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Multiresolution (MRA)

Multiresolutions analysis (MRA)

was invented in 1988 by Stephane Mallat in his Ph.D. thesis
Multiresolution and Wavelets (University of Pennsylvania)

is an elegant theoretical framework for the study of wavelets and
wavelet transforms

is considered to be the central concept which integrates the many
facets of wavelet transforms
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Multiresolution (MRA) Multiresolution scheme

Definition
An MRA (multiresolution analysis) consists of a family {Vj}j∈Z of
subspaces of L2(R) satisfying the following properties:

1 “nesting”: Vj ⊆ Vj+1 (j ∈ Z)

2 “density” : span{Vj}j∈Z = L2(R)

3 “separation”:
⋂
{Vj}j∈Z = {0}

4 “scaling”:
f (t) ∈ V0 ⇔ (D2j f )(t) = 2j/2f (2j t) ∈ Vj (f ∈ L2(R), j ∈ Z)

5 “scaling function”:
There exists a function φ ∈ V0 s.th. the family of its integer translates

{Tkφ(t) }k∈Z = {φ(t − k) }k∈Z

forms a complete ON-basis of V0 = span{Tkφ }k∈Z (ONST)
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Multiresolution (MRA) Multiresolution scheme

ONST-Example:

Consider the function φ(t) = sinc(t) =
sin(πt)

πt

Are the integer translates (Tkφ)(t) = φ(t − k) (k ∈ Z)
orthogonal to each other?
The answer is not obvious from looking at the graphs!

How to prove orthogonality?
Recipe: Go to the frequency domain! (using PP)

Recall: φ̂(s) = b(s) = 1[−1/2,1/2)(s) (the box function)

〈φ |Tkφ 〉 = 〈 φ̂ | T̂kφ 〉 = 〈 b(s) | e−2πiksb(s) 〉

=

∫ 1/2

−1/2
e−2πiks ds = δ0,k
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Multiresolution (MRA) Multiresolution scheme

Reminder:

φ(t) satisfies (ONST) ⇐⇒
∑
n∈Z
|φ̂(s + n)|2 =≡ 1

Proof : 〈 f |Tk f 〉 = 〈 f̂ | T̂k f 〉 =

∫
R
f̂ (s) f̂ (s) e2πiksds

=
∑
n∈Z

∫ n+1

n

∣∣∣f̂ (s)
∣∣∣2 e2πiksds

=
∑
n∈Z

∫ 1

0

∣∣∣f̂ (s + n)
∣∣∣2 e2πiksds

=

∫ 1

0

∑
n∈Z

∣∣∣f̂ (s + n)
∣∣∣2 e2πiksds

Hence in terms of Fourier series∑
k∈Z
〈 f |Tk f 〉 e−2πiks =

∑
n∈Z

∣∣∣f̂ (s + n)
∣∣∣2
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Multiresolution (MRA) Multiresolution scheme

Consequences

1 The vector spaces (Vj)j∈Z are ordered by inclusion

{0} ↙ · · · ⊆ V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · ↗ L2(R)

2 For each j ∈ Z family of dilated and translated functions {φj,k(t) }k∈Z,
defined by

φj,k(t) = 2j/2φ(2j t − k) = (D2j Tk φ)(t),

forms a complete ON-Basis (Hilbert basis) of the approximation space

Vj = span{φj,k }k∈Z (j ∈ Z)

3 From V0 ⊆ V1 it follows that there exists a (unique) `2-sequence
h = (hk)k∈Z of complex numbers s.th.

(S) φ(t) =
∑
k∈Z

hk φ1,k(t)

This identity is the scaling identity of the MRA,
the sequence h = (hk)k∈Z is the scaling filter of the MRA
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Multiresolution (MRA) Multiresolution scheme

Remarks
Properties involving V0 and φ(t) carry over to all scaling levels by
using dilation, e.g.,

V0 3 f (t) =
∑
k∈Z

fk · (Tk φ)(t) ⇐⇒

Vj 3 (D2j f )(t) =
∑
k∈Z

fk · (D2j Tk φ)(t)

so each Vj is a dilated copy of V0,

and thus orthonormality is preserved

〈φj ,k |φj ,` 〉 = 2j
∫
R
φ(2j t − k)φ(2j t − `) dt

=

∫
R
φ(t − k)φ(t − `) dt = 〈φ0,k |φ0,` 〉 = δk,`
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Multiresolution (MRA) Multiresolution scheme

