Statistical Classifiers
Bayesian Classifier

AN

Dr. Elli Angelopoulou

Lehrstuhl fiir Mustererkennung (Informatik 5)
Friedrich-Alexander-Universitdat Erlangen-Niirnberg




Pattern Recognition Pipeline A
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Training samples

m Feature Extraction and Selection
= Heuristic feature extraction methods
= Analytic feature extraction methods
= Objective function for “goodness” of feature vector

= Search method for exploring the feature space

m Classification
= The step where the actual “recognition” takes place.
= Assigns the transformed input signal to a class.

= Labelled data can be critical in the recognition success.



Decision Function A

m Goal: Map the computed feature vector ¢ to a class

Q. ; 5(2,[¢) Q.

m The decision function 0() can be a probabilistic

decision function. «
Y@, [c) =1
K=1

m Given a feature vector ¢, there is a certain
probability that we will decide that the observed
signal belongs to a particular class.

B A probabilistic decision function expresses the fact
that there is uncertainty in our decision making
process.




Decision Function - continued )

m Other times, the decision function is a binary
function of the form:

~ 1 for Q_, 1if it 1s decided that c € Q_
5(9,(‘6') =

O for all other classes

B In these cases the decision function can also be
represented by a binary vector, with all zeroes,
except the class to which the vector ¢ belongs to.



Common Assumptions A

m Very often during classification we make the
following assumptions:

1. There exists a rejection class €2,

2. Each classification decision has individual costs
associated with it. It is the cost of making a
mistake.

3. After having classified a large number of samples,
we are able to estimate the average costs, what we
often refer to as the risk of the classification
process.



Statistical Classifiers i

B We have briefly seen classifiers that base their
decision based on distances from a representative
sample of each class (i.e. mean), or on decision
boundaries.

m Statistical classifiers are based on the following idea:

1. Compute the risk associated with the classification of
a pattern.

2. Compute the decision rule by minimizing the total
risk.

B The final decision rule (that minimizes the risk) leads
to the optimal classifier.



Statistics Review A
m Mean vector (expectation):

= Continuous: E{X}=fxp(x)dx

| &
= Discrete: My =_E'xi
N3

m Variance of scalar random variable
= Continuous: Var{X} {(X_E{X})z}
= Discrete: —E X; —,LLX

®m Variance of vector data (a.k.a. covariance matrix, or
variance-covariance matrix, or dispersion matrix)

var{x} - B (% - E{x})(% - (%} }



Parametric Densities A

B Parametric density functions are densities that are
completely defined by their parameters.

B For example, in a normal distribution, the pdf is

completely described by the mean and the variance.
B In general, parametric density functions are of the

form: ) G = p(E‘&)

where « is a parameter vector that has to be

estimated.

m Example: Normally distributed feature vectors
¢ =N (c,u,x)
where the parameters U, can be estimated via
maximum likelihood estimation.



Classification Risk — a first look i

m Recall that statistical classifiers are based on the
following 2-step process:

1. Compute the risk associated with the classification
of a pattern.

2. Compute the decision rule by minimizing the total
risk.

m We need a way of quantifying the risk associated
with a classifier.

B For that we need to first establish a cost for each
classification decision.
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Cost Function A

m Let 7, & R denote the cost for classifying a
pattern as belonging to class €2, when it truly

belongs to class €2..

m The individual decision cost r,, has to be
defined by the user of the classifier.

m A cost function (usually) should fulfill the following

inequality:
O<r =1,

where r__ is the correct decision.
m In the presence of a rejection class €2,:

rK,K = rO,K = r)\,,K
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Computing the Optimal Decision Rule A

B In order to compute the optimal decision rule we
need to perform the following steps:

1. Compute the probability of misclassification
p(Q)\,‘QK)
2. Compute the risk R(0) associated with using a

particular decision function 9(), including
correct decisions, as well as misclassifications:

R©®) =Y p(Q)p(Q./Q, )7,
VK. A

3. Minimize the risk over all different decision rules
0 = argmin R(0)
o)
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Computing the Prob. of Misclassification A

B We want to compute the probability of misclassifying a
signal as belonging to class €2, when it truly belongs to

class Q,, p(Q;|Q,).
B By the definition of conditional probabilities:

p(A|B) = p(A,B)/ p(B)

B Given two jointly distributed random variables A and B,
the marginal distribution of A is simply the probability
distribution of A ignoring information about B. It is
typically calculated by integrating the joint probability
distribution over B:

Marginal p(A) = f p(A.b) pb
B



Computing the Prob. of Misclassification (2) Ay

B Given these facts, one can derive the probability of
misclassification by starting with the conditional

—

probability and doing a marginalization over c.

