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Review: orthogonal filters

@ Up to now: orthogonal wavelet transforms with filters of finite length

L 4+ 1, based on pairs of filters

low-pass filter h = (ho, h1,...,hy)
high-pass filter g =(g0,81,---,8L)

defining an orthogonal transform of signals (of finite length)

@ written in matrix form as

Wy = [g,’\‘:] with Wyt =wj,
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Review: orthogonal filters

Figure: Filter bank scheme of orthogonal WT
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Review: orthogonal filters

@ Orthogonality as specified by
In =Wy W, resp. Iy =W Wy
is equivalent to three idenities

Gy Gy = Inj2 = Hn HYy
Gy HYy = Onj2 = Hy Gy
In = Gl Gn + Hj, Hy

@ The third identity expresses the reconstruction property
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Review: orthogonal filters

@ Looking at the frequency picture:

[H(W)? + [H(w + ) =2

G +[6(w+m)) =2

H(w) G(w) + Hw +7) G(w+7) =0
H(0) = G(r) = V2

H(r) = G(0) = 0

@ the last two equation expressing low-pass properties of h, resp. the
high-pass properties of g
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Biorthogonal filter pairs Motivation and setup

@ The reason to deviate from this standard scheme comes from the
following observations:

o Symmetric filters (and wavelets) often give visually better
reconstruction results (e.g. when using wavelets for image compression)

o Apart from the HAAR-filter there are no other symmetric scaling filters
from which an orthogonal transform scheme (as above) can be built
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Biorthogonal filter pairs Motivation and setup

@ The idea to be able to use symmetric filters leads to a more general
approach:
e Take two pairs of filters

e one pair (h, E) of low-pass filters
@ one pair (g, g) of high-pass filters
o length and index ranges of these filters are not yet specified —
but the filters shall have finite length
e it is not required that h and g have the same length

@ This leads to the so-called bi-orthogonal set-up
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Figure: Filter bank scheme of a bi-orthogonal WT
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SiCTg i - EIRTIITANEICI  Transformation matrices and orthogonality

@ The transformation matrices for analysis and synthesis are given by

H

analysis: Wy = Fin synthesis: WN =
GN GN

and these matrices are required to be inverse to each other:
Wyt = Wy,
@ which means . N
Wy W, = W, Wy = Iy
@ and in more detail
Gy Gy = Inj2 = Hn HY,
Gy HYy = Onja = Hy Gy
In = Gl Gy + Hj, Hy
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SiCTg i - EIRTIITANEICI  Transformation matrices and orthogonality

@ The different ways to express these requirements
transformation matrices <> filter coefficients <+ frequency representation
(Hn; Gn) (h.g) (H(w), 6(w))
(Hn, Gn) (h,8) (H(w), G(w))
HNﬁ,TV =Inp & szhk—Zm = 0m,0
PR H(w)H(w) + Hw + m)H(w+7m) =2 (1)
GNGY = Injz © Y BkBk-2m = Omo
‘& GWTW) + ElwtMEw T =2 (2)
HnG), = Oy & nghk—2m =0
i H(w)G(w) + Hw + m)G(w+m) =0 (3)
GnHYy =O0nj2 & > higi2m =0
; Gw)HW) + G(w+m)Hw+7m) =0 (4)
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SiCTg i - EIRTIITANEICI  Transformation matrices and orthogonality

Definition

A pair (h, F) of (low-pass) filters of finite length is said to be a
biorthogonal filter pair if condition (1) holds

H(w)H(W) + Hw + n)Hw+7m) =2 (1)

Proposition

If (h, F) is a biorthogonal filter pair, i.e., (1) holds,
and if one defines a filter pair (g, g) by setting

G(w) = ™D H(w + 7) G(w) = ™ H(w + )

with odd n € Z and b € R, the conditions (2), (3) und (4) and
reconstructibility are automatically satisfied
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SiCTg i - EIRTIITANEICI  Transformation matrices and orthogonality

@ For the filter coefficients these setting give

gk =—e?(=1) hp_k, &k = —e®(~1) hy_s.