From the scaling identity (S) and orthogonality one gets immediately

hk = 〈φ |φ1,k 〉 =
√

2

∫
R
φ(t)φ(2t − k) dt

and for all j , ` ∈ Z

φj ,`(t) = 2j/2φ(2j t − `)

= 2j/2
∑
k∈Z

hk φ1,k(2j t − `)

= 2(j+1)/2
∑
k∈Z

hk φ(2j+1 − 2`− k)

=
∑
k∈Z

hk φj+1,2`+k(t) =
∑
k∈Z

hk−2` φj+1,k(t)

so that the scaling coefficients aj ,` = 〈 f |φj ,` 〉 of f ∈ L2 satisfy

aj ,` = 〈 f |φj ,` 〉 =
∑
k∈Z

hk−2` 〈 f |φj+1,k(t) 〉 =
∑
k∈Z

hk−2` aj+1,k
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Multiresolution (MRA) Multiresolution scheme

The wavelet function ψ(t) of a MRA is defined in terms of the scaling
function φ(t) as

(W ) ψ(t) =
∑
k∈Z

gk φ1,k(t) where gk = (−1)k h1−k

The sequence g = (gk)k∈Z is the wavelet filter belonging to the MRA

The wavelet functions ψj ,` (j , ` ∈ Z are defined as usual

The wavelet coefficients dj ,` = 〈 f |ψj ,` 〉 of f ∈ L2 satisfy

dj ,` = 〈 f |ψj ,` 〉 =
∑
k∈Z

gk−2` 〈 f |φj+1,k(t) 〉 =
∑
k∈Z

gk−2` aj+1,k

The Discrete Wavelet Transform (DWT) based on the functions φ(t)
and ψ(t) uses these scaling and wavelet identities

aj ,` =
∑
k∈Z

hk−2` aj+1,k dj ,` =
∑
k∈Z

gk−2` aj+1,k
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Multiresolution (MRA) Multiresolution scheme

Theorem

1 For each j ∈ Z the family of wavelet functions {ψj,k }k∈Z with

ψj,k(t) = 2j/2 ψ(2j t − k) = (D2jTkψ)(t)

is a complete ON-Basis (Hilbert basis) of the wavelet (detail) space

Wj = span{ψj,k }k∈Z
2 For all j ∈ Z the space Wj is the orthogonal complement of Vj in Vj+1:

Vj+1 = Wj ⊕ Vj Wj ⊥ Vj

3 For every J ∈ Z one has the direct product decomposition

L2(R) = VJ ⊕
⊕
j≥J

Wj

4 The family {ψj,k }j,k∈Z is a complete ON-basis (Hilbert basis) of L2(R)

L2(R) =
⊕
j∈Z

Wj
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Multiresolution (MRA) Multiresolution scheme

Remarks

1 Functions in Vj and Wj have resolution level ≥ 2−j

2 Orthogonal projections on approximation and detail subspaces

approximation Pj : L2(R)→ Vj : f 7→
∑
k∈Z
〈 f |φj,k 〉φj,k

detail Qj : L2(R)→Wj : f 7→
∑
k∈Z
〈 f |ψj,k 〉ψj,k

where Qj = Pj+1 − Pj

3 For all j > m one has the wavelet decomposition

Vj+1 = Vm ⊕Wm ⊕Wm+1 ⊕ · · · ⊕Wj

4 The “density” and “separation” requirements for an MRA translate into

lim
j→∞

Pj f = f und lim
j→−∞

Pj f = 0

w.r.t. L2-convergence
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Multiresolution (MRA) Examples

Example (1): The Haar-MRA

The scaling function is

φ(t) = 1[0,1)(t)

For j ∈ Z the approximation space

Vj = span{φj ,k(t) }k∈Z ⊆ L2(R)

consists of the L2-step functions with step width 2−j

{φj ,k(t) }k∈Z is obviously an ON-Basis of Vj

Density (fact about approximation by step functions):

lim
j→∞

Vj = L2(R)

Separation: an L2-function f ∈
⋂

j∈Z Vj which is constant on
arbitrarily long intervals must vanish identically on R
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Multiresolution (MRA) Examples

Scaling filter coefficients

h0 =
1√
2
, h1 =

1√
2
, hk = 0 (k 6= 0, 1)

