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Multiresolution (MRA)

Multiresolutions analysis (MRA)

@ was invented in 1988 by Stephane MALLAT in his Ph.D. thesis
Multiresolution and Wavelets (University of Pennsylvania)

@ is an elegant theoretical framework for the study of wavelets and
wavelet transforms

@ is considered to be the central concept which integrates the many
facets of wavelet transforms
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Multiresolution (MRA) Multiresolution scheme

@ Definition
An MRA (multiresolution analysis) consists of a family {V;}cz of
subspaces of £?(R) satisfying the following properties:
©Q ‘"nesting”: V; C Vi1 (j€Z)
@ ‘density” : span{V;}jcz = L?(R)
@ ‘“separation”: ({V,}jez = {0}

Q@ ‘scaling”:
f(t) € Vo & (Dyf)(t) = 272f(2/t) € V; (f € L2(R),j € Z)

© ‘“scaling function”:
There exists a function ¢ € Vj s.th. the family of its integer translates

{ Tko(t) bkez = { ¢(t — k) }yer
forms a complete ON-basis of Vo = Span{ Tk¢ }kez (ONST)
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Multiresolution (MRA) Multiresolution scheme

@ ONST-Example:

sin(nt)
mt

o Are the integer translates (Tx¢)(t) = ¢(t — k) (k € Z)
orthogonal to each other?

e The answer is not obvious from looking at the graphs!

o Consider the function ¢(t) = sinc(t) =

e How to prove orthogonality?
e Recipe: Go to the frequency domain! (using PP)

e Recall: (’5(5) = b(s) = 1|_1/2,1/2)(s) (the box function)

(6] Teo) = (6| Tud) = (b s)|e—2”"k5b(s)>
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Multiresolution (MRA) Multiresolution scheme

@ Reminder:

¢(t) satisfies (ONST) «— Z b(s +n))2==1

nez
Proof : <f|ka>:<ﬂﬂ\f>:/F(s)?(s)e%"des

R
ntly 2 .
= / ‘f(s)‘ e*™ks ds
nez "

— Z/Ol ’f(s—i— n)‘2 e2miks s
= /OIZ ‘f(s—i— n)

2 .
e27r/ks ds

Hence in terms of Fourier series

SO(F| Tef ) ek =3 ‘f(s+ n)

keZ neZ
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Multiresolution (MRA) Multiresolution scheme

o Consequences

© The vector spaces (V}),, are ordered by inclusion

{0/ CV,LCV CVWCTVCWC - N LYR)

@ For each j € Z family of dilated and translated functions { ¢; «(t) }kez,
defined by

9j.k(t) = 2292t — k) = (Dy T 9)(1),

forms a complete ON-Basis (Hilbert basis) of the approximation space

Vi =span{ ¢ tkez (j € Z)

© From Vy C V; it follows that there exists a (unique) £?-sequence
h = (hy)kez of complex numbers s.th.

(5) o(t) = th é1,k(t)
kez.

This identity is the scaling identity of the MRA,
the sequence h = (hy)kez is the scaling filter of the MRA
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Multiresolution (MRA) Multiresolution scheme

@ Remarks
Properties involving Vj and ¢(t) carry over to all scaling levels by
using dilation, e.g.,

Voo f(t) =D fi- (Tud)(t) =

kEZ

Vi 3 (Dyf)(t) = fi- (Da Tk 9)(t)

k€EZ

so each V; is a dilated copy of Vj,

@ and thus orthonormality is preserved

<¢j,k‘¢j,£> :2J/R¢(2jt_k)¢(2jf—€)dt
= [ e~ T By = {duildue) = e
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Multiresolution (MRA) Multiresolution scheme

@ From the scaling identity (S) and orthogonality one gets immediately

he = (| d1k) = \/§/R<Z>(t)¢(2t—k)dt
e and forall j,l € Z
dj(t) = 22g(Jt — 1)
= 22N " by py (2t — 1)

kez
= 2UFD2N "y (2 — 20 — k)
kez
= Z hi $jv1204k(t) = Z hi—20 @ji1,k(t)
kez kez

e so that the scaling coefficients aj; = (f | ¢j ) of f € L? satisfy

aj0=(fldje) =3 oo (Fljuri(t)) = hi_zeajini

kezZ keZ
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Multiresolution (MRA) Multiresolution scheme

The wavelet function 1(t) of a MRA is defined in terms of the scaling
function ¢(t) as