@ One usually puts b = 7 (in order to have real filter coefficients!) and
n =1, so that

gk = (-1 _k, &= (1) hm_

o Note: filter h determines filter g — in particular: they have the same
length — and similarly filter h determines the filter g

Filters h and h do not need to have the same length, but their choice
is not completely arbitrary — see the following proposition
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

@ Example

h = (—2,4,3,-2,1) = (h_2,..., )

\%h\%

h= L (L21)= (h_1, ho, 1)

e frequency representatlon

(w) — 7 ( 2 f2iw_’_. +1€2w.;)
ﬁ():f?@'W+2+e)
o check that
(0) = H(0) = V2
(w) = H(r) =0
H(w)H(w) = alg( T 48496 —2e)
Al + m)Fi(w T 7) = £ (—e % 8~ 96 4 26%%)
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

@ ... which gives

Hw)H(w) + Hw+ m)H(w + ) =2

so that the necessary requirement (1) is satisfied

@ As for the filters g and g:

(17 -2, 1) = (govglv g2)

(_17 _27 _3747 2) = (g—]-? .. 7§3)
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

Transformation matrices for signals of length 8:
@ analysis transform

(hg M hy O 0 0 h_p h_{]
hoo ha1i hg MW h 0 0 0
0 0 ho hi h M h O
We — [Hg} | 0 0 0 hs hi h M
7 |G & & & 0 0 0 0 0
0 0 g & & 0 0 O
0o 0 0 0 g & & O
| &2 0 0 0 0 0 & & |
@ synthesis transform
h M 0 0O 0 0 0 hg
0 hy hp hh 0 0 0 O
_ 0 0 0 hy hg m 0 O
We—|M| |0 0 0 0 0 hy h h
Gg & & & & 0 0 0 g4
0 2.1 & & & & 0 0
0 0 0 g1 & & & &
&2 & 0 0 0 g1 & @&
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Biorthogonal filter pairs Length and symmetry

Proposition

For a biorthogonal filter pair (h, E) with

h=(he,....h) (ie, length N=L—{+1) and

h=(hs....h), (ie., filter length N = L — £ +1)

the following holds:
@ The lengths N and N have the same parity, i.e., N = N mod 2
Q@ /fN and N are both even, then L = L mod 2
@ If N and N are both odd, then L # L mod 2
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Biorthogonal filter pairs Length and symmetry

Definition

A filter h = (hy, ..., hy) is said to be symmetric if
@ hy =h_y (k€ Z), if¢ =—L (odd length), or if
@ hy =hi_y (k€ Z), ift =—L+1 (even length)

Proposition

If (h, I~1) is a biorthogonal filter pair with symmetric filters, where L < L,
then the orthogonality conditions can be written as

L

Z hi hi—om = do.m (0 < m <L),
k=p

where p = —L (if N is even) or p=—L+ 1 (if N is odd)
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Biorthogonal filter pairs Construction of a biorthogonal (2,6)-pair of symmetric filters

Example: Construction of a symmetric biorthogonal filter pair
e h= (ho, h1) a symmetrlc filter of length 2, so hg = hy, and
h= (h 2 h_ 1, ho, hl, h2, h3) a symmetric filter of length 6,
which means ho = h1, h_ 1= hz, h_ 2 = h3
@ From the Fourier series
H(w) = hg + me™, H(w) = h_pe 2 4+ ... 4 h33¥

the low-pass requirements imply conditions to be satisfied by the
coefficients:

HO)=2hy=v2 = hy=h =

Sl

H(r) =0 holds!

~ | ~ ~ . 1
HO)=vV2 = hi+h+h=——

(0) 1ty =5

H(r)=0 = h3—hy+h —h+h—h3=0 holds!
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Biorthogonal filter pairs Construction of a biorthogonal (2,6)-pair of symmetric filters

@ Now about orthogonality

1

hOFO+h17;1é1 = ZO:F]_:

>

hoF_2+hlz_1éO = E_QZ—F_lz

Sl

with a parameter a # 0

@ This gives

1 ~ 1
h=—(1,1 h=—(a,—a,1,1,—a,a O
ﬁ( ) ﬁ( )
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I (L EIRTI ST ETEI  Outline of the filter construction method

@ To construct a biorthogonal filter pair (h, h) of low-pass filters of
finite length one can proceed as follows:

o First choose a symmetric filter h such that sufficiently many low-pass
requirements H(™) () =0 (m = 0,1,2,...) are satisfied. These are
linear conditions imposed on the coefficients N

o Choose the length of the filter h, where the lengths of h and h should
not differ too much, so that the synthesis filters h and g have similar
properties w.r.t. smoothness

e Now try to solve the linear system (1) for the coefficients of h:

H(w)H(w) 4+ H(w + 7)H(w + ) = 2

o Observe: Asking for symmetry reduces the number of variables to be
determined, but also reduces the chances of solvability!
o If the linear system turns out not to be solvable, one has to increase
the proposed length of the filter h
@ Note that reconstruction quality (smoothness) increases with filter
length
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Spline filters Symmetric low-pass filters

e Symmetric low-pass filters (of odd length)
e For even N one has

N/2

cos"(w/2) = 2N Z (N/2+k> "

—N/2

e Hence

H(w) = V2 cos" (w/2)

is the Fourier series of a symmetric low-pass filter
(h—N/Qv ey hN/Z) of Iength N+1
e The coefficients are

hk_\£< N ) ~N/2< k< NJ2

N/2 + k
V2 (N
hkN/2—2N<k> 0<k<N
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Spline filters Symmetric low-pass filters

e Symmetric low-passfilter (of even length)
e For odd N one has

1 (/2 N
iw/2 N 2) = — ikw
e'“’“ cos™(w/2) N E ((N—l)/2+k>e
k=—(N—1)/2

e Hence _
H(w) = v2e™/? cos"(w/2)

is the Fourier series of a symmetric low-pass filter

(h—(N—l)/Za ey h(N+1)/2) of Iength N+1
o The coefficients are

V2 N
b — 2N((N_ 2s k) S(IN=1)/2< k< (N+1)/2
h—(n-1)2 = 2*\/3 (I/\(I> 0<k<N
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Spline filters ISTMERTTISANS

@ The spline functions By(t) are defined inductively

Bo(t) = X[=1/2,1/2)(t)
1/2
BN+1(t) = Bo(t) * BN(t) = / , BN(t — S) ds
~1/2
Bn(t) is the N-fold convolution power of the basis function By(t)
@ An important property of these functions: they satisfy a scaling
idenity:

N+1

Bu(t) =Y 2iN <N ; 1> Bu(2t + [N/2] — k+1)
k=0

@ The scaling coefficients are (up to a constant factor) the filter
coefficients of the spline filters defined above — which explains the
naming
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SHIMERIZIEM  Spline functions

Graphical display of the spline functions By(t), Bi(t), B2(t), B3(t)

A6

044

024
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Spline filters Daubechies biorthogonal filters

e Taking (as above)

o H(w) = v/2cos"(w/2) as the Fourier series of a symmetric spline filter
h=(h_y,..., hp) of odd length N +1 =2¢+1 (for even N = 2/),
resp.

o H(w) = v2e™/2 cosN(w/2) as the Fourier series of a symmetric spline
filter h = (h_g, ..., het1) of even length N+ 1 = 2¢+ 2 (for odd
N =20+1)

o then orthogonal symmetric filters fitting to this choice can be
constructed using the DAUBECHIES polynomials

Pu(z) = EM: (M; ’")zm

m=0
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Spline filters Daubechies biorthogonal filters

Definition
Let N and N have the same parity.

o If N =20 and N = 20 are both even, then define a filter h through its
Fourier series

H(w) = V2cosM(w/2)P,, 7 ,(sin*(w/2))

o IfN=20+1and N =20+ 1 are both odd, then define a filter h
through its Fourier series

H(w) = V2e™/2 cosV(w/2) P,  1(sin*(w/2))
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Spline filters Daubechies biorthogonal filters

Proposition

With the choice of the previous definition,
the following holds for the filter h:

O filter h has length length 2N + N — 1
@ filter h is symmetric

Q filterh is a low-pass filter

Q filters h and h are orthogonal
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Spline filters Daubechies biorthogonal filters

For the proof consider the case where N and N are both even,
i.,e. N=2¢, N=2(. (The odd case can be treates similarly)
e ad 1./2.

o Write both factors cos (w/2) and P, 7 1(sinz(w/Z)) as series in e/,
then
cos" w/2 Z aye

k=—10

where the sequence of coefficients (a_g, ..., ay) is symmetric, since
the left-hand side is an even function of w ist
e Furthermore, for a similar reason,

£46-1
.2 i
Pz (sin’(w/2) =Y  Bme™
m=—f—0+1
with a symmetric sequence of coefficients (8_,_7,,,---,8,,7.1)
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Spline filters Daubechies biorthogonal filters

e ad 1./2. (seq.)

o Therefore the product has the form

N 204+0—1
cosMN(w/2) - Pg+z_l(sin2(w/2)) = Z yne'™
n:—2z—f+1
with a symmetric sequence of coefficients (v_,; .1, Vo7 p_1)s

because the convolution of symmetric sequences is again symmetric
o Thelengthis2(20+¢—-1)+1=2N+ N -1
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Spline filters Daubechies biorthogonal filters

e ad 3. _ _
o Obviously H(0) = /2 and H(7) =0
e ad 4.
o Setting z = e’ and y = sin?(w/2) one has
H(w)A(w) = 2cos"* M (w/2) P, (sin?(w/2))
= 21— y)"*" P, 7 4(y)