Scaling identity

φ(t) =
1√
2

(φ0,0(t) + φ0,1(t)) = φ(2t) + φ(2t − 1)

Wavelet filter coefficients

g0 =
1√
2
, g1 = − 1√

2
, gk = 0 (k 6= 0, 1)

Wavelet identity

ψ(t) =
1√
2

(φ0,0(t) + φ0,1(t)) = φ(2t)− φ(2t − 1)

= 1[0,1/2)(t)− 1[1/2,1)(t)

Fourier transforms

φ̂(s) = e−iπssinc(s) ψ̂(s) = i · e−iπs sin(πs/2) sinc(s/2)
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Multiresolution (MRA) Examples

Examples (2)

The Daubechies, Coiflet, and many other orthogonal filters of similar
type define MRAs with filters of finite length and scaling/wavelet
functions with compact support

The filters are (of course!) those constructed from orthogonality and
low/highpass conditions
The scaling functions φ(t) and the wavelet functions ψ(t) are those
functions determined by the cascade algorithm
The ONST-property follows because the cascade algorithm preserves
orthogonality
Density and Separation do not come automatically, but have to be
verified separately
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Multiresolution (MRA) Examples

Example (3): The Shannon-MRA

Shannon’s sampling theorem motivates to consider

V0 = { f ∈ L2(R) ; f̂ (s) = 0 for |s| > 1/2 }
the space of 1-band-limited functions, and

Vj = { f ∈ L2(R) ; f̂ (s) = 0 for |s| > 2j−1 }
the space of 2j -band-limited functions
The scaling function is

φ(t) = sinc(t) =
sin(π t)

π t
The FT of the scaling function is the box function

φ̂(s) = 1[−1/2,1/2)(s)

The family {Tkφ(t) }k∈Z ⊆ V0 is an ONST in V0

(remember the previous example)
Shannon’s sampling theorem says precisely this:

V0 = span{Tkφ(t) }k∈Z
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Multiresolution (MRA) Examples

The Shannon wavelet function is

ψ(t) =
sin(2πt)− cos(πt)

π(t − 1/2)
=

sin(π(t − 1/2))

π(t − 1/2)
(1− 2 sin(πt))

with its FT

ψ̂(t) = −e−iπs
(
1[−1,−1/2)(s) + 1[1/2,1)(s)

)
Note:

φ(t) and ψ(t) are infinitely differentiable functions with infinite support

φ̂(t) and ψ̂(t) discontinuous functions with compact support
The scaling and wavelet filters have infinite length (with quite simple
coefficients)

The situation is precisely the converse to that of the Haar-MRA
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Multiresolution (MRA) Examples

Figure: Shannon Scaling function and Shannon wavelet function
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Multiresolution (MRA) Examples

Example (4): The piecewise-linear MRA

Continuous alternative to the Haar-MRA:

V0 contains the continuous L2-functions which are (affine-)linear on
any interval I0,k = [k, k + 1), (k ∈ Z),i.e.,

V0 =
{
f ∈ L2(R) ; f continuous on R and linear on all I0,k (k ∈ Z)

}
so that for any j ∈ Z

Vj =
{
f ∈ L2(R) ; f continuous on R and linear on all Ij ,k (k ∈ Z)

}
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Multiresolution (MRA) Examples

-4 -2 2 4 6

-2

-1

1

2

3

4

A piecewise-continuous function f (t) defined by the values

k −4 −3 −3 −1 0 1 2 3 4 5

f (k) 0 2 3 1 1 −2 3 4 2 0
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Multiresolution (MRA) Examples

The spaces (Vj)j∈Z are obviously nested

Density: one has to show that any continuous function with compact
support can be approximated uniformly as j →∞ by Vj -functions

Separation: any L2-function f ∈
⋂

j∈Z Vj must be linear in arbitrarily
long intervals.
This happens only for f ≡ 0

Scaling is part of the definition
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Multiresolution (MRA) Examples

What is a scaling function φ(t) ∈ V0 for this MRA?