(W) b(t) = gk pri(t) where g =(—1)h_,

keZ

The sequence g = (gk)kez is the wavelet filter belonging to the MRA

@ The wavelet functions ;¢ (j, £ € Z are defined as usual

The wavelet coefficients dj, = (f |1)j,) of f € L? satisfy
die = (Flvje) =D 8kor (Flojia(t)) = gr-2rajiik
keZ kEZ

The Discrete Wavelet Transform (DWT) based on the functions ¢(t)
and 1(t) uses these scaling and wavelet identities

ajg = E hi—20ajy1,k djg= E 8k—2¢ Aj 11,k
kez kez
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Multiresolution (MRA) Multiresolution scheme

@ Theorem
@ For each j € Z the family of wavelet functions { 9; x }xez with

Ui (t) =272 (2t — k) = (Dy Tiw)(t)
is a complete ON-Basis (Hilbert basis) of the wavelet (detail) space
W, = span{ v k }kez
@ For all j € Z the space W; is the orthogonal complement of V; in Vi ;:
Vin=Wey Wiy
© For every J € Z one has the direct product decomposition

L2R) =V, e P W,
izJ

@ The family {4 « }j kez is a complete ON-basis (Hilbert basis) of £?(RR)
LR =P W,

JEL
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Multiresolution (MRA) Multiresolution scheme

@ Remarks

@ Functions in V; and W, have resolution level > 27/

@ Orthogonal projections on approximation and detail subspaces

approximation  Pj: L2(R) — V;: f Z( flojk) ik
kez.

detail  Q : L2(R) = Wi f s Y (Flhju) djk
kez
where Qj = Fj+1 — PJ
© For all j > m one has the wavelet decomposition
Vj+1: Vm@ Wm@ Wm+1€B"'@VVj

© The “density” and “separation” requirements for an MRA translate into

lim Pif =f und lim P;f=0
j——00

Jj—oo
w.r.t. L2-convergence

WTBV Multiresolution Analysis (MRA) January 10, 2017 12 / 43



Multiresolution (MRA) Examples

Example (1): The HAAR-MRA

@ The scaling function is

o(t) = Lpo,1)(t)

@ For j € 7Z the approximation space
V; = span{ ¢; (t) }kez C L(R)

consists of the £2-step functions with step width 24
° {¢j,k(t) }kez is obviously an ON-Basis of V;

@ Density (fact about approximation by step functions):

lim V; = £3(R)

_]4)00

@ Separation: an L£2-function f € ez Vj which is constant on
arbitrarily long intervals must vanlsh identically on R
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Multiresolution (MRA) Examples

@ Scaling filter coefficients

1 1
= ——, he=0(k#0,1
M K (k#0,1)

ho =
0 V2

@ Scaling identity

o(t) = 2(%,0(1“) T 601(t)) = 6(28) + B2t — 1)

@ Wavelet filter coefficients

go_\}iv gl__\}ﬁa ngO(k#O,]_)
o Wavelet identity
b(t) = % (d00(t) + do1(t)) = H(2t) — 6(2t — 1)

= 110,1/2)(t) — 1j1/2,1)(t)

o Fourier transforms

~

gg(s) = e ™sinc(s)  Y(s) =i-e ™ sin(rs/2)sinc(s/2)
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Multiresolution (MRA) Examples

e Examples (2)

The Daubechies, Coiflet, and many other orthogonal filters of similar
type define MRAs with filters of finite length and scaling/wavelet
functions with compact support
o The filters are (of course!) those constructed from orthogonality and
low/highpass conditions
o The scaling functions ¢(t) and the wavelet functions (t) are those
functions determined by the cascade algorithm
e The ONST-property follows because the cascade algorithm preserves

orthogonality
e Density and Separation do not come automatically, but have to be

verified separately
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Example (3): The SHANNON-MRA
@ SHANNON's sampling theorem motivates to consider
Vo= {feL?R); f(s) =0 for |s| >1/2}
the space of 1-band-limited functions, and
V; = {f e L%R); f(s) =0 for |s| > 21}

the space of 2/-band-limited functions
@ The scaling function is
sin(7 t)

o(t) = sinc(t) = p_—

@ The FT of the scaling function is the box function

$(5) = 1[71/2,1/2)(5)
@ The family { Txo(t) }kez € Vo is an ONST in Vg
(remember the previous example)
@ SHANNON's sampling theorem says precisely this:

