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Pattern Recognition Pipeline 

  One common method for heuristic feature extraction 
is the projection of a signal     or    on a set of 
orthogonal basis vectors (functions),                    . 
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Introduction to Linear Predictive Coding  

  Linear Predictive Coding (LPC) is a feature vector 
that is widely used in speech processing. 

  It represents the spectral envelope of a digital signal 
of speech in a compressed form.  

  LPC has been very successful in encoding good 
quality speech at a low bit rate.  

  It also provides extremely accurate estimates of 
speech parameters. 

  It is part of the GSM wireless communication 
standard.  
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Vocal Tract 

  There are 3 key 
elements in the 
human vocal 
tract: 
  Vocal Cords 
  Pharynx 
  Oral/Nasal Cavity 

  LPC assumes such 
an apparatus for 
voice/sound 
generation. 
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Abstract Model of Vocal Tract 

  An abstract model of the speech synthesis is often 
employed. 

  Its key components are: 
  Buzzer 
  Tube 

  The relationship between the vocal tract and the 
abstract model for speech production is: 
  Lungs 
  Trachia 
  Vocal cords  ->  Buzzer 
  Pharynx       ->  Tube 
  Oral cavity 
  Nasal cavity Additional hissing and popping sounds 
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An Early Speech Synthesizer 

  Wheatstone's reconstruction of von Kempelen's speaking machine. 

  Vowels were produced with vibrating reed and all passages were closed.  

  Resonances were effected by deforming the leather resonator. 

  Consonants, including nasals, were produced with turbulent flow trough a 
suitable passage with reed-off . 
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LPC and the Vocal Tract 

  LPC starts with the assumption that a speech signal 
is produced by a buzzer at the end of a tube 
(voiced sounds), with occasional added hissing and 
popping sounds (sibilants and plosive sounds). 

  The glottis (the space between the vocal cords) 
produces the buzz, which is characterized by its 
intensity (loudness) and frequency (pitch). 

  The pharynx forms the tube, which is characterized 
by its resonances, which are called formants.  

  Hisses and pops are generated by the action of the 
tongue, lips and throat. 



 Seite 8  Seite 8 

LPC and the Vocal Tract - continued 

  LPC analyzes the speech signal by: 
  estimating the formants (the pharynx effects) 
  removing their effects from the speech signal 
  and estimating the intensity and frequency of the remaining buzz. 

  LPC isolates the intensity and frequency of the buzz 
and the formants effects. 

  Each (buzz effects and formant effets) can be stored 
(processed if needed) and transmitted separately. 

  They are then recombined at the receiving end to 
create the speech signal. 
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Linear Predictive Model 

  Assume that the present sample       of the speech is 
predicted by the past m speech samples so that 

 where        is the prediction of      ,        is the 
sample of the ith previous step, and  the          are 
are the linear prediction coefficients (LPCs). 

  The error between the actual sample and the 
predicted one is: 

  The best LPCs will result in          . 
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Computation of the LPC-coefficients 

  The prediction error is: 

  Goal: Derive the LPCs        that result in:  

  How do we compute the values of the coefficients 
that satisfy  
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System of Linear Equations 

  From the last k+1 samples we have: 

  We have k+1 equations which are all linear in    . 
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Matrix Form 

  Rewrite the system of equations in a matrix form: 
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Computing the Vector of LPC coefficients  

  If              , then A is a square matrix and thus it is 
invertible (assuming that               ). 

  Hence the LPC coefficients are: 
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  In this case the LPC coefficients are: 

  The best way to compute the pseudoinverse is to 
use singular value decomposition (SVD). 
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Alternative Estimation of LPC-coefficients 

  Alternatively, we could define an objective function. 
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Four Remarks on LPC 

1.  Rule of thumb for the number of coefficients:  
  m = 10 -15 
  The choice of m depends on the sampling frequency. 
  Let fs be the sampling frequency in kHz, then  
  m = 4 + fs  up to m= 5 + fs 

2.  One can use the LPC coefficients to identify a 
person's voice. 
  LPC is particularly good at highlighting formant locations which 

have been shown to be significant in voice identification.  

3.  The vector of LPC coefficients can be used as a 
feature vector. 
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Four Remarks on LPC -continued 

4.  One can use the LPC coefficients to compute the 
smoothed Model Spectrum of a signal. 
  The Model Spectrum is the Fourier Transform of the LPC 

coefficients.  

  It is a smooth spectrum of the speech signal. 
  Peaks in the Model Spectrum are formants. 
  Peaks in the frequency spectrum of a sound are caused by 

resonance (i.e. they are directly attributed to formants) 
  It has been shown that perceptually, formants is the information 

that humans use in distinguishing between different vowels. 
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Moments 

  Given an image f(x,y), the geometric moments are 
defined as: 

  For the same image f(x,y) the central moments are 
defined as: 

 where               and                are the center of mass.  
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Moments and Invariance 

  An advantage of the central moments is that they are 
translation-invariant.  

  We can compute another set of moments, the 
normalized central moments which are also  scale-
invariant.  

  Given an image f(x,y), the normalized central 
moments are defined as: 

  Thus, the normalized central moments are translation- 
and scale-invariant. 
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Moment-Based Features  

  One can also construct moments that are 
translation, scale and rotation invariant. 

  A collection of such moments can be used as a 
feature vector    . 

  Each element      of the feature vector is a moment, 
i.e.                      for any chosen value of p and q, 
or a combination of moments. 

  A very popular set of moments used as a feature 
vector are the ones proposed by Hu. The are known 
as the Hu set of invariant moments. 
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Information Provided by Moments 

  1st order moments convey information about size, 
area, volume, or mass. 

  2nd order central moments are related to variance. 

  3rd order central moments provide information about 
the symmetry of an shape or distribution (skewness). 

  4th order central moments is a measure of whether 
the distribution is tall and skinny or short and squat, 
compared to the normal distribution of the same 
variance (kurtosis). 

  In general in higher orders, central moments provide 
more intuitive information than moments about zero 
(raw geometric moments).  
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Hu Set of Invariant Moments (1 through 5) 

€ 

I1 =η20 +η02

€ 

I2 = η20 −η02( )2 + 2η11( )2

€ 

I3 = η30 − 3η12( )2 + 3η21 −η03( )2

€ 

I4 = η30 +η12( )2 + η21 +η03( )2

€ 

I5 = η30 − 3η12( ) η30 +η12( ) η30 +η12( )2
− 3 η21 +η03( )2[ ] +

  3η21 −η03( ) η21 +η03( ) 3 η30 +η12( )2
− η21 +η03( )2[ ]



 Seite 22  Seite 22 

Hu Set of Invariant Moments (6 through 7) 
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Some Remarks on the Hu Set 

  J. Flusser and T. Suk showed that the Hu set of 
invariant moments is: 

1.  Not independent 
For example, I2 and and I3 are dependent so they provide no 
additional information.  

2.  Incomplete 
There is no independent 3rd order moment invariant. Low 
discriminating power. 

  A 3rd order independent moment that can be used 
instead is: 
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Sources 

1.  Vocal tract image by Jeff McNeill http://jcarreras.homestead.com/files/phoneticsvocaltract.jpg 

2.  The figure of Wheatstone’s speech synthesizer is from Sami Lemmetty 
http://www.acoustics.hut.fi/publications/files/theses/lemmetty_mst/chap2.html   


