Some essential linear algebra

- \mathcal{V} : a complex (or real) vector space $\langle \mathbf{u} | \mathbf{v} \rangle$ an inner (scalar) product on \mathcal{V} $\parallel \mathbf{u} \parallel$ the norm (length) given by $\sqrt{\langle \mathbf{u} | \mathbf{u} \rangle}$ $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$ the distance (metric) induced by the inner product $\langle \mathbf{u} | \mathbf{v} \rangle \mathbf{v}$: projection of \mathbf{u} on the line def. by \mathbf{v} (if $\|\mathbf{v}\| = 1$)
- important properties (inequalities)
 - 1. Cauchy-Schwarz $|\langle \mathbf{u} | \mathbf{v} \rangle| \leq ||\mathbf{u}|| \cdot ||\mathbf{v}||$
 - 2. Minkowski $\| u + v \| \le \| u \| + \| v \|$
 - 3. Parallelogram $\| \mathbf{u} + \mathbf{v} \|^2 + \| \mathbf{u} \mathbf{v} \|^2 \le \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2$
- ▶ Definition: A family of vectors $\mathcal{E} = \{ \boldsymbol{e}^1, \boldsymbol{e}^2, \ldots \}$ is
 - an orthogonal system (OS) in $\mathcal V$ if $\langle {m e}^k, {m e}^\ell \rangle = 0$ for $k
 eq \ell$
 - an ortho<u>normal</u> system (ONS) in $\mathcal V$ if $\langle {f e}^k, {f e}^\ell \rangle = \delta_{k,\ell}$ for $k
 eq \ell$

The finite-dimensional case

For \mathcal{V} finite-dimensional \mathcal{V} with orthonormal basis $\mathcal{E} = \{ \boldsymbol{e}^1, \boldsymbol{e}^2, \dots, \boldsymbol{e}^n \}$, the standard inner product is given by

$$\langle \mathbf{u} | \mathbf{v} \rangle = \langle \sum_{k=1}^{n} u_k \, \mathbf{e}^k | \sum_{k=1}^{n} v_\ell \, \mathbf{e}^\ell \rangle$$
$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} u_k v_\ell \, \langle \, \mathbf{e}^k | \, \mathbf{e}^\ell \rangle$$
$$= \sum_{k=1}^{n} u_k \cdot \overline{v_k}$$

▶ In terms of \mathcal{E} one has

base
$$\mathcal{E}$$
 expansion $\mathbf{u} = \sum_{k=1}^{n} \langle \mathbf{u} \mid \mathbf{e}^{k} \rangle \mathbf{e}^{k}$ i.e. $u_{k} = \langle \mathbf{u} \mid \mathbf{e}^{k} \rangle$ inner product $\langle \mathbf{u} \mid \mathbf{v} \rangle = \sum_{k=1}^{n} \langle \mathbf{u} \mid \mathbf{e}^{k} \rangle \langle \mathbf{e}^{k} \mid \mathbf{v} \rangle$ norm (length) $\|\mathbf{u}\|^{2} = \sum_{k=1}^{n} |\langle \mathbf{u} \mid \mathbf{e}^{k} \rangle|^{2}$

• Geometrically: $u_k = \langle \mathbf{u} | \mathbf{e}^k \rangle \mathbf{e}^k = \text{projection of } \mathbf{u} \text{ onto the line defined by } \mathbf{e}^k$

Change of basis

▶ If $\mathcal{F} = \{ \mathbf{f}^1, \mathbf{f}^2, \dots, \mathbf{f}^n \}$ is another ONS of \mathcal{V} w.r.t. $\langle . | . \rangle$, then

$$m{f}^k = \sum_{1 \leq j \leq n} \langle \, m{f}^k \, | \, m{e}^j \,
angle \, m{e}^j \quad ext{and} \quad m{e}^j = \sum_{1 \leq k \leq n} \langle \, m{e}^j \, | \, m{f}^k \,
angle \, m{f}^k$$

▶ Here $U = \left[\langle \, \boldsymbol{e}^j \, | \, \boldsymbol{f}^k \, \rangle \right]_{1 \leq j,k \leq n}$ is a unitary matrix, i.e.,

$$U^{-1} = \left[\langle \, \boldsymbol{f}^k \, | \, \boldsymbol{e}^j \, \rangle \right]_{1 \leq k,j \leq n} = \left[\overline{\langle \, \boldsymbol{e}^j \, | \, \boldsymbol{f}^k \, \rangle} \right]_{1 \leq k,j \leq n} = U^\dagger$$