Vo = span{ Ty¢(t) tkez
Multiresolution Analysis (MRA) January 10, 2017
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Multiresolution (MRA) Examples

@ The Shannon wavelet function is

_sin(27t) — cos(wt)  sin(m(t —1/2))
=1 T ae—1/2)

(1 — 2sin(nt))

o with its FT

@(t) = —e ' (1[—1,—1/2)(5) + 1[1/2,1)(5))

o Note:
o ¢(t) and (t) are infinitely differentiable functions with infinite support
° a(t) and zZ(t) discontinuous functions with compact support
o The scaling and wavelet filters have infinite length (with quite simple
coefficients)

@ The situation is precisely the converse to that of the HAAR-MRA
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Multiresolution (MRA) ESETPIES
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Figure: Shannon Scaling function and Shannon wavelet function
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Multiresolution (MRA) Examples

Example (4): The piecewise-linear MRA
o Continuous alternative to the HAAR-MRA:

Vo contains the continuous £2-functions which are (affine-)linear on
any interval lpx = [k, k+ 1), (k € Z),i.e.,

Vo={f¢ L%(R); f continuous on R and linear on all o s (k € Z)}
@ so that for any j € Z

V; = {f € L%R); f continuous on R and linear on all /;x (k € Z) }
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Multiresolution (MRA) ESETPIES

4 2 \/ 2 4 6
1
-2

A piecewise-continuous function f(t) defined by the values

—

k|-4 -3 -3 -1 0 2 3 45
f(ky] o0 2 3 11 3420

N

WTBV Multiresolution Analysis (MRA) January 10, 2017 20 / 43



Multiresolution (MRA) Examples

o The spaces (V}),, are obviously nested

@ Density: one has to show that any continuous function with compact
support can be approximated uniformly as j — oo by Vj-functions

o Separation: any L2-function f € Njez Vj must be linear in arbitrarily
long intervals.
This happens only for f =0

@ Scaling is part of the definition
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Multiresolution (MRA) ESETPIES

e What is a scaling function ¢(t) € Vg for this MRA?

o The “obvious” candidate is the “hat” function

o(t) = (1= [t]) 1—1,1)(2)

-2 -1 1 2-2

o It satisfies the scaling equation

o(t) = %¢(2t — 1)+ ¢(2t) + %qﬁ(Zt +1)
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Multiresolution (MRA) ESETPIES

@ The integer translates Tx¢(t) (k € Z) of the hat function can be
used to generate V)

The piecewise-linear function f(t) represented as

20(t+3)+3¢(t+2)+¢(t+1)+¢(t) =2¢(t—1)+3¢(t—2)+4¢(t—3)+2¢(t —4)

WTBV Multiresolution Analysis (MRA) January 10, 2017 23 /43



Multiresolution (MRA) Examples

The example illustrates the simple fact:

o Lemma
If f is continuous function on R and linear on all intervalls fo 4,
then for all t € R:

F(t) =D F(k) (Tke)(t) = D F(k) $(t — k)

keZ keZ

@ This is an assertion about pointwise convergence.

(This convergence is trivial because for any t € R at most two
summands are # 0)
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Multiresolution (MRA) Examples

e BUT unfortunately the T,¢(t) are not always orthogonal :

2/3 ifk=1¢
(Tko| Tep) =q1/6 if [k =1 =1
0 otherwise

o Q: Can one find another function ¢(t) € Vg such that its integer
translates are an ONST and generate Vg 7

@ The procedure outlined below is exemplary and can be used in other
situations as well

WTBV Multiresolution Analysis (MRA) January 10, 2017 25 /43



Multiresolution (MRA) Examples

o (still about the scaling function)

e Lemma
If f is continuous on R and linear on all intervalls fy x, then

F(t) = F(k) (Tud)(t)

k€EZ

also holds in the sense of £2-convergence

o This follows from

(F(m +|F(n+1DP) < / P de

< (AP +1F(n+ DP)

[N

for any function which is linear in the interval [n,n+ 1)

o Lemma: Vo = span{ Tk® }kez
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Multiresolution (MRA) Examples

