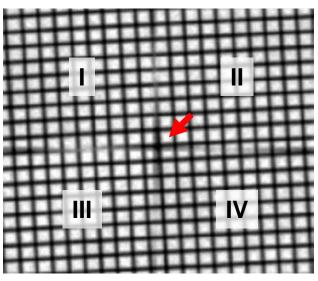


Defect Pixels in Flat Panel Detectors

- Defect pixels are caused by defect detector cells.
- Small detectors are composed to generate a large one, which leads to butting cross effects.



Artifacts due to inactive pixels or rows



Butting Cross Artifact

Image taken from: Samei E et al. Radiographics 2004;24:313-334

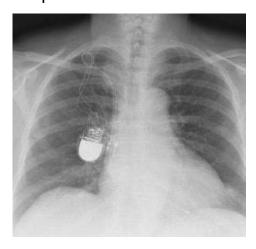
Image taken from: Lecture DMIP (Maier, Hornegger)

Defect Pixels in Flat Panel Detectors

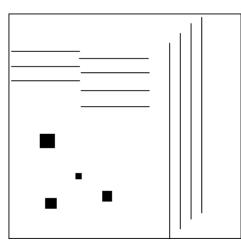
- Let f_{i,i} denote the intensity value at grid point (i,j) of the ideal image f that has no defect pixels.
- Let w_{i,j} denote the indicator value at (i,j) where w is mask image that indicates defect and uncorrupted pixels:

 $w_{i,j} = \left\{ egin{array}{ll} 0 & & ext{if pixel is defect} \ 1 & & ext{otherwise} \end{array}
ight.$

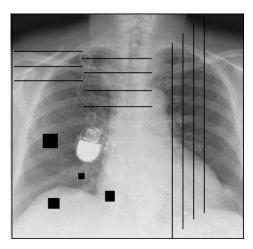
• Let g_{i,j} denote the intensity value at grid point (i,j) of the **observed image** g that is acquired with the flat panel detector that has defect pixels.



Ideal image f



Mask image w



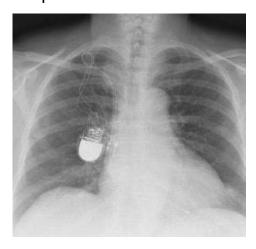
Observed image g

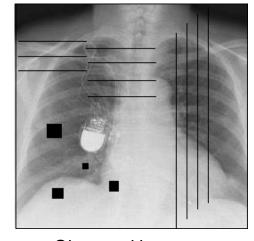
Defect Pixels in Flat Panel Detectors

- Let f_{i,i} denote the intensity value at grid point (i,j) of the ideal image f that has no defect pixels.
- Let w_{i,j} denote the indicator value at (i,j) where w is mask image that indicates defect and uncorrupted pixels:

 $w_{i,j} = \left\{ egin{array}{ll} 0 & & ext{if pixel is defect} \ 1 & & ext{otherwise} \end{array}
ight.$

• Let g_{i,j} denote the intensity value at grid point (i,j) of the **observed image** g that is acquired with the flat panel detector that has defect pixels.



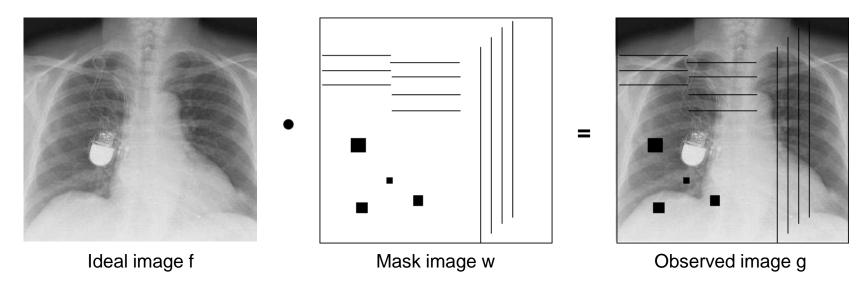


Ideal image f

Mask image w

Observed image g

Defect Pixels in Flat Panel Detectors



- Defect pixel problem: $f(n) \cdot w(n) = g(n)$
- ullet Goal: Find f(n), given the observed image g(n) and the defect mask w(n)

Problem Statement

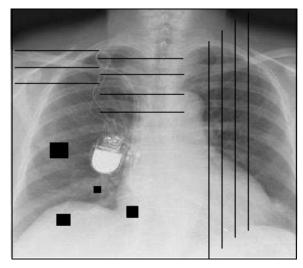
Restore the ideal image based on the observed image and the known defect pixel mask.

