Some essential linear algebra

» V : a complex (or real) vector space
(u|v) an inner (scalar) product on V
|| u || the norm (length) given by /(u|u)
d(u,v) = ||u — v|| the distance (metric) induced by the inner
product
(u|v)v: projection of u on the line def. by v (if [|v]| =1)
» important properties (inequalities)
1. CAUCHY-SCHWARZ [(u|v)| < ||u|| - ||v]]
2. MINKOWSKI || u + v|| < |jul| + ||v||
3. Parallelogram || u+ v|> + || u— v|]? < HuH2 + [|v|?
» Definition: A family of vectors £ = {e', €?,...} is

> an orthogonal system (OS) in V if (e e > =0 for k # ¢
> an orthonormal system (ONS) in V if (e¥, ) = 6, for k # ¢




The finite-dimensional case

» For V finite-dimensional V with orthonormal basis
£ ={el,e?, ..., e"), the standard inner product is given by
(ulv) = <ZZ:1 ”kek| 22:1 eré>
= k1 2oi—1 UkVe ek | ee>

= D k=1 Uk * Vic
> In terms of £ one has
base £ expansion u=>"7_(ulek)ek ie u=(uler)
inner product (ulv)y=]_(ule’) (e |v)
norm (length) lull® =325 [(u] )

> Geometrically:
ux = (u| ek ek = projection of u onto the line defined by e*



Change of basis

> If F= {f17f2,...,f"} is another ONS of V w.r.t. (.|.),
then

Fl=> " (ffle)e and &= ) (&|FF)F

1<j<n 1<k<n

> Here U = [( e | fk)] is a unitary matrix, i.e.,

1<),k<

U—1:[<f’<\ed>} = [(ef| F¥) = Ut

1<k,j<n 1<k,j<n

Ut is the conjugate-transpose of U (also called adjoint)

» Transformation of the coefficients

(ulel) =T (ul F)(Fe]el) (1<)
(ul£) =27 (ulel)(el|FX) 1<k



Very important example: the Discrete Fourier Transform

» V = CN with its usual inner product
» the standard basis Ey

e =(0,...,0,1,0,...,0)! (0<j<N)

» the DFT-basis Fy with wy = e2mi/N

. 1 . . : t
ffzﬁ(1,%,(%)2,...,(%)"’*1) (0<j<N)
1 0 1 (N-1) )

» the DFT-matrix Uy and its inverse

\% {wjl'\.lk]OSj,k<N Uy' = " [w’i’j.k

Uy =
N \/N

}Ogj,k<N



DFT, and DFTg
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DFT;

> DFT7

0.378 0.378 0.378 . 0.378
0.378 0.236 +0.296/ —0.084+0.368/ ... 0.236 —0.296/
0.378 —0.084 +0.368/ —0.341—0.164/ ... —0.084 —0.368/
0.378 —0.341+0.164/ 0.236 —0.296/ ... —0.341—0.164/
0.378 —0.341 —0.164/ 0.236+40.296/ ... —0.341+0.164/
0.378 —0.084 —0.368/ —0.341+0.164/ ... —0.084+ 0.368/
0.378 0.236 — 0.296/ —0.084 —0.368/ ... 0.236 + 0.296/

wy = 2™/ = 0.62349... 4+ 0.781831 ...

1 1,
——wy = —=e¥/T = 0.235657 ... 4 0.295505.. . . i
V7

V7



Orthogonal transforms

Other important orthogonal transforms used in image processing:
» DCT : Discrete Cosine Transform
» HWT : Hadamard-Walsh Transform
» KLT : Karhunen-Loéve Transform
» DWT : Discrete Wavelet Transform



Optimal approximation: The projection theorem

> Theorem
V : a vector space with inner product (.|.) and norm ||. ||
U : a finite-dimensional subspace of V

{el,e?,...,e"} an orthonormal basis of U

Then:

For each v € V there exists a unique element u, € U which

minimizes the distance d(v,u) = ||v — u| (u € U).

This element is

() u, = i< v ok > ek, {the orthogonal projection
e of v onto U

and the decomposition of v is a unique

v=v-—-u,+ u,
N——

eu+ eu



Optimal approximation: The projection theorem

» Proof.
Define u, asin (x). Then for 1 < ¢ <n

(v—uy|e')= (v 1(v|e)e e

= (v]e") =i (v]ek)(e |e’) =0

thatis: v — u, € U+
Ifuelis any element, then u — u, € U, hence

(v—u,Ju—u,)=0
But (Pythagoras!)
v —ul® = v —uy|? +[luy = u]* > [|v - u,|?

with equality if and only if u = u, O



Another important consequence

(same scenario as before)

» BESSEL's inequality

For v eV and any N > 0 with vy = Zi\’:l< v|ek) ek, then

2 N
lvall* =3y (v €2 < v

because v — vy L {e!,...,e"N}



What is a Hilbert space?

> H : vector space with scalar product (.|.), norm || .||
E=1{e%e!,...} ={e"}pen an ONS in H
F = subspace of all finite linear combinations of elements of £

» Theorem: The following properties are equivalent
1. Forallue#, if uy =Y, _o(u|e)ek, then

l —uy| =
Jim Jju—un| =0

This is written as u =Y ;- (u| e ) ek

2. Forall u,veH:

oo

= (ule)(e|v)

k=0

3. Forallue H

o0
lul> =" [(ule)f?
k=0



What is a Hilbert space?

» Theorem (ctd.)
4. ForallueH

if (ule)=0 forall k€N, then u=0

5. Fis densein H, i.e.

for any u € H,e > 0 there is a f € F such that |ju —f|| < ¢

6. F+ = {0}
If these properties hold, # is called a (separable) Hilbert
space, and & is a Hilbert basis of H

» Examples are the spaces ¢2, £3(]0,a)), £L2(R) of
square-summable sequences and square-integrable functions



The examples

» (2, the space of square summable sequences, has (among
others) the Hilbert basis of “unit vectors”

Ok = (6kj)jez (k € Z)

» L£2([0,4a)), the space of square-integrable functions over a
finite interval [0, a) has (among others) the Hilbert basis of
complex exponentials

1.,
wi(t) = ~e*™7 (ke Z)
or of the harmonics

écos(27rkt/a) (ke N) and %sin(27r€t/a) (¢ € Nao)

» A Hilbert basis of the space £2(IR) of square-integrable
functions over R is not obvious!
Such bases will appear naturally in Wavelet theory!

» From an algebraic point of view all these spaces are “the
same” (i.e., they are isomorphic)



Computing in Hilbert bases

» If £ = {e"}xen is a Hilbert basis of #, then for u,v € H

1. generalized Fourier expansion:
u=> (ule)e
keN
2. inner product
k k
(ulv)=> (ule)(e"|v)
keN
3. norm (length, energy)

lul>=7" [(ule*)

keN

.. The best of all possible worlds . ..