@ (still about the scaling function)

o A suitable scaling function %(t) for the piecewise-linear MRA can be
found using Fourier transforms

o Remember the chacterization of ONST

{ Tk¢ } iz is an ONST = Z ’5(54— n)‘2 =1

nez

o The translates of ¢(t) visibly do not form an ONST, and this can be
quantified by

oy 1 is | 2 1, 142 cos?(ws
Sl s off - Lo B L L 2ele)
neZ 6 3 6 3

and hence

w \

Z‘(?Ss-i-n‘ <1
€z
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Multiresolution (MRA) Examples

o (still about the scaling function)

o If ¢?(s) is the FT of ¢(t), define ¢(t) through its Fourier transform by
setting
= V3 ~
5) = ————— ¥(5),
ols) V14 2cos?7s ols)

e Then, by construction,

2
=1

~

d(s+ n)

D

neZ

Hence {Tkg}kez is an ONST and is an ON-basis of
(see a later theorem for justifying this)

e The modification of the FT given above leads to the desired conclusion

But unfortunately neither g(t) nor {/Jv(t) have a simple analytic form
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Multiresolution (MRA) ESETPIES

@ The scaling function 5(1‘) for the piecewise-linear MRA

The family of integer translates of 5(1‘) is an ONST for V; of this
MRA
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Multiresolution (MRA) Properties of MRA's (I)

o General setup:

o An MRA given by nested approximation spaces (V;)jcz and
a scaling function ¢(t), satisfying the MRA requirements

o h = (hi)kez, the scaling filter of the MRA and its Fourier series
mo(s) = 1 Z hy e 2mis
V2 kEZ

o g = (gk)kez, Where gx = (—1)%hy_4, the wavelet filter of the MRA
and its Fourier series

1 .
m(s) = NG > gie e

k€EZ

o Y(t) = >,z 8kP1.x(t) the wavelet function of the MRA
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Multiresolution (MRA) Properties of MRA's (I)

@ The following assertions are either already known or follow from the
definitions and known facts by straighforward (occasionally somewhat
tedious) calculations. See the Lecture Notes for details.

o Properties of h = (hy)kez

Q > hreae i = [mo(s)]? + [mo(s + 3)I> =1
@ X, Il =1 case { =0 in (1)
QX =2 mo(0) =1
Q X hok =y b1 =1/V2 mo(3) =0
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Multiresolution (MRA) Properties of MRA's (I)

e Properties of the g = (gk)kez

Q >, 8k—208k =0rp0 Imi(s)? + [mi(s + 3)P =1

@ Y lel =1 case { =0 in (1)

Q> ,a=0 m1(0) =0

Q >, k= &u1=1/V2 ml( )=1
@ Properties relating h = (hx)kez and g = (gk)kez

Q Y gi2chi=0 mo(s)mu(s) + mo(s + 3)m(s + 3) =0

@ > (hm—2k o2k + 8m—2k Ba—2k) = Om.n
mo(s)mo(s + 1) + mi(s+1)mi(s+ 1) =0
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Multiresolution (MRA) Properties of MRA's (I)

o Consequences
@ For each j € Z the family {¢); k} ., is an orthonormal family of
L2-functions

@ For each j € Z the families {1 x},., and {¢; k},;, are orthogonal to
each other, i.e., W; L V;

© One has Vi = Vo ® Wy, and generally Vi1 = V; @& W,
For j # j' one has W; L W

©

@ Thus {¢) «  kez, 1s an orthonormal family of £2-functions
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Multiresolution (MRA) Orthonormal systems of translates

@ Charcterization of the elements of the subspace Vg
@ Theorem

If {Tk},cz is an ONST and Vg the L?-subspace generated by this
family

the exists an (?-sequence (cp)nez With

feV, <— N N )
f(s) = d(5) - X ez Cne™ 2™

In words:
the elements of Vg are precisely those £2-functions f, whose FT f is
a product of ¢ and a period-1 Fourier series

@ For the proof (not difficult, using BESSEL's inequality and
PARSEVAL-PLANCHEREL) see the Lecture Notes
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Multiresolution (MRA) Orthonormal systems of translates

@ The following Theorem shows how the construction leading to an
MRA for the pieceswise-linear functions can be made in a general
context. (For the proof see the Lecture Notes)

@ Theorem

— If ¢(t) € L2(R) is a function with compact support

— and if there exist constants A, B s.th.
- 2
O<A§Z’¢(s+n)’ < B,

nez

then there exists a function ¢(t) € £2(R), such that
— the family {T@}kez is an ONST

— and it generates the same space Vj as the family {Tx¢}, .,
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Multiresolution (MRA) Properties of MRA's (II)