. Q. .c,Q
p(Q;L,C QK) _ p( ngg ) )

— p(Q)pEaQK) p(EagK)
p(€2,.)  p(c.L2,)

_ P(Q,6.9,) pE.Q,)
p(E9QK) p(QK)

= p(gl E’QK )p(E‘QK )




Computing the Prob. of Misclassification (3) A,

Q) =@, e 2)pER,)

®m However what we observe is just the feature vector ¢
and not both ¢ and Q..

B So we replace this term with a probabilistic decision

m We have shown that p(R,.¢

for class Q,, given that we have observed c:
P(Q,.8Q,) =8(Q,6)pElQ,)

m We can now do a marginalization over c:
p(Q,[Q,) = [8(Q,[6)p@ER,)dé
R-
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Computing the Optimal Decision Rule - revisit

B In order to compute the optimal decision rule we
need to perform the following steps:

p(Q,[Q,) = [ 8(Q,[6)p(ER,)dé
R-
2. Compute the risk R() associated with using a

particular decision function 0(), including
correct decisions, as well as misclassifications:

R©®) =Y p(Q)p(Q./Q, )7,
VK. A

3. Minimize the risk over all different decision rules
0 = argmin R(0)
o)
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Computing the Risk of a Decision Function A

m The risk R(0) associated with using a particular
decision function d() for a specific class €_ is:
K

R(é‘QK) = E p(QA‘QK )r/x,:c
=0

K
= Y [ 8(Q,[é)p(c|Q,)dcr,,

A=0R-
B For the overall risk, we have to sum over all the
classes, taking under consideration the probability
of occurrence of each cIass

R(3) = 21«6\9 9@ - [ D@02 }6(91\c>dc

R A=0k=1

U, (C ) “— measurement value
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Objective Function N

m The overall risk R(0) can then be written more
compactly as:

R©®)= [ iuk(E)(S(QA\E)dE

R- A=0
m Goal: Derive an optimal decision rule which

minimizes overall risk:

K
0 = argminR(0) = argminfz uA(E)(S(QA‘E)dE
0 0 R. A=0
m Conclusion: The optimal classifier will decide for the
class that leads to the smallest measurement

value u,(c).
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Optimal Decision Rule N

m Let u, (C) be the smallest possible measurement
value among all possible classes.

(c) =mAinuA(E)

umin

B Then, the optimal decision rule is:

1 if u,@)=u_(C)

0 otherwise

&(Q;[c) = {
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A Remark on the Measurement Value i

m The computation of u,(¢) can be done by a vector
product calculation:

1, (@) =Y 1, P(Q)p(EIRQ,)

| p(Q)p(EQ)
p(Qz)p(E Qz)

=[r 100k ]

/ _p(QK)p(E‘QK)_

independent of C
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Cost Functions A

m So far we have considered the user-defined cost
function 7,,, where A=0,1,2,....K and k=12,....K
and where K is the number of classes. So the user
must specify (K+1)K different cost values.

B A simpler cost setup involves just 3 distinct cost

functions: o
r.. =r1. Vi (correct classification)

. =r Yk (reject)
. =1 Vk=A (false classification)

B So one can also think of the total cost of a decision

function as:



(0,1)-Cost Function N

m A special case of cost function is the (0,1)-cost

function which:

= uses no rejection class
= hasan r__=r. =0 VK correct decision cost

= hasan r,, =1 =1 VK= A false decision cost

m The risk function for the (0,1) cost function is a
simplified version of the general R(0):
R(O)=p..+ p,;rs + p,r,=p,
B Thus, a classifier that minimizes the risk for a (0,1)-

cost function is equivalent to the classifier that
minimizes the error probability.
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Decision rule of a (0,1)-Cost Function A

m Using a (0,1)-cost function simplifies the measurement
value: K

1, (€)= Y r, PQIPER) = Y p(Q)pEIR,)

K=1
K=A

m Recall that the optimal decision rule is:
1 if u,(c)=u

\O otherwise

5(91‘5) = -

m Notice that u,(¢) is minimal when the largest

summand is left out, i.e. when the class €2 _ with the
largest p(R,)p(¢|Q,) product is not included in the
summation.
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Measurement Value of a (0,1)-Cost Function i,

m More specifically, minimizing u,(c¢) for a (0,1)-cost
function involves:
(E)=m}nuk(5)

K
_ m}nzl p(Q,)p(E|Q,)

umin

K=A

B But the sum is minimal when the largest summand
is left out. The largest term of the sum is realized
for the class with the largest p(Q,)p(c|Q,) term.

B How can we exclude this from the sum?

m Assign ¢ to the class with the largest p(€2,)p(c|Q,)
term. Then through the k= A condition the term is
excluded from the sum.