Defect pixel correction:

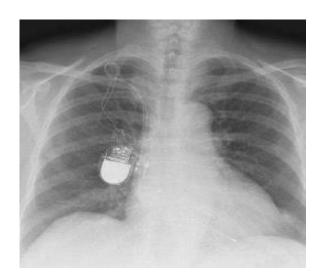
Spatial Domain: Interpolation

Frequency Domain: Band Limitation

Frequency Domain: Iterative Deconvolution



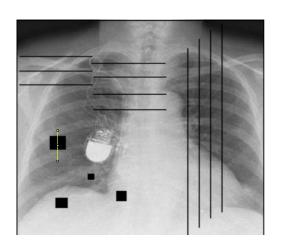


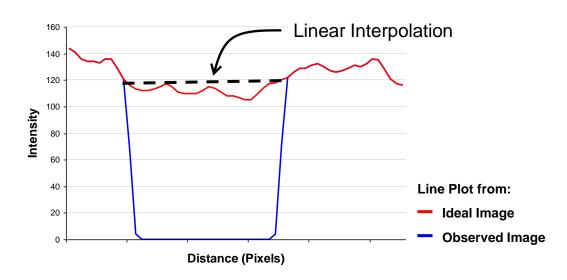


Ideal image f

Defect Pixel Correction by Spatial Interpolation

- Interpolate between active pixels to recover the inactive ones:
 - Bilinear interpolation
 - Median
- However, this is only suitable for small defect areas!





Fourier Transform Revisited

- Convolution theorem
- Symmetry property of Fourier transform of real signals

Fourier Transform Revisited

 $\begin{array}{lll} & \text{Convolution theorem} \\ & FT(f\star h)(\xi) & = & \displaystyle \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} f(k)h(n-k)e^{\frac{-2\pi in\xi}{N}} \\ & = & \displaystyle \sum_{k=0}^{N-1} f(k) \sum_{n=0}^{N-1} h(n-k)e^{\frac{-2\pi in\xi}{N}} \\ & = & \displaystyle \sum_{k=0}^{N-1} f(k)e^{\frac{-2\pi ik\xi}{N}} H(\xi) = F(\xi)H(\xi) = G(\xi) \end{array}$

The convolution of two signals in the time domain, corresponds to a multiplication in the frequency domain.

Symmetry property of Fourier transform of real signals

Fourier Transform Revisited

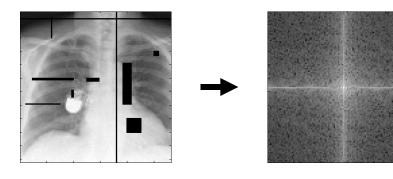
- Convolution theorem
- Symmetry property of Fourier transform of real signals
 If f(n) is a real valued discrete signal of length N, the Fourier transform F(ξ) fulfills the symmetry property:

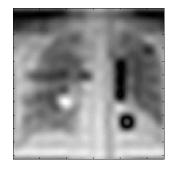
$$F(\xi) = F^*(N - \xi)$$

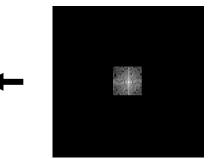
where "* " denotes the conjugate complex.

Iterative Band Limitation

- 1. Fourier transform
- 2. Cut off high frequencies
- 3. Inverse Fourier transform
- 4. Replace only defect areas
- 5. Repeat from 1.

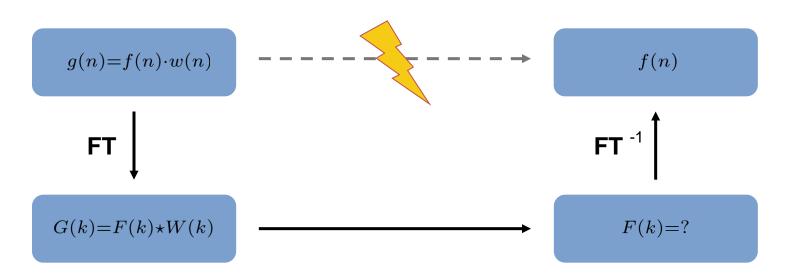






Defect Pixel Correction by Symmetry Properties

• Application of Fourier convolution theorem:



$$G(k) = \frac{1}{N}F(k) \star W(k) = \frac{1}{N} \sum_{l=0}^{N-1} F(l) \cdot W(k-l), \qquad 0 \le n, k < N$$

