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Pattern Recognition Pipeline 

  One common method for heuristic feature extraction 
is the projection of a signal     or    on a set of 
orthogonal basis vectors (functions),                    . 
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Introduction to Linear Predictive Coding  

  Linear Predictive Coding (LPC) is a feature vector 
that is widely used in speech processing. 

  It represents the spectral envelope of a digital signal 
of speech in a compressed form.  

  LPC has been very successful in encoding good 
quality speech at a low bit rate.  

  It also provides extremely accurate estimates of 
speech parameters. 

  It is part of the GSM wireless communication 
standard.  
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Vocal Tract 

  There are 3 key 
elements in the 
human vocal 
tract: 
  Vocal Cords 
  Pharynx 
  Oral/Nasal Cavity 

  LPC assumes such 
an apparatus for 
voice/sound 
generation. 
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Abstract Model of Vocal Tract 

  An abstract model of the speech synthesis is often 
employed. 

  Its key components are: 
  Buzzer 
  Tube 

  The relationship between the vocal tract and the 
abstract model for speech production is: 
  Lungs 
  Trachia 
  Vocal cords  ->  Buzzer 
  Pharynx       ->  Tube 
  Oral cavity 
  Nasal cavity Additional hissing and popping sounds 
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An Early Speech Synthesizer 

  Wheatstone's reconstruction of von Kempelen's speaking machine. 

  Vowels were produced with vibrating reed and all passages were closed.  

  Resonances were effected by deforming the leather resonator. 

  Consonants, including nasals, were produced with turbulent flow trough a 
suitable passage with reed-off . 
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LPC and the Vocal Tract 

  LPC starts with the assumption that a speech signal 
is produced by a buzzer at the end of a tube 
(voiced sounds), with occasional added hissing and 
popping sounds (sibilants and plosive sounds). 

  The glottis (the space between the vocal cords) 
produces the buzz, which is characterized by its 
intensity (loudness) and frequency (pitch). 

  The pharynx forms the tube, which is characterized 
by its resonances, which are called formants.  

  Hisses and pops are generated by the action of the 
tongue, lips and throat. 
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LPC and the Vocal Tract - continued 

  LPC analyzes the speech signal by: 
  estimating the formants (the pharynx effects) 
  removing their effects from the speech signal 
  and estimating the intensity and frequency of the remaining buzz. 

  LPC isolates the intensity and frequency of the buzz 
and the formants effects. 

  Each (buzz effects and formant effets) can be stored 
(processed if needed) and transmitted separately. 

  They are then recombined at the receiving end to 
create the speech signal. 
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Linear Predictive Model 

  Assume that the present sample       of the speech is 
predicted by the past m speech samples so that 

 where        is the prediction of      ,        is the 
sample of the ith previous step, and  the          are 
are the linear prediction coefficients (LPCs). 

  The error between the actual sample and the 
predicted one is: 

  The best LPCs will result in          . 
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Computation of the LPC-coefficients 

  The prediction error is: 

  Goal: Derive the LPCs        that result in:  

  How do we compute the values of the coefficients 
that satisfy  
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System of Linear Equations 

  From the last k+1 samples we have: 

  We have k+1 equations which are all linear in    . 
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Matrix Form 

  Rewrite the system of equations in a matrix form: 
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Computing the Vector of LPC coefficients  

  If              , then A is a square matrix and thus it is 
invertible (assuming that               ). 

  Hence the LPC coefficients are: 
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  We have to use the pseudoinverse: 

  In this case the LPC coefficients are: 

  The best way to compute the pseudoinverse is to 
use singular value decomposition (SVD). 
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Alternative Estimation of LPC-coefficients 

  Alternatively, we could define an objective function. 
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  We then have to find the values of the LPC 
coefficients that minimize the error. 
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Four Remarks on LPC 

1.  Rule of thumb for the number of coefficients:  
  m = 10 -15 
  The choice of m depends on the sampling frequency. 
  Let fs be the sampling frequency in kHz, then  
  m = 4 + fs  up to m= 5 + fs 

2.  One can use the LPC coefficients to identify a 
person's voice. 
  LPC is particularly good at highlighting formant locations which 

have been shown to be significant in voice identification.  

3.  The vector of LPC coefficients can be used as a 
feature vector. 
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Four Remarks on LPC -continued 

4.  One can use the LPC coefficients to compute the 
smoothed Model Spectrum of a signal. 
  The Model Spectrum is the Fourier Transform of the LPC 

coefficients.  

  It is a smooth spectrum of the speech signal. 
  Peaks in the Model Spectrum are formants. 
  Peaks in the frequency spectrum of a sound are caused by 

resonance (i.e. they are directly attributed to formants) 
  It has been shown that perceptually, formants is the information 

that humans use in distinguishing between different vowels. 
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Moments 

  Given an image f(x,y), the geometric moments are 
defined as: 

  For the same image f(x,y) the central moments are 
defined as: 

 where               and                are the center of mass.  
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Moments and Invariance 

  An advantage of the central moments is that they are 
translation-invariant.  

  We can compute another set of moments, the 
normalized central moments which are also  scale-
invariant.  

  Given an image f(x,y), the normalized central 
moments are defined as: 

  Thus, the normalized central moments are translation- 
and scale-invariant. 
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Moment-Based Features  

  One can also construct moments that are 
translation, scale and rotation invariant. 

  A collection of such moments can be used as a 
feature vector    . 

  Each element      of the feature vector is a moment, 
i.e.                      for any chosen value of p and q, 
or a combination of moments. 

  A very popular set of moments used as a feature 
vector are the ones proposed by Hu. The are known 
as the Hu set of invariant moments. 
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Information Provided by Moments 

  1st order moments convey information about size, 
area, volume, or mass. 

  2nd order central moments are related to variance. 

  3rd order central moments provide information about 
the symmetry of an shape or distribution (skewness). 

  4th order central moments is a measure of whether 
the distribution is tall and skinny or short and squat, 
compared to the normal distribution of the same 
variance (kurtosis). 

  In general in higher orders, central moments provide 
more intuitive information than moments about zero 
(raw geometric moments).  
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Hu Set of Invariant Moments (1 through 5) 
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Hu Set of Invariant Moments (6 through 7) 
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Some Remarks on the Hu Set 

  J. Flusser and T. Suk showed that the Hu set of 
invariant moments is: 

1.  Not independent 
For example, I2 and and I3 are dependent so they provide no 
additional information.  

2.  Incomplete 
There is no independent 3rd order moment invariant. Low 
discriminating power. 

  A 3rd order independent moment that can be used 
instead is: 
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Sources 

1.  Vocal tract image by Jeff McNeill http://jcarreras.homestead.com/files/phoneticsvocaltract.jpg 

2.  The figure of Wheatstone’s speech synthesizer is from Sami Lemmetty 
http://www.acoustics.hut.fi/publications/files/theses/lemmetty_mst/chap2.html   