Page 24

Largest Summand Example A

B Here is a simple example that demonstrates why
selecting the parameter (class) that minimizes the
sum is equivalent to selecting the parameter (class)
that gives the largest summand.

m We want to find
K K
Uy (€) = minu, (¢) = nlj}nzlp(QK)p(c‘QK) = m}nzlfk
K:)L E:)L

where f, =p(QK)p(E‘QK) is used for a more compact
presentation.

m Consider the example where K =5 and f, =0.15
£,=0.67 £;,=004 f,=0.12 f,=0.02
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Largest Summand Example - continued Ay
m Our goal is to find the A that mini;;nizes
umin(c)=mlmul(c)=m}n2fk

K=A

m Recall: £,=0.15,f,=0.67,/,=004,f, =0.12,f,=0.02

K

m For A=1: @)= f,=067+004+0.12+0.02=0.85
K=1
K=l

K
m For A=2: u2(5)=2fk =0.15+0.04+0.12+0.02=0.33
K=1

K#2

K
m For A=3: u,(6)= ) £, =0.15+0.67+0.12+0.02 = 0.96
K=1

K#3
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Largest Summand Example - continued Ay
m Our goal is to find the A that mini;;nizes
umin(c)=mlmul(c)=m}n2fk

K=A

m Recall: £,=0.15,f,=0.67,/,=004,f, =0.12,f,=0.02

K

m For A=4: u4(5)=sz =0.15+0.67+0.04+0.02 =0.88
K=1
k=4

K
m For A=5:u(@)= ) f,=0.15+0.67+0.04+0.12=0.98
K=1

K#5

B Thus: m)LinuA(E) = m}n(O.85,0.33,0.96,0.88,0.98) =0.33,for A=2
because A =2 gave the smallest sum by excluding
the biggest summand f, =0.67,
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Minimizing the Measurement Value - (0,1) cost A\

B The class that minimizes measurement value then is:

K
n =argminu, (¢) = argminEp(QK)p(E‘QK)
A A el

K=A

Selecting the largest summand

= argmax p(2,)p(¢|Q;)
A

Dividing with a term independent R
of the maximizing argument A p(Q)L )p(c ‘QA )
= arg max

2 p(c)

Using the Bayesian r .
- a-posteriori
P =arg£naxp(§2;t‘c)\< orobability

/\/N
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Optimal Decision Rule Revisited N

m So, given a feature vector ¢ we compute for each
class the a-posteriori probability and decide for the

class with the largest probability.

B Lemma: The classifier that minimizes the probability
for misclassification (minimizes p,) applies the
following decision rule:

_[1if A=argmax p(Q,[¢)
(R, [6) = .

\O otherwise

<Bayesian decision rule
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Bayesian Decision Rule N

B The Bayes decision rule is a very important result in
pattern recognition.

m |t states that if we want to have a classification
scheme that minimizes the probability of
misclassifications, then the only thing one needs to

do is to:

a. Compute the posterior probabilities p(QK‘E)

b. Decide for the class that give the maximum posterior
probability.

B Simple concept:

Finding the optimal classifier requires finding the
posterior probabilities.
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Bayesian Classifier N

m Definition: A classifier whose decision rule is based
on the maximization of posterior probabilities is
called a Bayesian classifier.

B So pattern recognition is then done/solved in terms
of classification.

B All we need to do is given some training data to
compute the posterior probability p(€, |c).

B A simple task. Or is it?
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Bayesian Classifier N

B Obtaining accurate estimates of the posterior
probabilities from training data can be challenging.

B One of the topics of Pattern Recognition is to find
good methodologies for approximating the posterior
probabilities.

B So in theory, there is no other classifier that can
achieve a lower error probability than a (0,1)-
Bayesian classifier. Let us denote the error
probability of a Bayesian classifier as pg.

m In general, this error probability p; will act as a lower
bound when discussing the error probabilities of other
classifiers.
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Remarks b

1. Many classifiers try to approximate the Bayesian
classifier.

Caution: a (0,1)-cost function must make sense, do
not force a (0,1)-cost function if it doesn't fit the
application.

2. The Bayesian classifier requires complete knowledge
about p(Q_|¢).
How do we get enough training data?

Is the training data appropriate? In other words are
our samples good examples of the real population?
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Remarks - continued A

3. Modeling of p(R.[¢) is a key issue.
For instance:

In speech recognition we don't classify based on a
single feature but rather on a sequence of features.
How do we handle feature sequences in the
posterior probability computation?

How do we deal with the fact that the image data
we get is a projection from 3D to 2D, i.e. we already
have information loss?