The “obvious” candidate is the “hat” function

φ(t) = (1− |t|) 1[−1,1)(t)

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

It satisfies the scaling equation

φ(t) =
1

2
φ(2t − 1) + φ(2t) +

1

2
φ(2t + 1)

WTBV Multiresolution Analysis (MRA) January 10, 2017 22 / 43



Multiresolution (MRA) Examples

The integer translates Tkφ(t) (k ∈ Z) of the hat function can be
used to generate V0

-4 -2 2 4 6
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1
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-4 -2 2 4 6

-2

-1

1

2

3

4

The piecewise-linear function f (t) represented as

2φ(t+3)+3φ(t+2)+φ(t+1)+φ(t)−2φ(t−1)+3φ(t−2)+4φ(t−3)+2φ(t−4)
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Multiresolution (MRA) Examples

The example illustrates the simple fact:

Lemma
If f is continuous function on R and linear on all intervalls I0,k ,
then for all t ∈ R:

f (t) =
∑
k∈Z

f (k) (Tkφ)(t) =
∑
k∈Z

f (k)φ(t − k)

This is an assertion about pointwise convergence.

(This convergence is trivial because for any t ∈ R at most two
summands are 6= 0)
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Multiresolution (MRA) Examples

BUT unfortunately the Tkφ(t) are not always orthogonal :

〈Tkφ |T`φ 〉 =


2/3 if k = `

1/6 if |k − `| = 1

0 otherwise

Q: Can one find another function φ̃(t) ∈ V0 such that its integer
translates are an ONST and generate V0 ?

The procedure outlined below is exemplary and can be used in other
situations as well
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Multiresolution (MRA) Examples

(still about the scaling function)

Lemma
If f is continuous on R and linear on all intervalls I0,k , then

f (t) =
∑
k∈Z

f (k) (Tkφ)(t)

also holds in the sense of L2-convergence

This follows from

1

6

(
|f (n)|2 + |f (n + 1)|2

)
≤
∫ n+1

n

|f (t)|2 dt

≤ 1

2

(
|f (n)|2 + |f (n + 1)|2

)
for any function which is linear in the interval [n, n + 1)

Lemma: V0 = span{Tkφ }k∈Z
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Multiresolution (MRA) Examples

(still about the scaling function)

A suitable scaling function φ̃(t) for the piecewise-linear MRA can be
found using Fourier transforms

Remember the chacterization of ONST

{Tkφ }k∈Z is an ONST⇐⇒
∑
n∈Z

∣∣∣φ̂(s + n)
∣∣∣2 ≡ 1

The translates of φ(t) visibly do not form an ONST, and this can be
quantified by

∑
n∈Z

∣∣∣φ̂(s + n)
∣∣∣2 =

1

6
e−2πi s +

2

3
+ +

1

6
e2πi s =

1 + 2 cos2(π s)

3
,

and hence
1

3
≤
∑
n∈Z

∣∣∣φ̂(s + n)
∣∣∣2 ≤ 1
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Multiresolution (MRA) Examples

(still about the scaling function)

If φ̂(s) is the FT of φ(t), define φ̃(t) through its Fourier transform by
setting ̂̃

φ(s) =

√
3√

1 + 2 cos2 πs
φ̂(s),

Then, by construction,

∑
n∈Z

∣∣∣∣̂̃φ(s + n)

∣∣∣∣2 ≡ 1

Hence {Tk φ̃}k∈Z is an ONST and is an ON-basis of V0

(see a later theorem for justifying this)

The modification of the FT given above leads to the desired conclusion

But unfortunately neither φ̃(t) nor ψ̃(t) have a simple analytic form
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Multiresolution (MRA) Examples

The scaling function φ̃(t) for the piecewise-linear MRA

-4 -2 2 4

0.5

1.0

The family of integer translates of φ̃(t) is an ONST for V0 of this
MRA
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Multiresolution (MRA) Properties of MRA’s (I)

General setup:

An MRA given by nested approximation spaces (Vj)j∈Z and
a scaling function φ(t), satisfying the MRA requirements

h = (hk)k∈Z, the scaling filter of the MRA and its Fourier series

m0(s) =
1√
2

∑
k∈Z

hk e
−2πi s

g = (gk)k∈Z, where gk = (−1)kh1−k , the wavelet filter of the MRA
and its Fourier series

m1(s) =
1√
2

∑
k∈Z

gk e
−2πi s

ψ(t) =
∑

k∈Z gkφ1,k(t) the wavelet function of the MRA
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Multiresolution (MRA) Properties of MRA’s (I)

The following assertions are either already known or follow from the
definitions and known facts by straighforward (occasionally somewhat
tedious) calculations. See the Lecture Notes for details.