 U^{\dagger} is the conjugate-transpose of U (also called *adjoint*)

► Transformation of the coefficients

$$\langle \mathbf{u} | \mathbf{e}^{j} \rangle = \sum_{k=1}^{n} \langle \mathbf{u} | \mathbf{f}^{k} \rangle \langle \mathbf{f}^{k} | \mathbf{e}^{j} \rangle \qquad (1 \leq j \leq n)$$
$$\langle \mathbf{u} | \mathbf{f}^{k} \rangle = \sum_{j=1}^{n} \langle \mathbf{u} | \mathbf{e}^{j} \rangle \langle \mathbf{e}^{j} | \mathbf{f}^{k} \rangle \qquad (1 \leq k \leq n)$$

Very important example: the Discrete Fourier Transform

- $ightharpoonup \mathcal{V} = \mathbb{C}^N$ with its usual inner product
- ightharpoonup the standard basis \mathcal{E}_N

$$e^{j} = (0, \dots, 0, 1, 0, \dots, 0)^{t} \quad (0 \le j < N)$$

• the DFT-basis \mathcal{F}_N with $\omega_N = e^{2\pi i/N}$

$$\mathbf{f}^{j} = \frac{1}{\sqrt{N}} \left(1, \omega_{N}^{j}, (\omega_{N}^{j})^{2}, \dots, (\omega_{N}^{j})^{N-1} \right)^{t} \quad (0 \leq j < N)$$
$$= \frac{1}{\sqrt{N}} \left(\omega_{N}^{j \cdot 0}, \omega_{N}^{j \cdot 1}, \omega_{N}^{j \cdot 2}, \dots, \omega_{N}^{j \cdot (N-1)} \right)^{t}$$

▶ the DFT-matrix U_N and its inverse

$$U_N = \frac{1}{\sqrt{N}} \left[\omega_N^{j \cdot k} \right]_{0 \le j, k < N} \qquad U_N^{-1} = \frac{1}{\sqrt{N}} \left[\omega_N^{-j \cdot k} \right]_{0 \le j, k < N}$$

DFT₄ and DFT₆

DFT₄

$$U_4 = \frac{1}{2} \begin{bmatrix} i^0 & i^0 & i^0 & i^0 \\ i^0 & i^1 & i^2 & i^3 \\ i^0 & i^2 & i^4 & i^6 \\ i^0 & i^3 & i^6 & i^9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} i^0 & i^0 & i^0 & i^0 \\ i^0 & i^1 & i^2 & i^3 \\ i^0 & i^2 & i^0 & i^2 \\ i^0 & i^3 & i^2 & i^1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

▶ DFT₆

$$U_6 = \frac{1}{\sqrt{6}} \begin{bmatrix} \omega_6^{k \cdot \ell} \end{bmatrix}_{0 \le k, \ell < 6} = \frac{1}{\sqrt{6}} \begin{bmatrix} \omega_6^0 & \omega_6^0 & \omega_6^0 & \omega_6^0 & \omega_6^0 & \omega_6^0 \\ \omega_6^0 & \omega_6^1 & \omega_6^2 & \omega_6^3 & \omega_6^4 & \omega_6^5 \\ \omega_6^0 & \omega_6^2 & \omega_6^4 & \omega_6^0 & \omega_6^2 & \omega_6^4 \\ \omega_6^0 & \omega_6^3 & \omega_6^0 & \omega_6^3 & \omega_6^0 & \omega_6^3 \\ \omega_6^0 & \omega_6^4 & \omega_6^2 & \omega_6^0 & \omega_6^4 & \omega_6^2 \\ \omega_6^0 & \omega_6^5 & \omega_6^4 & \omega_6^3 & \omega_6^2 & \omega_6^1 \end{bmatrix}$$

DFT_7

▶ DFT₇

$$\begin{pmatrix} 0.378 & 0.378 & 0.378 & \dots & 0.378 \\ 0.378 & 0.236 + 0.296i & -0.084 + 0.368i & \dots & 0.236 - 0.296i \\ 0.378 & -0.084 + 0.368i & -0.341 - 0.164i & \dots & -0.084 - 0.368i \\ 0.378 & -0.341 + 0.164i & 0.236 - 0.296i & \dots & -0.341 - 0.164i \\ 0.378 & -0.341 - 0.164i & 0.236 + 0.296i & \dots & -0.341 + 0.164i \\ 0.378 & -0.084 - 0.368i & -0.341 + 0.164i & \dots & -0.084 + 0.368i \\ 0.378 & 0.236 - 0.296i & -0.084 - 0.368i & \dots & 0.236 + 0.296i \end{pmatrix}$$

$$\omega_7 = e^{2\pi i/7} = 0.62349... + 0.781831...i$$

$$\frac{1}{\sqrt{7}}\omega_7 = \frac{1}{\sqrt{7}}e^{2\pi i/7} = 0.235657... + 0.295505...i$$