@ General MRA-setup (as before) with
o scaling function ¢(t), scaling filter (hy)xez, Fourier series my(s)

o wavelet function ¢ (t), wavelet filter (g« )kez, Fourier series my(s)
@ Properties

Q@ [3(0)| = [f oty dt| =1

Q forallneZ,n#0:  ¢(n)=0

Q > cpd(t+n)=1

@ (0) = fp () dt =0

@ The proofs are somewhat technical. See the Lecture Notes
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

Recall properties of the FT w.r.t. smoothness an vanishing at infinity
@ Theorem
o If f(t) € LY(R) and t - f(t) € L1(R), then (s) € C1(R) and

— 1 d~

o More generally for N > 1
If £(t) € L(R) and tN £(t) € L}(R) then f(s) € CV(R) and

“and conversely”

o Note: “tN f(t) € LY(R)" means: f(t) vanishes rapidly as t — 400,
typically f(t) € O(t~N=1¢) for some ¢ > 0;

~ ~

“f(s) € CN(R)" means that f(t) has N continuous derivatives
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

@ For function f(t) and k > 0 the k-th moment is defined as
/ thf(t) dt
R
o Note: if tkf(t) € L}(R), then
/ t“f(t)dt=0 <« FfH0)=0
R

@ Theorem
If 1 € L2(R) and if {¢; x} is an orthonormal family in £2(R), then:
o If 1) € L1(R), then [L¢) =0
o More generally: if tVNy(t), sN+1e(s) € £1(R), then

/ (1) dt = 9™ (0) =0 (0< m < N)
R
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

@ Remarks
o If a function f(t) satisfies

FR(0) = / tkf(t)dt =0 (0 < k < N),

then f is said to have N vanishing moments

@ The previous Theorem relates smoothness and vanishing at infinity of a
wavelet function v(t) with the phenomenon of vanishing moments

e The FT of the wavelet equation

~

U(s) = mi(s/2) - 6(s/2)
can be differentiated repeatedly, giving
m(1/2)=0 (0< k< N)
as a statement equivalent to

1(t) has N vanishing moments
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WIS MMV Vanishing noments, smoothness, reconstruction properties

e Taking the FT of the scaling identity
9(s) = mo(s/2) - 6(s/2)

and differentiating it repeatedly gives

~k B 0< k<N
oH(m) =0 {meZ\{O}
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

The consequences of a wavelet function ¢ (t) having N vanishing
moments can be made precise:

@ Theorem
If ¢ € L?(R) has compact support and N vanishing moments, then
for each f € CN(R) with f(N) bounded there exists a constant
C = C(N,f) s.th.

(Fle) < C-29N 292 (j ke 2)

@ This quantitative statement should be read qualitatively as:
Wavelet coefficients belonging to regions where f is smooth tend to
be very small over many levels of resolution!

@ The proof is by using a Taylor expansion of f(t) in the region where
1;j k is nonzero — see the Lecture Notes
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

D4 as an example
@ The wavelet function (t) of the Daubechies Dy filter has N = 2

vanishing moments
@ One has

/w(t)dt:O, /td; / Y(t) dt = \/T

e For f € C3(R), by taking the support of 1(t) into account,

32J . . .
(f k) /Rf t) 2/2 4 2Jt—k)dt:/0 F(t+277k) 22 (2 t) dt

o Expanding f(t) at t +2/k in a Taylor series gives

< |,l/}J k> 116\/? 5J/2 f”(2 Jk)

with equality (instead of =) if f is a constant, linear or quadratic
polynomial
o In particular: all wavelet coefficients ( f|1); ) vanish for regions
where f is linear
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(\ITTHIESI VI NIV Vanishing noments, smoothness, reconstruction properties

Wrapping things up:
@ Theorem
If ¢(t) resp. 1(t) are scaling resp. wavelet functions of an MRA,

h = (hp) ez the scaling filter and mg(s) its Fourier series, then the

following statements are equivalent:

@ ¢ has N vanishing moments:
/Rtkw(t)dt =0 (0<k<N)
@ The filter h = (h,) satisfies N low-pass conditions
m{(1/2) =0 (0< k< N)
© The Fourier series mg(s) of h = (h,) can be factored:

14+ e—27ris
mo(s) = (— 5 )V 1(5)
where L(s) is a period-1 trigonometric polynomial
Q@ The QMF h = (h,) satisfies the N moment conditions
> (=1)"h,n* =0 (0<k<N)
n€eZ
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