~ ~

= 2PN+N—1(Z) = 2PN+N_1(E‘M)

e Reminder: an important property of the DAUBECHIES polynomials is
Pom-1(z) + Pam-1(—2) =1

o As desired, one gets

H(w)H(w) + H(w + 7)H(w + )
=2(Py -1(2) + Pypy_1(=2)) =2
o NB: Complex conjugation does not show up because the filters are real
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Spline filters Daubechies biorthogonal filters

Figure: Frequency representations of the Bspline filters of length 2,3,4,9
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners Ki 1, K31, K51, K71
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners Ky 2, K2 4, Ko 6, Ko 8
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners Ki 3, K33, K5 3, K7.3
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners Ka 2, Ka 4, Kag, Kag
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Spline filters Daubechies biorthogonal filters

Figure: (7,9) Bspline filter pair
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

@ The DAUBECHIES polynomials
i/,: <M )
m=0

satisfy the fundamental identity

(1- Z)M+1PI\/I(Z) + zM'HPM(l —z)=1

)M+1 M+1

@ The polynomials (1 — z and z have no common roots
(obviously!), hence do not have a proper common divisor.

Reading the above identity as a Bezout identity for polynomials shows
that g1(z) = Pum(z) and g2(z) = Ppm(1 — z) are the uniquely
determined polynomials g1(z) and g2(z) with degrees < M for which
a Bezout identity

(1- z)’VH'1 qi1(z) + ZM+1 ¢(z)=1

holds
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

@ But these are, even without bounding the degrees, this is the only
solutions of this equation!

For any solution (g1(z), g2(z)) one must have the relation

0(2) = (1 - 2)

(Write down the Bezout identity again, but with z replaced by 1 — z,
and then subtract both identities)

From
(1- 2" g(z) + M (1 —2) = 1,

one has
q(z) = Pu(z) + a(z) 2™, q(1—2) = Pu(1 — 2) — a(z)(1 — 2)M*1,

for some polynomial a(z),
which only holds for the zero polynomial
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

@ Now write the BEZOUT identity in the following way

Pu(z) = (1 -2 M (1 >MH Pu(1 - 2),

1—-=z
and take the series development
M+ m
1— —M-1 — m
R D L
m>0

into account. By developing both sides one gets the explicit form of
the Daubechies polynomials because on the left-hand side one has a
polynomial of degree < M, and the second term on the right-had side
only contributes to z-powers of degrees > M
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(@] CUE DETI I I SETVETR TSI  Symmetric filters of odd length

@ Construction of symmetric filters of odd length
o Let h=(h_y,...,h.) be a symmetric filter of length 2L 4 1, so that
its Fourier series H(w) = Zi:_L hie™“ is an even function

L
H(w)=ho+2 Z hy cos(kw)
k=1

o For k € Z the term cos(kw) can be written as a polynomial of degree k
in cos(w), thus H(w) is a polynomial of degree L in cos(w)
e From the low-pass condition

H(0) = V2, H(r)=H'(r)=...= H(f)(ﬁ) — 0, H"HY £ 0

one gets

H(w) = V2 (1 + cos(w))’ g(cos(w)),

where g(z) is a polynomial of degree L — ¢ which satisfies

q(cos(m)) = q(—1) #0
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(@I B DENLIN IR EEENIVETR IS Symmetric filters of odd length

e Construction of symmetric filters of odd length (seq.)
o From H(0) = v/2 one gets q(1) =2~
o Replacing now 1 + cos(w) by 2 cos?(w/2), one obtains

H(w) = V2 cos?*(w/2) p(cos(w)),

where p(z) is a polynomial of degree L — £ with p(1) =1 and
p(=1) #0

WTBV Biorthogonal Filter Pairs und Wavelets January 20, 2016 42 / 50



(@] CUE DETI I I SETVETR TSI  Symmetric filters of odd length

Proposition

If h and h are symmetric filters of odd length with Fourier series

H(w) = V2 cos?(w/2) p(cos(w)),

H(w) = v/2 cos?(w/2) p(cos(w)),
satisfying the orthogonality condition
H(w) H(w) + H(w + ) Hw + ) = 2,
then (with K = { + () one has

p(cos(w)) - Blcos(w)) = Pr—1(sin’(/2))
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(@] CUE DETI I I SETVETR TSI  Symmetric filters of odd length

