Introduction to Pattern Recognition

RECOMMENDED TEXTBOOKS

H. Niemann. *Klassifikation von Mustern*. Springer, 1983. 2nd edition (2003) available via the Internet: <u>http://www5.informatik.uni-erlangen.de/en/our-team/niemann-heinrich</u>

S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, 4th ed., by, Academic Press 2008, ISBN 1597492728 or (ISBN 978-1-59749-272-0)

R. O. Duda, P. E. Hart and D. G. Stork, *Pattern Classification*, 2nd ed., by, Wiley-Interscience 2000, ISBN 0471056693.

Lecture Plan

TOPIC: SIGNAL ACQUISITION

Week 1	17. October	Introduction to IntroPR Lecture Administrative information Key concepts Introduction to A/D conversion
Week 2	24. October	Fourier analysis Nyquist sampling theorem Quantization
Week 3 No lecture	31. October 1.11.11	Vector quantization Histogram equalization (Pre-processing) Intro to Thresholding (Pre-processing)
	то	PIC: PRE-PROCESSING
Week 4	TO 07. November	PIC: PRE-PROCESSING Thresholding Filtering Linear shift-invariant systems Convolution Noise suppression (low-pass filtering)

Week 6 21. November Morphology Pattern normalization Moments

TOPIC: FEATURE EXTRACTION

Week 7	28. November	Introduction to feature extraction Orthogonal bases Fourier series
Week 8	05. December	Walsh (Hadamard) transform Haar transform Linear Predictive Coding Moments as features
Week 9	12. December	Wavelets
Week 10	19. December	Principal Component Analysis (PCA) Linear Discriminant Analysis (LDA) Optimal Feature Transform (OFT)
Week 11	9. January	Gradient Descent Coordinate Descent Feature Selection

TOPIC: CLASSIFICATION

Week 12	16. January	Introduction to classification Statistical classifiers Miss-classification cost Optimal decision rule Bayesian classifier
Week 13	23. January	Gaussian classifier Polynomial classifiers Non-parametric classifiers
Week 14	30. January	K-nearest neighbor Kernel-based density estimation Artificial Neural Networks (ANNs)
Week 15	6. February	ANNs with Radial Basis Functions Multilayer Perceptron Recap