Defect Pixel Correction by Symmetry Properties

- Application of Fourier symmetry properties:
- Use Dirac's δ function to select a line pair F(s) and F(N-s):

$$\hat{F}(k) = \hat{F}(s)\delta(k-s) + \hat{F}(N-s)\delta(k-N+s)$$

where \hat{F} denotes an estimate of F, and δ - function is defined by:

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

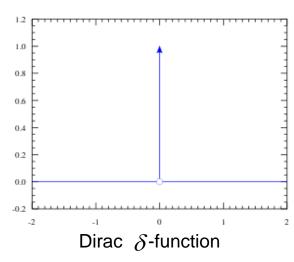


Image taken from: Wikipedia

Defect Pixel Correction by Symmetry Properties

• After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N}\sum_{l=0}^{N-1}\hat{F}(l) \cdot W(k-l)$$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N}\sum_{l=0}^{N-1}\hat{F}(l) \cdot W(k-l)$$

ullet $\hat{F}(l)$ is only non-zero if $\;l=s\,ee \,l=N-s$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N}\sum_{l=0}^{N-1}\hat{F}(l) \cdot W(k-l)$$

 $\qquad \qquad \hat{F}(l) \text{ is only non-zero if } \ l=s \ \lor \ l=N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s)W(k-s) + \hat{F}(N-s)W(k-(N-s)) \right)$$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{F}(l) \cdot W(k-l)$$

 $\qquad \hat{F}(l) \text{ is only non-zero if } \ l = s \ \lor \ l = N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s)W(k-s) + \hat{F}(N-s)W(k-(N-s)) \right)$$

$$= \hat{F}^*(s)$$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{F}(l) \cdot W(k-l)$$

 $\qquad \qquad \hat{F}(l) \text{ is only non-zero if } \ l=s \ \lor \ l=N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s) W(k-s) + \hat{F}^*(s) W(k-(N-s)) \right)$$

ullet We are only interested in $\,\hat{G}(k)$ at position k=s

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N}\sum_{l=0}^{N-1}\hat{F}(l) \cdot W(k-l)$$

 $\qquad \qquad \hat{F}(l) \text{ is only non-zero if } \ l=s \ \lor \ l=N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s) W(k-s) + \hat{F}^*(s) W(k-(N-s)) \right)$$

ullet We are only interested in $\,\hat{G}(k)$ at position k=s

$$\hat{G}(s) = \frac{1}{N} \left(\hat{F}(s)W(0) + \hat{F}^*(s)W(2s - N) \right)$$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{F}(l) \cdot W(k-l)$$

 $\qquad \qquad \hat{F}(l) \text{ is only non-zero if } \ l=s \ \lor \ l=N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s) W(k-s) + \hat{F}^*(s) W(k-(N-s)) \right)$$

• We are only interested in $\,\hat{G}(k)$ at position k=s

$$\hat{G}(s) = \frac{1}{N} \left(\hat{F}(s) W(0) + \hat{F}^*(s) W(2s) \right)$$

Defect Pixel Correction by Symmetry Properties

After frequency selection, we convolve with the mask

$$\hat{G}(k) = \frac{1}{N}\hat{F}(k) \star W(k) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{F}(l) \cdot W(k-l)$$

 $\qquad \qquad \hat{F}(l) \text{ is only non-zero if } \ l=s \ \lor \ l=N-s$

$$\hat{G}(k) = \frac{1}{N} \left(\hat{F}(s) W(k-s) + \hat{F}^*(s) W(k-(N-s)) \right)$$

ullet We are only interested in $\,\hat{G}(k)$ at position k=s

$$\hat{G}(s) = \frac{1}{N} \left(\hat{F}(s) W(0) + \hat{F}^*(s) W(2s) \right)$$

Defect Pixel Correction by Symmetry Properties

Application of Fourier symmetry properties:
 Select a line pair G(s) and G(N-s) of the Fourier transform of the observed image. The observed image is described by a convolution of the ideal image and the known defect pixel mask:

$$G(s) = \frac{1}{N} \left(\hat{F}(s)W(0) + \hat{F}^{*}(s)W(2s) \right)$$

And for the conjugate complex:

$$G^*(s) = \frac{1}{N} \left(\hat{F}^*(s) W^*(0) + \hat{F}(s) W^*(2s) \right)$$

Using these two equations, we can compute:

$$\hat{F}(s) = N \frac{G(s)W^*(0) - G^*(s)W(2s)}{|W(0)|^2 - |W(2s)|^2}$$

Defect Pixel Correction by Symmetry Properties

• Special case without symmetry property (for s=0 and s=N/2)

$$G(s) = \frac{1}{N} \left(\hat{F}(s)W(0) + \hat{F}^{*}(s)W(2s) \right)$$

$$G^*(s) = \frac{1}{N} \left(\hat{F}^*(s) W^*(0) + \hat{F}(s) W^*(2s) \right)$$

Defect Pixel Correction by Symmetry Properties

• Special case without symmetry property (for s=0 and s=N/2)

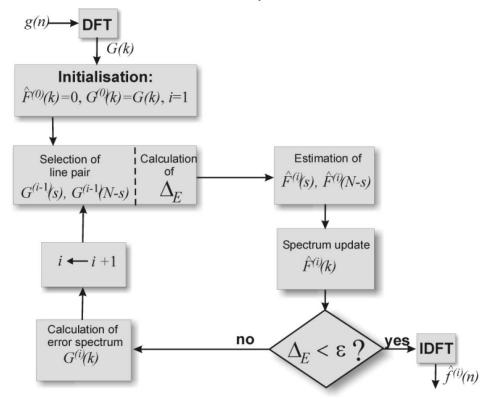
$$G(s) = \frac{1}{N} \left(\hat{F}(s)W(0) + \hat{F}^*(s)W(2s) \right)$$

$$G^*(s) = \frac{1}{N} \left(\hat{F}^*(s) W^*(0) + \hat{F}(s) W^*(2s) \right)$$

$$\hat{F}(s) = N\left(\frac{G(s)}{W(0)}\right)$$

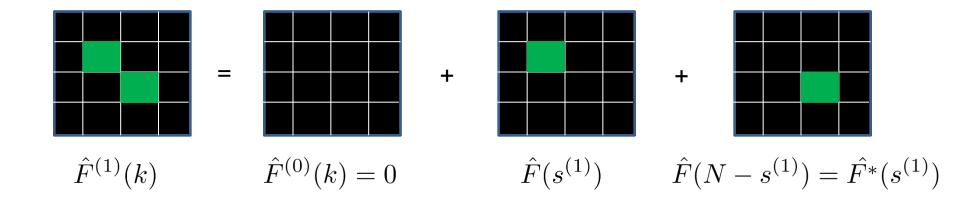
Defect Pixel Correction by Symmetry Properties

- So far only correction at line pair
 - Iterative correction of line pairs



Defect Pixel Correction by Symmetry Properties

- So far we only found estimates for a single or a pair of selected lines
- We also need to update the global estimate of the spectrum after each linepair computation



Defect Pixel Correction by Symmetry Properties

How can we update the error spectrum G?

$$G^{(i)}(k) = G^{(i-1)}(k) - \hat{G}(k) = G^{(i-1)}(k) - \frac{1}{N} \left(\hat{F}(k) * W(k) \right)$$

Defect Pixel Correction by Symmetry Properties

How can we update the error spectrum G?

$$G^{(i)}(k) = G^{(i-1)}(k) - \hat{G}(k) = G^{(i-1)}(k) - \frac{1}{N} \left(\hat{F}(k) * W(k) \right)$$

- Just subtract the new estimate from the previous estimate
- Requires convolution!!! → Same complexity as FFT?
- F(k) changed only at two positions → Convolution much easier to compute

Defect Pixel Correction by Symmetry Properties

- How to select the line pairs each iteration?
- Just select the maximum of the error spectrum

$$s^{(i)} = \underset{\hat{s}^{(i)}}{\operatorname{argmax}} G^{(i)}(\hat{s}^{(i)})$$

- Detailed derivation can be found in the paper.
- It is based on Parseval's theorem.
- Approach minimizes the mean square error (MSE) in valid areas:

MSE =
$$\sum_{n=0}^{N} (g(n) - \hat{f}(n)w(n))^2$$