@ About the proof:
e Substituting into the orthogonality condition gives

0s*(w/2) p(cos(w)) P(cos(w))
+ sin®f(w/2) p(— cos(w)) p(— cos(w)) = 2

o Set P(z) = p(z) p(z), then P(cos(w)) is a polynomial in
y = sin®(w/2), so that writing P(y) for P(cos(w)) the orthogonality
relation turns into

(1—y)*P(y) +y*P(1—y) =1,

which identifies ﬁ(y) as a Daubechies polynomial
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(L ELEDETLLI I ECNVEETRGIICIN  The Cohen-Daubechies-Feauveau-(7,9) filter pair

Constructing the COHEN-DAUBECHIES-FEAUVEAU-7/9 filter pair
@ Start with the Daubechies polynomial

3 4 5 6
P3(z) = <0> + <1>z—|— <2>z2—|— (3)23 =1+ 4z +102% +202°

@ The 3 complex roots of this polynomial can be determined exactly

1 72/3 ’/7 (3v/15 — 10)
a=c|-1- + 273
/5 (3v/15 — 10) >

1 7B 1+iV3) (1—iv3) ¢/7(3V15 — 10)
Zp=—=+ -

6 12¢/5(3v15 - 10) 12 5273

1 723 (1 - iv/3) (14 iv3) {/7(3V15 - 10)
2776 - 12 52/3

12¢/5 (3v/15 — 10)
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(L ELEDETLLI I ECNVEETRGIICIN  The Cohen-Daubechies-Feauveau-(7,9) filter pair

o |t suffices to take approximate values

z1 ~ —0.342384
2> =~ —0.078808 + 0.373931/
z3 ~ —0.078808 — 0.373931/

@ The polynomial P3(z) factors into two polynomials
p(z) = a-(z—2)

Be) = - (2 22)(z ~ 23)

where the constant a has to be determined
@ In terms of approximate values

p(z) ~ a- (z+ 0.342384)

_ 1
pz) ~ (= +0.078808 — 0.373931/)(z + 0.078808 + 0.373931/)

%

1
5(2.9207 4 3.152327 + 202%)
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(L ELEDETLLI I ECNVEETRGIICIN  The Cohen-Daubechies-Feauveau-(7,9) filter pair

@ The two filters h = (h;)j=—3.3 and h= (Fj)j:_4“4 are defined
through their frequency representations (note that K =4,/ = { = 2)

H(w) = V2 cos(w/2)*p(sin(w/2)?)
= a- V2cos(w/2)* (0.342384 + sin(w/2)?)
H(w) = V2 cos(w/2)*p(sin(w/2)?)
= écos(w /2)*(4.13049 + 4.45805 sin(w/2)? + 202 sin(w/2)*)
@ Now the value of a can be fixed by requiring H(0) = V2 (and also
H(0) = v/2), which gives
a = 2.9207
@ so that
H(w) = 4.13049 cos(w/2)*(0.342384 + sin(w/2)?)
H(w) = cos(w/2)* (1.41421 + 1.52637 sin(w/2)? 4 9.68408 sin(w/2)*)
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(L ELEDETLLI I ECNVEETRGIICIN  The Cohen-Daubechies-Feauveau-(7,9) filter pair

o Converting the sin- and cos-expressions into exponentials then gives
the filter coefficients

(hj)j=—3.3 =

[ —0.0645388826 ]|

—0.0406894175
0.4180922731
0.7884856164
0.4180922731

—0.0406894175

| —0.0645388826

(hj)j=-4.4 =

0.0378284555

—0.0238494650
—0.1106244044
0.3774028555
0.8526986788
0.3774028555
—0.1106244044
—0.0238494650
0.0378284555

@ Low-pass properties: from the definition it is clear that both filters

h= (h )J—_3 3 and h

(h;)j=—4.4 have 4 vanishing moments, i.e.,

they have very good smoothness properties for reconstruction
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(@B DETI RS ENVEETRGIIXIEI  The Cohen-Daubechies-Feauveau-(7,9) filter pair
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Figure: Frequency picture of the Cohen-Daubechies-Feauveau-(7,9) filter pair
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(@I B DENL IR S ENETR IS The Cohen-Daubechies-Feauveau-(7,9) filter pair

Figure: Scaling and wavelet functions for the CDF-9 filter
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