Feature Extraction

Spectrogram, Walsh Transform, Haar Transform

Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Pattern Recognition Pipeline

■ One common method for heuristic feature extraction is the projection of a signal \vec{h} or \vec{f} on a set of orthogonal basis vectors (functions), $\Phi=\left[\vec{\varphi}_{1}, \vec{\varphi}_{2}, \ldots, \vec{\varphi}_{M}\right]$

$$
\vec{c}=\Phi^{T} \vec{f}
$$

Speech Processing and Fourier Transform

- In speech processing we often want to analyze the sound of individual vowels or consonants or syllables.
- We want to analyze the sound signal in frames that last $10-20 \mathrm{msec}$.
- Goal: compute the Fourier transform for each frame.
- How?
- Overlap the sound signal with a function that turns everything outside the frame of interest into 0 .

Short Time Fourier Transform

- The idea of ignoring the signal (turning it to zero) for values outside a small time window has a broader application outside speech processing.
- It is known as the Short Time Fourier Transform.

■ Short Time Fourier Transform: apply a windowing function to each frame before applying the Fourier transform.

$$
F(\tau, \omega)=\int_{-\infty}^{\infty} f(t) w(t-\tau) e^{-j \omega t} d t
$$

- Compared to the Fourier transform

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

Short Time Fourier Transform - continued

- Short Time Fourier Transform:

$$
F(\tau, \omega)=\int_{-\infty}^{\infty} f(t) w(t-\tau) e^{-j \omega t} d t
$$

where $w(t)$ is the windowing function.

- It is used in determining the sinusoidal frequency and phase content of local sections of a signal as it changes over time.

Spectrogram

■ In speech processing we use a special feature based on the Short Time Fourier Transform, called the Spectrogram:

$$
\operatorname{Spectrogram}\{f(t)\}=|F(\tau, \omega)|^{2}
$$

- Spectrograms are used in:
- identifying phonetic sounds
- analyzing the cries of animals
- analyzing music, sonar/radar signals, speech processing, etc.
- A spectrogram is also called a spectral waterfall, sonogram, voiceprint, or voicegram.
- The instrument that generates a spectrogram is called a sonograph.

Windowing Functions

- One can use different windowing functions.
- Let N be the width of the window and $0 \leq n \leq N-1$.
- Then the time-shifted windowing functions are of the form:

$$
w(n)=w_{0}\left(n-\frac{N-1}{2}\right)
$$

where $w_{0}(t)$ is maximum at $t=0$.

- Typically N is a power of 2 , i.e. $N=m^{2}$.
- The simplest windowing function is a rectangle window:

$$
w(n)=1
$$

Windowing Functions - continued

- A well-known windowing function is the Hamming window, which is a "raised cosine" proposed by Hamming (raised because it is not zero at the limits).
■ It is defined as:

$$
w(n)=0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right)
$$

- Another widely-used windowing function is the Hann window:

$$
w(n)=0.5\left(1-\cos \left(\frac{2 \pi n}{N-1}\right)\right)
$$

Features based on Fourier Transform - review

- Recall that in the Fourier Transform we use sinusoidal functions for our signal decomposition:

$$
e^{2 \pi j \omega x}=\cos (2 \pi \omega x)+j \sin (2 \pi \omega x)
$$

- When using the Fourier basis functions as an orthogonal basis, we used the following subset of the sinusoidal functions:

$$
e^{-2 \pi j \frac{v}{M} x}=\cos \left(-2 \pi \frac{v}{M} x\right)+j \sin \left(-2 \pi \frac{v}{M} x\right)
$$

- The problems with such sinusoidal functions is that they are computationally expensive.

Walsh Functions

- Instead one can use a rectangular waveform with a magnitude range $[-1,1]$.
- One such type of function is the Walsh functions.
- The Walsh function can be thought of as a discrete version of sinus and cosinus functions.
- The frequency of sinusoidal function corresponds to the sequence of the Walsh function transitions.
- The Walsh functions are defined in the interval

$$
-1 / 2 \leq x \leq 1 / 2
$$

Walsh Function Plots

Plots courtesy of Wolfram Mathworld http://mathworld.wolfram.com/WalshFunction.html

Definition of Walsh Functions

The continuous Walsh functions are recursively defined:

$$
w(x, 0)=\left\{\begin{array}{l}
1 \text { for }-1 / 2 \leq x \leq 1 / 2 \\
0 \text { otherwise }
\end{array}\right.
$$

$$
w(x, 2 k+p)=-1^{\left[\frac{k}{2}\right\rfloor+p}\left(w\left(2\left(x+\frac{1}{4}\right), k\right)+(-1)^{k+p} w\left(2\left(x-\frac{1}{4}\right), k\right)\right)
$$

for $k=0,1,2, \ldots$ and $p=0,1$.
The Walsh functions are orthonormal:

$$
\int_{-1 / 2}^{1 / 2} w(x, k) \cdot w(x, n)=\left\{\begin{array}{lll}
0 & \text { if } k \neq n \\
1 & \text { if } k=n
\end{array}\right.
$$

Hadamard Matrix

- The orthogonal Walsh functions are the basis functions used in the Walsh-Hadamard transform.
- In the Walsh-Hadamard transform the key component is the Hadamard matrix, where the rows of the matrix are the Walsh functions.
- The Hadamard matrix is defined recursively:

$$
\begin{aligned}
& H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& H_{M}=H_{2} \otimes H_{M / 2} \\
& =H_{2} \otimes H_{2} \otimes \ldots \otimes H_{2} \quad \text { q factors }
\end{aligned}
$$

where H_{M} is an MxM Hadamard matrix and $M=2^{q}$.