Orthogonal transforms

Other important orthogonal transforms used in image processing:

▶ DCT : Discrete Cosine Transform

► HWT : Hadamard-Walsh Transform

KLT : Karhunen-Loève Transform

DWT : Discrete Wavelet Transform

Optimal approximation: The projection theorem

Theorem

 $\mathcal V$: a vector space with inner product $\langle\,.\,|\,.\,\rangle$ and norm $\|\,.\,\|$

 \mathcal{U} : a finite-dimensional subspace of \mathcal{V}

 $\{oldsymbol{e}^1, oldsymbol{e}^2, \dots, oldsymbol{e}^n\}$ an orthonormal basis of U

Then:

For each $\mathbf{v} \in \mathcal{V}$ there exists a unique element $\mathbf{u}_{\mathbf{v}} \in \mathcal{U}$ which minimizes the distance $d(\mathbf{v}, \mathbf{u}) = \|\mathbf{v} - \mathbf{u}\|$ $(\mathbf{u} \in \mathcal{U})$.

This element is

(*)
$$\mathbf{u}_{\mathbf{v}} = \sum_{k=1}^{n} \langle \mathbf{v} | \mathbf{e}^{k} \rangle \mathbf{e}^{k}, \qquad \begin{cases} \text{the orthogonal projection} \\ \text{of } \mathbf{v} \text{ onto } \mathcal{U} \end{cases}$$

and the decomposition of \boldsymbol{v} is a unique

$$\mathbf{v} = \underbrace{\mathbf{v} - \mathbf{u}_{\mathbf{v}}}_{\in \mathcal{U}^{\perp}} + \underbrace{\mathbf{u}_{\mathbf{v}}}_{\in \mathcal{U}}$$

Optimal approximation: The projection theorem

Proof.

Define \boldsymbol{u}_{v} as in (*). Then for $1 \leq \ell \leq n$

$$\langle \mathbf{v} - \mathbf{u}_{v} | \mathbf{e}^{\ell} \rangle = \langle \mathbf{v} - \sum_{k=1}^{n} \langle \mathbf{v} | \mathbf{e}^{k} \rangle \mathbf{e}^{k} | \mathbf{e}^{\ell} \rangle$$
$$= \langle \mathbf{v} | \mathbf{e}^{\ell} \rangle - \sum_{k=1}^{n} \langle \mathbf{v} | \mathbf{e}^{k} \rangle \langle \mathbf{e}^{k} | \mathbf{e}^{\ell} \rangle = 0$$

that is: $\mathbf{v} - \mathbf{u}_{\mathbf{v}} \in \mathcal{U}^{\perp}$

If ${m u} \in \mathcal{U}$ is $\underline{\mathsf{any}}$ element, then ${m u} - {m u}_{\scriptscriptstyle V} \in \mathcal{U}$, hence

$$\langle \mathbf{v} - \mathbf{u}_{\mathbf{v}} | \mathbf{u} - \mathbf{u}_{\mathbf{v}} \rangle = 0$$

But (Pythagoras!)

$$\|\mathbf{v} - \mathbf{u}\|^2 = \|\mathbf{v} - \mathbf{u}_v\|^2 + \|\mathbf{u}_v - \mathbf{u}\|^2 \ge \|\mathbf{v} - \mathbf{u}_v\|^2$$

with equality if and only if $\boldsymbol{u} = \boldsymbol{u}_{v}$

Another important consequence

(same scenario as before)

► BESSEL's inequality

For $\mathbf{v} \in \mathcal{V}$ and any $N \geq 0$ with $v_N = \sum_{k=1}^N \langle \mathbf{v} | \mathbf{e}^k \rangle \mathbf{e}^k$, then

$$\|\mathbf{v}_{N}\|^{2} = \sum_{k=1}^{N} |\langle \, \mathbf{v} \, | \, \mathbf{e}^{k} \, \rangle|^{2} \leq \|\mathbf{v}\|^{2}$$

because $\mathbf{v} - \mathbf{v}_N \perp \{\mathbf{e}^1, \dots, \mathbf{e}^N\}$

What is a Hilbert space?

