DMIP - Exercise:

Image Undistortion

Y. Xia, M. Bögel

Pattern Recognition Lab (CS 5)

FA

Theory Review

Images acquired from image intensifier (II) will suffer from distortion. This is mainly caused by:

- Earth magnetic field or artificial magnetic field
- Scattering
- A convex entrance screen

Siemens mobile C-arm (source: siemens)

Geometric distortion: the acquisition system modifies the geometry of the

 mapped object.Correcting the geometric distortion needs a 3-step processing:

- Model design (parametric or non-parametric model, dimension of parameters and linear or nonlinear estimator)
- Estimation of model parameters (Calibration): N points from undistorted image (x^{\prime}, y^{\prime}) and distorted image (x, y)

$$
x_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i j} y_{r}^{\prime j} x_{r}^{i} \quad y_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} v_{i j} y_{r}^{\prime j} x_{r}^{\prime i}
$$

- Inference \rightarrow Interpolation of intensities of neighboring pixels

Pre-processing (create an artificial distorted image)

1. Generate a grid to sample the image
$[X, Y]=$ meshgrid(1:minl, $1: m i n l)$;

$$
\begin{aligned}
& X=\begin{array}{lllll}
1 & 2 & 3 & 4 & \ldots \\
1 & 2 & 3 & 4
\end{array} \\
& Y=\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array} \ldots \\
& 2222 \ldots \\
& 1234 \ldots \\
& 3333 \ldots \\
& 1234 \ldots \\
& 4444 \ldots
\end{aligned}
$$

Pre-processing
 Artificial Distortion Field

minl
2. Create a distortion field (ellipsoidal)

$$
R=d \sqrt{a\left(\frac{X-\frac{n}{2}}{n}\right)^{2}+b\left(\frac{Y-\frac{m}{2}}{m}\right)^{2}}
$$

where a: spread in x-direction
b: spread in y-direction
d : maximal value at the radius boundary

Resample the image / at new sample coordinates (XD, YD)
Idist = interp2($X, Y, I, X D, Y D)$;
Image

I mage Undistortion - Workflow

Point Correspondences

In real world, we would know the relation between the undistorted and the distorted image by point correspondences of a calibration pattern.

Here, we choose 8×8 lattice points (feature points) distributed over the whole image domain

[XU2, YU2]

I mage Undistortion
 Task: Fill Out Feature Points


```
for \(r=1: n y\)
    for \(c=1: n x\)
        XU2 (r,c) \(=\mathrm{XU}(?, \quad\) ?); \% you may use floor()
        YU2 (r, c) = ...
        \(\operatorname{XD} 2(r, C)=\ldots\)
        YD2 (r, c) = ...
    end
end
``` Visualize Coarse Grid

meshc (XU2, YU2, B)

meshc (XD2, YD2, B)

Task: Compute Distorted Points

Artificial Distortion

Undistortion
We now "distort" the distorted
200

Be aware of the fact, that the artificial deformation takes place from the distorted to undistorted. For creation, we used
distorted \(=\) undistorted + deformation
```

XD2 = XU2 + (XU2 - XD2);
YD2 = YU2 + (YU2 - YD2);

```
meshc (XD2, YD2,B);

\section*{What we try to solve is \(u_{i}, j\) and \(v_{-} i, j\)}

Distortion function can be rewritten in a matrix form (\(\mathrm{x}_{\mathrm{r}}\) for instance)
\[
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right)\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, d}
\end{array}\right)=\boldsymbol{A}^{\dagger}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)
\]

Task: Create the measurement matrix A containing the polynomials.

\section*{Measurement Matrix A}

\[
x_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i j} y_{r}^{\prime j} x_{r}^{\prime i} \quad \square\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right)
\]

NumKoeff

\section*{Measurement Matrix A}

\[
x_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i j} y_{r}^{\prime j} x_{r}^{\prime i} \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right)
\]

Number of coefficients :
\[
\begin{array}{llc}
i=0 ; & j=0,1,2, \ldots, d & d+1 \\
i=1 ; & j=0,1,2, \ldots, d-1 & d \\
& & + \\
i=2 ; & j=0,1,2, \ldots, d-2 & d-1 \\
& & + \\
\ldots & + \\
i=d-1 ; j=0,1 & 2 \\
& & + \\
i=d ; & j=0 & 1
\end{array}
\]

