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B The goal of pre-processing is to transform a signal f
to another signal /& so that the resulting signal /i

= makes subsequent processing easier
= makes subsequent processing better (more accurate)
= makes subsequent processing faster

B Already studied histogram equalization and
thresholding.
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Noise Sources in Cameras )

B Photon noise: variation in the #photons falling on a pixel
per time interval T.

m Saturation: each pixel can only generate a limited amount
of charge.

B Blooming: saturated pixel can overflow to neighboring
pixels.

B Thermal noise: heat can free electrons and generate a
response when there is none. ek

Electronic noise.
Burned pixels.
Black is not black.

Keep in mind: Camera response may not be Imear over the
number of photons falling on a surface (camera gamma)




Detector Noise

A

B Source of noise: the discrete nature of radiation, i.e.

the fact that each imaging system is recording an
image by counting photons.

B This type of noise can be modeled as an
independent additive noise which can be described

by a zero-mean Gaussian.
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Latest News Regarding Sensor Noise

B In September 2012 researchers showed that a

better model for photon noise is color cameras is

the Poisson distribution.

B The symmetry of the distribution depends on the

mean value.

B Astronomers who
often deal with
weaker signals,
have been using
Poisson distribution
to model the noise
in telescope data.
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Poisson distributions
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Salt and Pepper Noise N

B A common form of noise is caused by data drop-out
noise.

m Jt is also known as commonly referred to as
intensity spikes, speckle or salt and pepper noise.

m Sources of error:

= Errors in the data transmission.

= Burned pixels: the corrupted pixels are either set to the maximum
value (which looks like snow in the image) or are set to zero

(“peppered” appearance), or a combination of the two.
= Single bits are flipped over.

m Isolated/localized noise. It only affects individual
pixels.



Filtering

B Most of the images we capture are noisy.

m Goal:

Noisy Image;,

B This notion of filtering is more general and can be
used in a wide range of transformations that we
may want to apply to images.

+ Filter

Image;,

+ Filter

+ Clean Image,_,,

+ Image,

B Mathematically, a filter H can be treated as a

function on an input image I:

H() =R

B Note: We use the terms filter and transformation interchangeably

AN



Linear Transformation A

m A transformation H is linear if, for any inputs I,(x,y)
and I,(x,y) (in our case input images), and for any

constant scalar a we have:

H(al\(x,y)) =aH(I,(x,y))
and

H(,(x,y)+ 1,(x,y))=H(,(x,y))+ H(I,(x,y))

B This means:
= Multiplication in the input corresponds to multiplication in the

output
= Filtering an additive image is equivalent to filtering each image

separately and then adding the results.
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Shift-Invariant Transformation i

B A transformation H is shift-invariant if for every
pair (x, Y,) and for every input image I(x,y), such

that
H(I(x,y))=R(x,y)
we get

H(](x_xmy_yo)) = R(x_xmy_yo)

B This means that the filter H does not change as we
shift it in the image (as we move it from one position
to the next).
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Convolution A

m If a transformation (or filter) is linear shift-invariant
(LSI) then one can apply it in a systematic manner
over every pixel in the image.

B Convolution is the process through which we
apply linear shift-invariant filters on an image.

I » LSI Filter H » R
m Convolution is defined as:

Reey)= S S Hx iy = j)IG.))

and is denoted as:

R=H*I
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Another Look at Convolution i

m Filtering often involves replacing the value of a pixel
in the input image F with the weighted sum of its
neighbors.

B Represent these weights as an image, H
m H is usually called the kernel

B The operation for computing this weighted sum is
called convolution.

R=H*I

m Convolution is:
= commutative, H*[=1*H
« associative, H *(H,*I)=(H *H,)*]
= distributive, (H1+H2)*]=(Hl*])+(H2*])
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Smoothing via Simple Averaging A\

B One of the simplest filters is the mean filter: H =

N NS
N NS
PN NN

1 1
m In this case, R(x,y)= E El(x—i,y—j)H(i,j)

i=—1j=—1
m [t is used for removing image noise, i.e. for smoothing.

Original image Image after mean filtering (25x25 kernel)
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Gaussian Smoothing A

B Idea: Use a weighted average. Pixels closest to the
central pixel are more heavily weighted.

B The Gaussian function has exactly that profile.

B Gaussian also better
approximates the
behavior of a defocused
lens.




Isotropic Gaussian Filter

m To build a filter H, whose weights resemble the

Gaussian distribution, assign the weight values on

the matrix H according to the Gaussian function:

o (%4 j2)/202 )
H(@,j)=e"" 777 Ao I

HGauss= yg %1
®m Small o, almost no effect, weights at vy

neighboring points are negligible.

m Large o, blurring, neighbors have almost the
same weight as the central pixel.

B Commonly used o values: Let w be the size
of the kernel H. Then o=w/5.

For example for a 3x3 kernel, 6=3/5=0.6

As

A
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Gaussian Smoothing Example A

m Compared to mean filtering, Gaussian filtering
exhibits no “ringing” effect.

Original image Image after Gaussian filtering (25x25 kernel)
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“Ringing” effect

Original image Image after Mean Image after Gaussian
filtering (25x25 kernel) filtering (25x25 kernel)
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A close look at the frequency response of the two filters show that:
compared to Gaussian filtering, mean filtering exhibits oscillations
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The Effect of o I

m Different o values affect the amount of blurring, but
also emphasize different characteristics of the
Image.
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Non-Linear Smoothing

B The median filter considers each pixel in the image
in turn and looks at its nearby neighbors to decide
whether or not it is representative of its
surroundings.

m It replaces a pixel value with the median of all pixel
values in the neighborhood.

m [t is a relatively slow filter, because it involves
sorting.

®m Can not be implemented via convolution.

A
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Smoothing Example 1 N

E

Original image

Image after 9x9 Mean filtering Image after 9x9 Gaussian filtering



Smoothing Example 2 A

Original image corrupted Image after 5x5 Mean Image after 5x5 Gaussian
by a zero mean Gaussian filtering filtering
noise with ¢c=8.
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Mean Filter

L Image after 3x3 Image after 7x7
Original image Mean filtering Mean filtering

B Mean filtering is sensitive to outliers.
m It typically blurs edges.
m It often causes a ringing effect.

Image after applying
3 times 3x3 Mean
filtering

/4)
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Gaussian Filtering and Salt & Pepper Noise i

7

Origi:al imge Image with salt-peppr Imae after 5x5

B Image after 9x9
noise (1% prob. that a Gaussian filtering, Gaussian filtering,
bit is flipped) 0=1.0 0=2.0

m Gaussian filtering works very well for images affected by
Gaussian noise

m It is not very effective in removing Salt and Pepper noise.
Small o values do not remove the Salt & Pepper noise, while
large o values blur the image too much.
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Median Filtering and Salt & Pepper Noise A

14

Original image Image with salt-pepper Image after 3x3 Image after 7x7 Image after applying
noise (5% prob. that a Median filtering Median filtering 3 times 3x3 Median
bit is flipped) filtering

B Median filtering preserves high spatial frequency details.

m It works well when less than half of the pixels in the smoothing
window have been affected by noise.

m It is not very effective in removing Gaussian noise.
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Image Sources A

1. “Image with salt & pepper noise”, Marko Meza.
2. The examples in slides 21-24 are courtesy of R. Fisher, S. Perkins, A. Walker and E. Wolfart
3. Some of the smoothing images are from the slides by D.A. Forsyth, University of Illinois at Urbana-Champaign.