- ▶ \mathcal{H} : vector space with scalar product $\langle . | . \rangle$, norm ||.|| $\mathcal{E} = \{ \mathbf{e}^0, \mathbf{e}^1, \ldots \} = \{ \mathbf{e}^n \}_{n \in \mathbb{N}}$ an ONS in \mathcal{H} $\mathcal{F} = \text{subspace of all } \underline{\text{finite}}$ linear combinations of elements of \mathcal{E}
- ▶ Theorem: The following properties are equivalent
 - 1. For all $\mathbf{u} \in \mathcal{H}$, if $\mathbf{u}_N = \sum_{k=0}^N \langle \mathbf{u} | \mathbf{e}^k \rangle \mathbf{e}^k$, then

$$\lim_{N\to\infty}\|\boldsymbol{u}-\boldsymbol{u}_N\|=0$$

This is written as ${m u} = \sum_{k=0}^\infty \langle \, {m u} \, | \, {m e}^k \,
angle \, {m e}^k$

2. For all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{H}$:

$$\langle \mathbf{u} | \mathbf{v} \rangle = \sum_{k=0}^{\infty} \langle \mathbf{u} | \mathbf{e}^k \rangle \langle \mathbf{e}^k | \mathbf{v} \rangle$$

3. For all $\boldsymbol{u} \in \mathcal{H}$

$$\|\boldsymbol{u}\|^2 = \sum_{k=0}^{\infty} |\langle \boldsymbol{u} | \boldsymbol{e}^k \rangle|^2$$

What is a Hilbert space?

- ► Theorem (ctd.)
 - 4. For all $\boldsymbol{u} \in \mathcal{H}$

if
$$\langle \boldsymbol{u} | \boldsymbol{e}^k \rangle = 0$$
 for all $k \in \mathbb{N}$, then $\boldsymbol{u} = 0$

5. \mathcal{F} is *dense* in \mathcal{H} , i.e.

for any
$${\pmb u}\in {\cal H}, \varepsilon>0$$
 there is a ${\pmb f}\in {\cal F}$ such that $\|{\pmb u}-{\pmb f}\|<\varepsilon$

6.
$$\mathcal{F}^{\perp} = \{0\}$$

If these properties hold, $\mathcal H$ is called a (separable) Hilbert space, and $\mathcal E$ is a Hilbert basis of $\mathcal H$

▶ Examples are the spaces ℓ^2 , $\mathcal{L}^2([0,a))$, $\mathcal{L}^2(\mathbb{R})$ of square-summable sequences and square-integrable functions

The examples

ho ℓ^2 , the space of square summable sequences, has (among others) the Hilbert basis of "unit vectors"

$$\boldsymbol{\delta}_k = (\delta_{k,j})_{j \in \mathbb{Z}} \quad (k \in \mathbb{Z})$$

▶ $\mathcal{L}^2([0,a))$, the space of square-integrable functions over a <u>finite</u> interval [0,a) has (among others) the Hilbert basis of complex exponentials

$$\omega_k(t) = \frac{1}{a}e^{2\pi i k t/a} \quad (k \in \mathbb{Z})$$

or of the harmonics

$$\frac{1}{a}\cos(2\pi kt/a)$$
 $(k \in \mathbb{N})$ and $\frac{1}{a}\sin(2\pi \ell t/a)$ $(\ell \in \mathbb{N}_{\geq 0})$

- A Hilbert basis of the space $\mathcal{L}^2(\mathbb{R})$ of square-integrable functions over \mathbb{R} is not obvious! Such bases will appear naturally in Wavelet theory!
- ► From an algebraic point of view all these spaces are "the same" (i.e., they are *isomorphic*)

Computing in Hilbert bases

- ▶ If $\mathcal{E} = \{e^k\}_{k \in \mathbb{N}}$ is a Hilbert basis of \mathcal{H} , then for $u, v \in \mathcal{H}$
 - 1. generalized Fourier expansion:

$$oldsymbol{u} = \sum_{k \in \mathbb{N}} \langle \, oldsymbol{u} \, | \, oldsymbol{e}^k \,
angle \, oldsymbol{e}^k$$

2. inner product

$$\langle \, oldsymbol{u} \, | \, oldsymbol{v} \,
angle = \sum_{k \in \mathbb{N}} \langle \, oldsymbol{u} \, | \, oldsymbol{e}^k \,
angle \langle \, oldsymbol{e}^k \, | \, oldsymbol{v} \,
angle$$

3. norm (length, energy)

$$\|\boldsymbol{u}\|^2 = \sum_{k \in \mathbb{N}} |\langle \, \boldsymbol{u} \, | \, \boldsymbol{e}^k \, \rangle|^2$$

... The best of all possible worlds ...