Properties of h = (hk)k∈Z

1
∑

k hk−2` hk = δ`,0 |m0(s)|2 + |m0(s + 1
2 )|2 = 1

2
∑

k |hk |
2 = 1 case ` = 0 in (1)

3
∑

k hk =
√

2 m0(0) = 1

4
∑

k h2k =
∑

k h2k+1 = 1/
√

2 m0( 1
2 ) = 0
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Multiresolution (MRA) Properties of MRA’s (I)

Properties of the g = (gk)k∈Z
5
∑

k gk−2` gk = δ`,0 |m1(s)|2 + |m1(s + 1
2 )|2 = 1

6
∑

k |gk |
2 = 1 case ` = 0 in (1)

7
∑

k gk = 0 m1(0) = 0

8
∑

k g2k = −
∑

k g2k+1 = 1/
√

2 m1( 1
2 ) = 1

Properties relating h = (hk)k∈Z and g = (gk)k∈Z

9
∑

k gk−2` hk = 0 m0(s)m1(s) + m0(s + 1
2 )m1(s + 1

2 ) = 0

10
∑

k

(
hm−2k hn−2k + gm−2k gn−2k

)
= δm,n

m0(s)m0(s + 1
2 ) + m1(s + 1)m1(s + 1

2 ) = 0
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Multiresolution (MRA) Properties of MRA’s (I)

Consequences

1 For each j ∈ Z the family {ψj,k}k∈Z is an orthonormal family of

L2-functions

2 For each j ∈ Z the families {ψj,k}k∈Z and {φj,k}k∈Z are orthogonal to
each other, i.e., Wj ⊥ Vj

3 One has V1 = V0 ⊕W0, and generally Vj+1 = Vj ⊕Wj

4 For j 6= j ′ one has Wj ⊥Wj′

5 Thus {ψj,k}j,k∈Z is an orthonormal family of L2-functions
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Multiresolution (MRA) Orthonormal systems of translates

Charcterization of the elements of the subspace V0

Theorem

If {Tkφ}k∈Z is an ONST and V0 the L2-subspace generated by this
family

f ∈ V0 ⇐⇒

the exists an `2-sequence (cn)n∈Z with

f̂ (s) = φ̂(s) ·
∑

n∈Z cne
−2πins

In words:
the elements of V0 are precisely those L2-functions f , whose FT f̂ is
a product of φ̂ and a period-1 Fourier series

For the proof (not difficult, using Bessel’s inequality and
Parseval-Plancherel) see the Lecture Notes
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Multiresolution (MRA) Orthonormal systems of translates

The following Theorem shows how the construction leading to an
MRA for the pieceswise-linear functions can be made in a general
context. (For the proof see the Lecture Notes)

Theorem

– If φ(t) ∈ L2(R) is a function with compact support
– and if there exist constants A,B s.th.

0 < A ≤
∑
n∈Z

∣∣∣φ̂(s + n)
∣∣∣2 ≤ B,

then there exists a function φ̃(t) ∈ L2(R), such that

– the family
{
Tk φ̃

}
k∈Z is an ONST

– and it generates the same space V0 as the family {Tkφ}k∈Z
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Multiresolution (MRA) Properties of MRA’s (II)

General MRA-setup (as before) with

scaling function φ(t), scaling filter (hk)k∈Z, Fourier series m0(s)

wavelet function ψ(t), wavelet filter (gk)k∈Z, Fourier series m1(s)

Properties

1

∣∣∣φ̂(0)
∣∣∣ =

∣∣∫
R φ(t) dt

∣∣ = 1

2 for all n ∈ Z, n 6= 0: φ̂(n) = 0

3
∑

n∈Z φ(t + n) ≡ 1

4 ψ̂(0) =
∫
R ψ(t) dt = 0

The proofs are somewhat technical. See the Lecture Notes
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Multiresolution (MRA) Vanishing noments, smoothness, reconstruction properties

Recall properties of the FT w.r.t. smoothness an vanishing at infinity

Theorem

If f (t) ∈ L1(R) and t · f (t) ∈ L1(R), then f̂ (s) ∈ C1(R) and

t̂ · f (s) = − 1

2πi

d

ds
f̂ (s)

More generally for N ≥ 1

If f (t) ∈ L1(R) and tN f (t) ∈ L1(R) then f̂ (s) ∈ CN(R) and

̂(t j f (t))(s) =

(
− 1

2πi

d

ds

)j

f̂ (s) (0 ≤ j ≤ N)

