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Pattern Recognition Pipeline 

n  Feature Extraction and Selection 
§  Heuristic feature extraction methods 

§  Analytic feature extraction methods 

§  Objective function for “goodness” of feature vector 

§  Search method for exploring the feature space  

n  Classification 
§  The step where the actual “recognition” takes place. 

§  Assigns the transformed input signal to a class. 

§  Labelled data can be critical in the recognition success. 

 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	



Learning Training samples 
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Decision Function 

n  Goal: Map the computed feature vector     to a class 
Ωκ. 

n  The decision function δ() can be a probabilistic 
decision function.  

n  Given a feature vector    , there is a certain 
probability that we will decide that the observed 
signal belongs to a particular class. 

n  A probabilistic decision function expresses the fact 
that there is uncertainty in our decision making 
process. 
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Decision Function - continued 

n  Other times, the decision function is a binary 
function of the form: 

n  In these cases the decision function can also be 
represented by a binary vector, with all zeroes, 
except the class to which the vector     belongs to.    
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Common Assumptions 

n  Very often during classification we make the 
following assumptions: 

1. There exists a rejection class Ω0. 

2. Each classification decision has individual costs 
associated with it.  It is the cost of making a 
mistake. 

3. After having classified a large number of samples,  
we are able to estimate the average costs, what we 
often refer to as the risk of the classification 
process. 
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Statistical Classifiers 

n  We have briefly seen classifiers that base their 
decision based on distances from a representative 
sample of each class (i.e. mean), or on decision 
boundaries. 

n  Statistical classifiers are based on the following idea: 
1.  Compute the risk associated with the classification of 

a pattern. 

2.  Compute the decision rule by minimizing the total 
risk. 

n  The final decision rule (that minimizes the risk) leads 
to the optimal classifier. 
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Statistics Review 
n  Mean vector (expectation): 

§  Continuous: 

§  Discrete: 

n  Variance of scalar random variable 
§  Continuous: 

§  Discrete: 

n  Variance of vector data (a.k.a. covariance matrix, or 
variance-covariance matrix, or dispersion matrix) 
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Parametric Densities 

n  Parametric density functions are densities that are 
completely defined by their parameters. 

n  For example, in a normal distribution, the pdf is 
completely described by the mean and the variance. 

n  In general, parametric density functions are of the 
form: 
 where     is a parameter vector that has to be 
estimated.  

n  Example: Normally distributed feature vectors 
  
 where the parameters        can be estimated via 
maximum likelihood estimation.  
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Classification Risk – a first look 

n  Recall that statistical classifiers are based on the 
following 2-step process: 

1.  Compute the risk associated with the classification 
of a pattern. 

2.  Compute the decision rule by minimizing the total 
risk. 

n  We need a way of quantifying the risk associated 
with a classifier.  

n  For that we need to first establish a cost for each 
classification decision. 
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Cost Function 

n  Let              denote the cost for classifying a 
pattern as belonging to class Ωλ when it truly 
belongs to class Ωκ. 

n  The individual decision cost        has to be 
defined by the user of the classifier. 

n  A cost function (usually) should fulfill the following 
inequality: 

 where        is the correct decision. 
n  In the presence of a rejection class Ω0:  
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Computing the Optimal Decision Rule 
n  In order to compute the optimal decision rule we 

need to perform  the following steps: 
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R(δ) = p(Ωκ )
∀κ ,λ
∑ p Ωλ Ωκ( )rλ,κ
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ˆ δ = argmin
δ

R(δ)

1.  Compute the probability of misclassification 

2.  Compute the risk R(δ) associated with using a 
particular decision function δ(), including 
correct decisions, as well as misclassifications: 

 

3.  Minimize the risk over all different decision rules 
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Computing the Prob. of Misclassification 
n  We want to compute the probability of misclassifying a 

signal as belonging to class Ωλ when it truly belongs to 
class Ωκ,               . 

n  By the definition of conditional probabilities: 

n  Given two jointly distributed random variables A and B, 
the marginal distribution of A is simply the probability 
distribution of A ignoring information about B. It is 
typically calculated by integrating the joint probability 
distribution over B: 
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∫
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Computing the Prob. of Misclassification (2) 

n  Given these facts, one can derive the probability of 
misclassification by starting with the conditional 
probability and doing a marginalization over    .   
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Computing the Prob. of Misclassification (3) 

n  We have shown that 

n  However what we observe is just the feature vector     
and not both     and Ωκ.  

n  So we replace this term with a probabilistic decision 
for class Ωλ, given that we have observed   : 

n  We can now do a marginalization over    :     
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Computing the Optimal Decision Rule - revisit 

n  In order to compute the optimal decision rule we 
need to perform  the following steps: 
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R(δ) = p(Ωκ )
∀κ ,λ
∑ p Ωλ Ωκ( )rλ,κ

€ 

ˆ δ = argmin
δ

R(δ)

1.  Compute the probability of misclassification 

2.  Compute the risk R(δ) associated with using a 
particular decision function δ(), including 
correct decisions, as well as misclassifications: 

 

3.  Minimize the risk over all different decision rules 
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Computing the Risk of a Decision Function 

n  The risk R(δ) associated with using a particular 
decision function δ() for a specific class Ωκ is:  

n  For the overall risk, we have to sum over all the 
classes, taking under consideration the probability 
of occurrence of each class. 
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Objective Function 

n  The overall risk R(δ) can then be written more 
compactly as: 

n  Goal: Derive an optimal decision rule which 
minimizes overall risk: 

n  Conclusion: The optimal classifier will decide for the 
class that leads to the smallest measurement 
value         . 
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Optimal Decision Rule 

n  Let            be the smallest possible measurement 
value among all possible classes. 

