Feature Extraction Linear Predictive Coding, Moments

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

• One common method for heuristic feature extraction is the projection of a signal \vec{h} or \vec{f} on a set of orthogonal basis vectors (functions), $\Phi = [\vec{\varphi}_1, \vec{\varphi}_2, ..., \vec{\varphi}_M]$

$$\vec{c} = \Phi^T \vec{f}$$

Introduction to Linear Predictive Coding

- Linear Predictive Coding (LPC) is a feature vector that is widely used in speech processing.
- It represents the spectral envelope of a digital signal of speech in a compressed form.
- LPC has been very successful in encoding good quality speech at a low bit rate.
- It also provides extremely accurate estimates of speech parameters.
- It is part of the GSM wireless communication standard.

Vocal Tract

There are 3 key elements in the human vocal tract:

- Vocal Cords
- Pharynx
- Oral/Nasal Cavity
- LPC assumes such an apparatus for voice/sound generation.

Abstract Model of Vocal Tract

- An abstract model of the speech synthesis is often employed.
- Its key components are:
 - Buzzer
 - Tube
- The relationship between the vocal tract and the abstract model for speech production is:
 - Lungs
 - Trachia
 - Vocal cords -> Buzzer
 - Pharynx -> Tube
 - Oral cavity
 - Nasal cavity
 Additional hissing and popping sounds

An Early Speech Synthesizer

- Wheatstone's reconstruction of von Kempelen's speaking machine.
- Vowels were produced with vibrating reed and all passages were closed.
- Resonances were effected by deforming the leather resonator.
- Consonants, including nasals, were produced with turbulent flow trough a suitable passage with reed-off.

Seite 6

LPC and the Vocal Tract

- LPC starts with the assumption that a speech signal is produced by a **buzzer** at the end of a **tube** (*voiced sounds*), with occasional added hissing and popping sounds (*sibilants and plosive sounds*).
- The glottis (the space between the vocal cords) produces the buzz, which is characterized by its intensity (loudness) and frequency (pitch).
- The pharynx forms the tube, which is characterized by its resonances, which are called formants.
- Hisses and pops are generated by the action of the tongue, lips and throat.

LPC analyzes the speech signal by:

- estimating the formants (the pharynx effects)
- removing their effects from the speech signal
- and estimating the intensity and frequency of the remaining buzz.
- LPC isolates the intensity and frequency of the buzz and the formants effects.
- Each (buzz effects and formant effets) can be stored (processed if needed) and transmitted separately.
- They are then recombined at the receiving end to create the speech signal.

Linear Predictive Model

Assume that the present sample f_n of the speech is predicted by the past m speech samples so that

$$\hat{f}_n = a_1 f_{n-1} + a_2 f_{n-2} + \dots + a_m f_{n-m} = \sum_{\mu=1}^m a_\mu f_{n-\mu}$$

where \hat{f}_n is the prediction of f_n , f_{n-i} is the sample of the ith previous step, and the a_{μ} 's are are the linear prediction coefficients (LPCs).

The error between the actual sample and the predicted one is:
m

$$e_n = f_n - \hat{f}_n = f_n - \sum_{\mu=1}^{n} a_\mu f_{n-\mu}$$

• The best LPCs will result in $e_n = 0$.

Computation of the LPC-coefficients

The prediction error is: $e_n = f_n - \hat{f}_n = f_n - \sum a_\mu f_{n-\mu}$

Goal: Derive the LPCs a_{μ} that result in: $\mu^{\mu=1}$

$$e_n = 0 \Longrightarrow f_n - \sum_{\mu=1}^m a_\mu f_{n-\mu} = 0 \Longrightarrow f_n = \sum_{\mu=1}^m a_\mu f_{n-\mu}$$

How do we compute the values of the coefficients that satisfy $f = \sum_{n=1}^{m} a_n f$

$$f_n = \sum_{\mu=1}^{n} a_\mu f_{n-\mu}$$

Use additional k samples to obtain a system of linear equations from where one can compute a_n. System of Linear Equations

From the last k+1 samples we have:

$$f_{n} = \sum_{\mu=1}^{m} a_{\mu} f_{n-\mu}$$

$$f_{n+1} = \sum_{\mu=1}^{m} a_{\mu} f_{n+1-\mu}$$

$$\vdots$$

$$f_{n+k} = \sum_{\mu=1}^{m} a_{\mu} f_{n+k-\mu}$$

• We have k+1 equations which are all linear in a_{μ} .

Matrix Form

Rewrite the system of equations in a matrix form:

$$\begin{bmatrix} f_n \\ f_{n+1} \\ \vdots \\ f_{n+k} \end{bmatrix} = \begin{bmatrix} f_{n-1} & f_{n-2} & \cdots & f_{n-m} \\ f_n & f_{n-1} & \cdots & f_{n+1-m} \\ \vdots & \vdots & \cdots & \vdots \\ f_{n+k-1} & f_{n+k-2} & \cdots & f_{n+k-m} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

$$\begin{bmatrix} f_n \\ f_{n+1} \\ \vdots \\ f_{n+k} \end{bmatrix} = A \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \Rightarrow \vec{f} = A\vec{a}$$

A is a (k+1) x m matrix of observed signals.

$$\vec{f} \in R^{k+1}.$$

 $\bullet \quad \vec{a} \in R^{m}.$

Computing the Vector of LPC coefficients

- If m = k + 1, then A is a square matrix and thus it is invertible (assuming that $det(A) \neq 0$).
- Hence the LPC coefficients are:

$$\vec{a} = A^{-1}\vec{f}$$

- If $m \neq k+1$, then?
- We have to use the *pseudoinverse*: $A^+ = (A^T A)^{-1} A^T$
- In this case the LPC coefficients are:

$$\vec{a} = A^+ \vec{f}$$

The best way to compute the pseudoinverse is to use singular value decomposition (SVD).