Kronecker Product

- In the Hadamard matrix defintion, the operand \otimes denotes the Kronecker product.
- Given an MxM matrix A and and mxm matrix B, their Kronecker product is an $\mathrm{Mm} \times \mathrm{Mm}$ matrix constructed as follows:

$$
A \otimes B=\left[\begin{array}{ccccc}
a_{11} B & a_{12} B & a_{13} B & \cdots & a_{1 M} B \\
a_{21} B & a_{22} B & a_{23} B & \cdots & a_{2 M} B \\
a_{31} B & a_{32} B & a_{33} B & \cdots & a_{3 M} B \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{M 1} B & a_{M 2} B & a_{M 3} B & \cdots & a_{M M} B
\end{array}\right]
$$

Example Hadamard Matrix

■ Consider the H_{8} matrix: $H_{8}=H_{2} \otimes H_{4}=H_{2} \otimes H_{2} \otimes H_{2}$

$$
H_{8}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \otimes H_{2}
$$

$$
H_{8}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

More on the Hadamard Matrix

- The Hadamard matrix is simply just one way of arranging the Walsh functions.
- Consider for example the H_{4} matrix.

$$
H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Ordering of Walsh Functions

Walsh functions can be ordered in many different ways.

Image adapted from S. Wolfram, http://mathworld.wolfram.com/WalshFunction.html

Walsh-Hadamard Transform

- We can then use the Hadamard matrix for computing an M-dimensional feature vector \vec{c} as follows:

$$
\vec{c}=H_{M} \vec{f}
$$

■ This is known the Walsh-Hadamard Transform (WHT).

- Attributes of the WHT:
- It only involves additions and subtractions of real numbers.
- The results are real numbers.
- There exists a divide-and-conquer implementation which decreases the M^{2} additions and subtractions to MlogM additions/subtractions.

Walsh Function Plots - revisited

Plots courtesy of Wolfram Mathworld http://mathworld.wolfram.com/WalshFunction.html

Haar Functions

Plots courtesy of Ruye Wang http://fourier.eng.hmc.edu/e161/lectures/Haar/index.html

Definition of Haar Functions

- The collection of Haar functions is somewhat more intuitively constructed.
- The Haar functions $h_{k}(x)=h_{p q}(x)$ can be recursively defined.
■ For $k>0$ the Haar function always contains a single square wave where p specifies the magnitude and width of the shape (the narrower the wave, the taller it is) and q specifies its position
\square The order of the function, k, is uniquely decomposed into 2 integers p and q.

Definition of Haar Functions - continued

- p and q are uniquely determined so that:
$\checkmark 2^{p}$ is the largest power contained in k and
$\checkmark q$ is the remainder
- The Haar functions are defined for the interval $0 \leq x \leq 1$ and for the following indices:

$$
\begin{aligned}
& k=0,1,2, \cdots, M-1 \text { where } M=2^{n} \\
& k=2^{p}+q-1 \\
& 0 \leq p \leq n-1 \\
& q= \begin{cases}0,1 & \text { for } p=0 \\
1<q<2^{p} & \text { for } p \neq 0\end{cases}
\end{aligned}
$$

Definition of Haar Functions - continued

- The Haar functions are then defined as:

$$
h_{00}(x)=\frac{1}{\sqrt{M}}
$$

$$
h_{p q}(x)=\frac{1}{\sqrt{M}}\left\{\begin{array}{lc}
2^{p / 2} & \text { for } \frac{q-1}{2^{p}} \leq x<\frac{q-0.5}{2^{p}} \\
-2^{p / 2} & \text { for } \frac{q-0.5}{2^{p}} \leq x<\frac{q}{2^{p}} \\
0 & \text { for other values of } x \text { in }[0,1]
\end{array}\right.
$$

- The parameter M controls how fine our decomposition will be (how many basis functions we will use).

Example Haar Transformation Matrix

- For $M=4$, we get the Haar transformation matrix

$$
\operatorname{Har}_{4}=\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{11} \\
h_{12}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & -\sqrt{2}
\end{array}\right]
$$

- Note that $\mathrm{Har}_{4}^{-1}=\mathrm{Har}_{4}^{T}$ which means that the matrix is orthogonal.
- This implies that the Haar basis functions are orthogonal to each other.

Another Haar Transformation Matrix

■ For $M=8$, we get the Haar transformation matrix

$$
\operatorname{Har}_{8}=\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{11} \\
h_{12} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{24}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} \\
2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & -2
\end{array}\right]
$$

■ To create an M-dimensional feature vector \vec{c} based on the Haar basis function, we compute:

$$
\vec{c}=\operatorname{Har}_{M} \vec{f}
$$