\section*{Measurement Matrix A}

\[
\begin{aligned}
& \qquad x_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i j} y_{r}^{\prime j} x_{r}^{\prime i} \quad \square\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right) \\
& \text { Number of coefficients : }
\end{aligned}
\]
\[
\begin{array}{lll}
\mathrm{i}=0 ; & \mathrm{j}=0,1,2, \ldots, \mathrm{~d} & \mathrm{~d}+1 \\
\mathrm{t} \\
\mathrm{i}=1 ; & \mathrm{j}=0,1,2, \ldots, \mathrm{~d}-1 & \mathrm{~d} \\
& \\
\mathrm{i}=2 ; & \mathrm{j}=0,1,2, \ldots, \mathrm{~d}-2 & \mathrm{~d}-1 \\
& & + \\
\ldots & \ldots & \\
& & + \\
\mathrm{i}=\mathrm{d}-1 ; \mathrm{j}=0,1 & 2 \\
& + \\
\mathrm{i}=\mathrm{d} ; & \mathrm{j}=0 & 1
\end{array}
\]

\section*{Measurement Matrix A}

```

NumKoeff $=(d+2) *(d+1) / 2 ;$
NumCorresp $=\operatorname{size}(X D 2,1) \neq \operatorname{size}(Y D 2,2)$;

```

NumKoeff

\[
x_{r}=\sum_{i=0}^{d} \sum_{j=0}^{d-i} u_{i j} y_{r}^{\prime j} x_{r}^{\prime i} \quad \square\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right)
\]
```

$\mathrm{XU} 2 \mathrm{vec}(\mathrm{r})=x_{r}^{\prime}$
$Y U 2 \operatorname{vec}(r)=y_{r}^{\prime}$
for $r=1:$ NumCorresp
c = 1;
for $i=0: d$
for $j=0:(d-i)$
$A(r, c)=\ldots ;$
$\mathrm{c}=\mathrm{c}+1$;
end
end
end

```

\section*{Task: Compute Pseudo-inverse of \(\mathbf{A}\)}
\[
\begin{aligned}
& \left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)=\boldsymbol{A}\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, 0}
\end{array}\right)\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, d}
\end{array}\right)=\boldsymbol{A}^{\dagger}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right) \\
& {[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A}) ;} \\
& \ldots \\
& \text { Si }=S^{\prime} ; \\
& \text { epsilon }=1 \mathrm{e}-5 ;
\end{aligned}
\]
\[
\text { for i = 1:size }(S, 2)
\]
if(S(i,i) < epsilon)
\[
\text { Si(i,i) }=\ldots ;
\]
else
\[
\text { Si(i,i) }=\ldots ;
\]

\section*{Set singular values} lower than 10E-5 to zero for a better conditioned equation system.
end
end
Apseudoinv \(=\ldots . \quad A^{\dagger}=V \Sigma^{-1} U^{T}\)

Compute the distortion coefficients \(\mathbf{u} \mathbf{i} \mathbf{i}, \mathbf{j}, \mathbf{v} \mathbf{i}, \mathbf{j}\)
```

XD2vec (r) = xrr : Distorted grid points' x-coordinates
YD2vec(r) = yr : Distorted grid points' y-coordinates

```
```

Uvec = ...; % u_i,j
Vvec = ...; % v_i,j

```
\[
\left(\begin{array}{c}
u_{0,0} \\
u_{0,1} \\
\vdots \\
u_{d, d}
\end{array}\right)=\boldsymbol{A}^{\dagger}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)
\]

Task: Compute the grid points which are used to sample the distorted image to get the undistorted image.

\section*{Compute Fine Grid Points}

Create an corrected image undist at the current grid positions \(X, Y\) where the intensities are interpolated at the positions XDist, YDist in Idist:
```

undist = ...;
undist(isnan(undist)) = 0;

```

\section*{Image Undistortion}

\section*{6. Scaling of Input Data}

\section*{Think about it! Do you have a good feeling in doing this?}
- Use a polynomial of total degree 5 to undistort images.
- Input images are \(1024 \times 1024\)-image.
- The \(x\) and \(y\) coordinates are represented in pixels, i.e.
- \(x, y \in 1,2, \ldots 1024\)
- The monomials range from 1 to \(1024^{5}=1125899906842624\)
- The result has to be between 0 and 1023!!!

\section*{Image Undistortion}

\section*{6. Scaling of Input Data}

The Gramian matrix can be used to test for linear independence of functions.
Any decrease of the condition number will be useful, even if it is not a global optimum!

Method to compute a proper scaling:
- Select constants k and I
- Scale all data points \(\left(x_{i}, y_{i}\right)\) to \(\left(k x_{i}, y_{i}\right)\)
- Rewrite (9) and compute new A
- Compute condition number (\(\mathrm{A}^{\top} \mathrm{A}\))
- Minimize with respect to K and I, e.g. by gradient descent
- Finally, recover the original coefficients \(u_{i, j}, v_{i, j}\) and invert the scaling process```