“and conversely”

Note: “tN f (t) ∈ L1(R)” means: f (t) vanishes rapidly as t → ±∞,

typically f (t) ∈ O(t−N−1−ε) for some ε > 0;
“f̂ (s) ∈ CN(R)” means that f̂ (t) has N continuous derivatives
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Multiresolution (MRA) Vanishing noments, smoothness, reconstruction properties

For function f (t) and k ≥ 0 the k-th moment is defined as∫
R
tk f (t) dt

Note: if tk f (t) ∈ L1(R), then∫
R
tk f (t) dt = 0 ⇐⇒ f̂ (k)(0) = 0

Theorem

If ψ ∈ L2(R) and if {ψj ,k} is an orthonormal family in L2(R), then:

If ψ, ψ̂ ∈ L1(R), then
∫
R ψ = 0

More generally: if tNψ(t), sN+1ψ̂(s) ∈ L1(R), then∫
R
tm ψ(t) dt = ψ̂(m)(0) = 0 (0 ≤ m ≤ N)
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Remarks
If a function f (t) satisfies

f̂ (k)(0) =

∫
R
tk f (t) dt = 0 (0 ≤ k < N),

then f is said to have N vanishing moments

The previous Theorem relates smoothness and vanishing at infinity of a
wavelet function ψ(t) with the phenomenon of vanishing moments

The FT of the wavelet equation

ψ̂(s) = m1(s/2) · φ̂(s/2)

can be differentiated repeatedly, giving

m
(k)
0 (1/2) = 0 (0 ≤ k < N)

as a statement equivalent to

ψ(t) has N vanishing moments
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Taking the FT of the scaling identity

φ̂(s) = m0(s/2) · φ̂(s/2)

and differentiating it repeatedly gives

φ̂(k)(m) = 0

{
0 ≤ k < N

m ∈ Z \ {0}
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The consequences of a wavelet function ψ(t) having N vanishing
moments can be made precise:

Theorem
If ψ ∈ L2(R) has compact support and N vanishing moments, then
for each f ∈ CN(R) with f (N) bounded there exists a constant
C = C (N, f ) s.th.

|〈 f |ψj ,k 〉| ≤ C · 2−jN · 2−j/2 (j , k ∈ Z)

This quantitative statement should be read qualitatively as:
Wavelet coefficients belonging to regions where f is smooth tend to
be very small over many levels of resolution!

The proof is by using a Taylor expansion of f (t) in the region where
ψj ,k is nonzero — see the Lecture Notes
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D4 as an example
The wavelet function ψ(t) of the Daubechies D4 filter has N = 2
vanishing moments
One has∫

R
ψ(t) dt = 0,

∫
R
t ψ(t) dt = 0,

∫
R
t2 ψ(t) dt = −1

8

√
3

2π
.

For f ∈ C2(R), by taking the support of ψ(t) into account,

〈 f |ψj ,k 〉 =

∫
R
f (t) 2j/2 ψ(2j t−k) dt =

∫ 3 2−j

0
f (t+2−jk) 2j/2 ψ(2j t) dt

Expanding f (t) at t + 2−jk in a Taylor series gives

〈 f |ψj ,k〉 ≈ −
1

16

√
3

2π
2−5j/2 f ′′(2−jk),

with equality (instead of ≈) if f is a constant, linear or quadratic
polynomial
In particular: all wavelet coefficients 〈 f |ψj ,k 〉 vanish for regions
where f is linear
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Wrapping things up:
Theorem
If φ(t) resp. ψ(t) are scaling resp. wavelet functions of an MRA,
h = (hn)n∈Z the scaling filter and m0(s) its Fourier series, then the
following statements are equivalent:

1 ψ has N vanishing moments:∫
R
tkψ(t)dt = 0 (0 ≤ k < N)

2 The filter h = (hn) satisfies N low-pass conditions

m
(k)
0 (1/2) = 0 (0 ≤ k < N)

3 The Fourier series m0(s) of h = (hn) can be factored:

m0(s) = (
1 + e−2πis

2
)N L(s)

where L(s) is a period-1 trigonometric polynomial
4 The QMF h = (hn) satisfies the N moment conditions∑

n∈Z
(−1)n hn n

k = 0 (0 ≤ k < N)
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