 
 
n  Then, the optimal decision rule is: 
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A Remark on the Measurement Value 

n  The computation of          can be done by a vector 
product calculation: 
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Cost Functions 

n  So far we have considered the user-defined cost 
function       , where                     and               
and where K is the number of classes. So the user 
must specify (K+1)K different cost values. 

n  A simpler cost setup involves just 3 distinct cost 
functions: 

n  So one can also think of the total cost of a decision 
function as:  
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(0,1)-Cost Function 

n  A special case of cost function is the (0,1)-cost 
function which: 
§  uses no rejection class  
§  has an                            correct decision cost 
§  has an                                  false decision cost 

n  The risk function for the (0,1) cost function is a 
simplified version of the general R(δ): 

n  Thus, a classifier that minimizes the risk for a (0,1)-
cost function is equivalent to the classifier that 
minimizes the error probability.  
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Decision rule of a (0,1)-Cost Function 

n  Using a (0,1)-cost function simplifies the measurement 
value: 

n  Recall that the optimal decision rule is:  

 

n  Notice that            is minimal when the largest 
summand is left out, i.e. when the class Ωκ with the 
largest                      product is not included in the 
summation. 
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n  More specifically, minimizing          for a (0,1)-cost 
function involves: 

n  But the sum is minimal when the largest summand 
is left out. The largest term of the sum is realized 
for the class with the largest                      term. 

n  How can we exclude this from the sum?  

Measurement Value of a (0,1)-Cost Function 
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n  Assign     to the class with the largest                    
term. Then through the           condition the term is 
excluded from the sum. 
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Largest Summand Example 

n  Here is a simple example that demonstrates why 
selecting the parameter (class) that minimizes the 
sum is equivalent to selecting the parameter (class) 
that gives the largest summand. 

n  We want to find  

where                           is used for a more compact 
presentation. 

n  Consider the example where          and  
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K = 5 f1 = 0.15
f2 = 0.67 f3 = 0.04 f4 = 0.12 f5 = 0.02
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Largest Summand Example - continued 
n  Our goal is to find the    that minimizes 
                                   

n  Recall:             ,            ,            ,            , 

n  For        : 

n  For         : 

n  For         : 
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Largest Summand Example - continued 
n  Our goal is to find the    that minimizes 
                                   

n  Recall:             ,            ,            ,            , 

n  For        : 

n  For         : 

n  Thus:  
because          gave the smallest sum by excluding 
the biggest summand             .  
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n  The class that minimizes measurement value then is: 

Minimizing the Measurement Value – (0,1) cost 

η = argmin
λ
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Selecting the largest summand 

Dividing with a term independent 
of the maximizing argument λ	



Using the Bayesian rule a-posteriori 
probability 
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Optimal Decision Rule Revisited 

n  So, given a feature vector     we compute for each 
class the a-posteriori probability and decide for the 
class with the largest probability. 

n  Lemma: The classifier that minimizes the probability 
for misclassification (minimizes pf) applies the 
following decision rule: 

  

€ 

δ(Ωλ

 c ) =
1  if  λ = argmax

κ
p(Ωκ

 c )    

0  otherwise                         

& 
' 
( 

Bayesian decision rule 

  

€ 

 c 



 Seite 29 

Page 29 

Bayesian Decision Rule 

n  The Bayes decision rule is a very important result in 
pattern recognition. 

n  It states that if we want to have a classification 
scheme that minimizes the probability of 
misclassifications, then the only thing one needs to 
do is to: 
a.  Compute the posterior probabilities 
b.  Decide for the class that give the maximum posterior 

probability. 

n  Simple concept: 
 Finding the optimal classifier requires finding the 
posterior probabilities. 
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Bayesian Classifier 

n  Definition: A classifier whose decision rule is based 
on the maximization of posterior probabilities is 
called a Bayesian classifier. 

n  So pattern recognition is then done/solved in terms 
of classification.  

n  All we need to do is given some training data to 
compute the posterior probability            . 

n  A simple task. Or is it?  
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Bayesian Classifier 

n  Obtaining accurate estimates of the posterior 
probabilities from training data can be challenging. 

n  One of the topics of Pattern Recognition is to find 
good methodologies for approximating the posterior 
probabilities. 

n  So in theory, there is no other classifier that can 
achieve a lower error probability than a (0,1)-
Bayesian classifier. Let us denote the error 
probability of a Bayesian classifier as pB. 

n  In general, this error probability pB will act as a lower 
bound when discussing the error probabilities of other 
classifiers.  
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Remarks 

1.  Many classifiers try to approximate the Bayesian 
classifier. 

 Caution: a (0,1)-cost function must make sense, do 
not force a (0,1)-cost function if it doesn't fit the 
application. 

2.  The Bayesian classifier requires complete knowledge 
about            . 

  How do we get enough training data? 
 Is the training data appropriate? In other words are 
our samples good examples of the real population? 
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Remarks - continued 

3.  Modeling of              is a key issue. 
 For instance:  

 In speech recognition we don't classify based on a 
single feature but rather on a sequence of features. 
How do we handle feature sequences in the 
posterior probability computation?  

 How do we deal with the fact that the image data 
we get is a projection from 3D to 2D, i.e. we already 
have information loss? 
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