Seite 14

Alternatively, we could define an objective function.

$$\mathcal{E} = \sum_{n=n_0}^{n_1} \left(f_n - \hat{f}_n \right)^2 =$$

$$\varepsilon = \sum_{n=n_0}^{n_1} \left(f_n - \sum_{\mu=1}^m a_{\mu} f_{n-\mu} \right)^2$$

We then have to find the values of the LPC coefficients that minimize the error.

$$\frac{\partial \varepsilon}{\partial a_{\nu}} = 2 \sum_{n=n_0}^{n_1} \left(f_n - \sum_{\mu=1}^m a_{\mu} f_{n-\mu} \right) f_{n-\nu} = 0 \Longrightarrow \sum_{n=n_0}^{n_1} f_n f_{n-\nu} = \sum_{\mu=1}^m a_{\mu} \sum_{n=n_0}^{n_1} f_{n-\mu} f_{n-\nu}$$

Four Remarks on LPC

1. Rule of thumb for the number of coefficients:

- *m* = 10 -15
- The choice of *m* depends on the sampling frequency.
- Let f_s be the sampling frequency in kHz, then
- $m = 4 + f_s$ up to $m = 5 + f_s$
- One can use the LPC coefficients to identify a person's voice.
 - LPC is particularly good at highlighting formant locations which have been shown to be significant in voice identification.
- 3. The vector of LPC coefficients can be used as a feature vector.

$$\vec{c} = \vec{a}$$

Four Remarks on LPC -continued

- 4. One can use the LPC coefficients to compute the smoothed **Model Spectrum** of a signal.
 - The Model Spectrum is the Fourier Transform of the LPC coefficients.

ModelSpectrum(\vec{a}) = FT(\vec{a})

- It is a smooth spectrum of the speech signal.
- Peaks in the Model Spectrum are formants.
- Peaks in the frequency spectrum of a sound are caused by resonance (i.e. they are directly attributed to formants)
- It has been shown that perceptually, formants is the information that humans use in distinguishing between different vowels.

Moments

Given an image f(x,y), the geometric moments are defined as: $m_{pq} = \int_{0}^{\infty} \int_{0}^{\infty} x^{p} y^{q} f(x,y) dx dy$

 $-\infty -\infty$

For the same image f(x,y) the central moments are defined as:

$$\mu_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \overline{x})^p (y - \overline{y})^q f(x, y) dx dy$$

where
$$\overline{x} = \frac{m_{10}}{m_{00}}$$
 and $\overline{y} = \frac{m_{01}}{m_{00}}$ are the center of mass.

Moments and Invariance

- An advantage of the central moments is that they are translation-invariant.
- We can compute another set of moments, the normalized central moments which are also scaleinvariant.
- Given an image f(x,y), the normalized central moments are defined as:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{(1+0.5(p+q))}}$$

Thus, the normalized central moments are translationand scale-invariant.

Moment-Based Features

- One can also construct moments that are translation, scale and rotation invariant.
- A collection of such moments can be used as a feature vector \vec{C} .
- Each element c_i of the feature vector is a moment, i.e. $m_{pq}, \mu_{pq}, \eta_{pq}$ for any chosen value of p and q, or a combination of moments.
- A very popular set of moments used as a feature vector are the ones proposed by Hu. The are known as the Hu set of invariant moments.

Information Provided by Moments

- 1st order moments convey information about size, area, volume, or mass.
- 2nd order central moments are related to variance.
- 3rd order central moments provide information about the symmetry of an shape or distribution (skewness).
- 4th order central moments is a measure of whether the distribution is tall and skinny or short and squat, compared to the normal distribution of the same variance (kurtosis).
- In general in higher orders, central moments provide more intuitive information than moments about zero (raw geometric moments).

╋

Hu Set of Invariant Moments (1 through 5)

$$I_{1} = \eta_{20} + \eta_{02}$$

$$I_{2} = (\eta_{20} - \eta_{02})^{2} + (2\eta_{11})^{2}$$

$$I_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$I_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$I_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \Big[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2} \Big]$$

$$(3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \Big[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2} \Big]$$

Hu Set of Invariant Moments (6 through 7)

$$I_{6} = (\eta_{20} - \eta_{02}) [(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$I_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12}) \Big[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2} \Big] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03}) \Big[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2} \Big]$$

Seite 22

Some Remarks on the Hu Set

- J. Flusser and T. Suk showed that the Hu set of invariant moments is:
- 1. Not independent

For example, I_2 and and I_3 are dependent so they provide no additional information.

2. Incomplete

There is no independent 3rd order moment invariant. Low discriminating power.

A 3rd order independent moment that can be used instead is:

$$I_8 = \eta_{11} \Big[\big(\eta_{30} + \eta_{12} \big)^2 - \big(\eta_{03} + \eta_{21} \big)^2 \Big] - \big(\eta_{20} - \eta_{02} \big) \big(\eta_{30} + \eta_{12} \big) \big(\eta_{03} + \eta_{21} \big)$$

Sources

- 1. Vocal tract image by Jeff McNeill <u>http://jcarreras.homestead.com/files/phoneticsvocaltract.jpg</u>
- 2. The figure of Wheatstone's speech synthesizer is from Sami Lemmetty <u>http://www.acoustics.hut.fi/publications/files/theses/lemmetty_mst/chap2.html</u>