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Concept 

  Setup: Similar to Kalman Filtering, it explicitly predicts 
an estimate of the state of the dynamic system based 
on an uncertain system model. The prediction is then 
updated through the incorporation of information by 
noisy measurements.  

  Goal: Minimize the difference between the updated 
estimate and the true state of the dynamic system. 

  Means: Pick the updated estimate with the highest 
posterior probability, i.e. the highest Bayesian 
probability. 

  Both Kalman Filter and Particle Filters express the state 
estimation problem in a Bayesian Framework.  
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Kalman Filter Setup 

  A dynamic system is described at every time 
instance      by a state vector     . 

  At each time instance      there is also a 
measurement vector     .  

  There is a linear dynamic model 

 where        is a vector describing the random 
process noise and         is the state transition matrix.  

  The relationship between the true system state and 
the measurements is given by:  

 where      is a vector describing the measurement 
noise and       is the measurement matrix. 
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Kalman Filter 

  Prediction equations 

  Project state and 
covariance estimates 
forward in time 

  Update equations 

  Compute Kalman gain K 
  Include the measurement 
  Compute a posteriori estimate 
  Compute a posteriori  

covariance of the estimate 
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Bayesian Framework  

  In a Bayesian framework, tracking is expressed as 
problem of estimating the probability of the state 
given the previous states                        and the 
measurements up to time    ,                         .  

  We select the estimate with the highest probability: 

  In a Markovian process, the future state depends 
only on the current state. 

  Thus, we need to estimate  
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Bayesian Framework - continued  

  We estimate the posterior probability                      in 
a 2-step process: 

  First estimate: 

 This is the so-called prediction step. 

  Then once the measurement       is obtained, compute 

 where 

 This the update step.  
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KF Assumptions in the Bayesian Framework  

  The prediction pdf is Gaussian: 

  The update pdfs are Gaussian: 

  Computing is equivalent to: 

    

€ 

p(  x k
 z 1,
 z 2,…, z k−1) ~ N ( x k ˆ x k

−,Pk
−)

    

€ 

p(  x k−1
 z 1,
 z 2,…, z k−1) ~ N ( x k−1 ˆ x k−1,Pk−1)

    

€ 

p(  x k
 z 1,
 z 2,…, z k ) ~ N ( x k ˆ x k,Pk )

    

€ 

ˆ x k = max 
x k

p(  x k
 x 1,
 x 2,…,  x k−1,

 z 1,
 z 2,…, z k−1,

 z k ) ~ N ( x k,Pk )



 Page 8  Page 8 

Elli Angelopoulou Particle Filters 

Kalman Filter Summary 

  Kalman filter makes the following assumptions:  
1.  Linear system model 
2.  Gaussian noise 
3.  Gaussian posterior distribution 

  KF computes the optimal state estimate     , as the max. 
probability density of       given the past estimates, the past 
measurements and the current measurement. The pdf is 
assumed to be Gaussian so its max. coincides with its mean. 

  The Extended Kalman Filter tries to address some of these 
constraints but it is still based on: 
1.  Local linearization of non-linear models 
2.  Gaussian noise  
3.  Gaussian posterior probability 
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Particle Filters 

  Same dynamic framework (uncertain system model, 
noisy measurements that refine predicted estimates). 

  No assumptions on system model (other than 
Markovian) or noise model. 

  The estimation process is based on a Bayesian 
framework. 

  Also known as: 
  Sequential Monte Carlo  
  Condensation Algorithm 
  Bootstrap Filtering 
  Survival of the Fittest 
  Interacting Particle Approximations 
  … 
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PF Dynamic System 

  A dynamic system is described at every time 
instance      by a state vector     . 

  The underlying system model that describes how the 
system changes over time is:  

 where       is a possibly non-linear transition function  
and         is a vector describing the random process 
noise. 

  There are no restrictions or assumptions regarding 
the dynamic system, other than it is Markovian. 
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PF Measurements 

  At every time instance      we also have observations                                       
of the dynamic system,     . 

  The measurement model is:  

 where       is a possibly non-linear measurement 
function  and        is a vector describing the 
measurement noise. 

  There are no restrictions or assumptions regarding 
the measurement model, other than it is Markovian. 
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PF Bayesian Framework  

  Goal: Estimate       given the previous states                         

                  and the measurements up to 
time     ,                         .  

  Bayesian perspective to the tracking problem: 
Recursively calculate some degree of belief in 
(probability of) the state       at time     , taking 
different values, given the data                          . 

  This means, compute the pdf: 

 and pick the value of        with the highest 
probability. 
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Markovian Assumption 

  Particle Filters make only one key assumption: The 
system and the measurement models are Markovian. 

       is Markovian: Its conditional probability density 
given the past states, depends only only the very last 
state through the transition density.  

       is Markovian: Its conditional probability density 
given the all states up to and including      and the 
past observations, depends only on       through the 
conditional likelihood 
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PF – 2-step Estimation Process 

  Prediction Step: 

  Once the measurement       is obtained, perform the 
Update Step: 

 where 

  So if one knows the pdf                      , then 
estimating       is straightforward. Just pick the max.  
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PDF Estimation 

  However,                       can be a highly complex 
probability distribution, for which we may have no 
analytic description. 

  What can we do? 
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  Approximate p() by generating N random samples 
from p(): 

 and then use these discrete samples when 
computing properties of p(), like the expected value 
or its variance. 

  In PF these samples are called particles. 
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Example 

  For example, instead of estimating the expected 
value of the measurement function analytically: 

 use the discrete samples: 
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Importance Sampling 

  More often than not we can not sample directly from 
p(). So we sample from another distribution q(), 
which must have a larger support than p(). 

  So take N random samples from q() instead of p(): 

  A pdf like q() that is used to obtain samples from 
p() is called importance distribution. 

  The technique of using an importance distribution 
like q(), to obtain samples for another distribution 
like p(), is called importance sampling. 
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Importance Sampling Correction 

  Since q() is of course not p(), each sample must be 
corrected by being multiplied by an appropriate weight, 
so that one can obtain an unbiased estimation of the 
properties of p(). 

  So for each sample       there is a weight        that 
handles the discrepancy between the two distributions: 

  We normalize all the weights so that they sum up to 1. 
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Weight samples: w = f / g = p / q  

Importance Sampling Example 
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PDF Estimation via Importance Sampling 

  We use importance sampling to get discrete samples 
of the pdf                     . 

  But within the Bayesian+Markovian framework we 
can compute variables and pdf’s recursively  
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PF Estimation 

  Our goal is to compute a good approximation of the 
posterior density: 

  We have established that: 

  Then                      can be approximated by: 

  As              the approximation approaches the true 
posterior probability function.  
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Weights and PDF 

  The weight        of each particle        can be thought 
of as an approximation of the probability that the  
specific particle value will occur. 

Sample space 

Posterior density € 
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Basic Particle Filter Algorithm 

  For i = 1 to N 

      Draw        from   

      Compute         using the Markovian update 

      Compute  the normalized weight,       , and 
assign it to the corresponding  particle. 

  End  

  Out of all the particles, pick        with the maximum 
weight, or set        to the expected value of 
posterior density p(). 
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The Importance of Importance Sampling 

  The selection of the importance distribution can have a 
considerable impact on the accuracy of the estimation. 

  If the importance distribution is very different from the 
pdf of the state variable, or is consistently uniformly 
distributed, it will lead to estimates with very high 
variance (i.e. pdfs that look like very wide Gaussians). 
Selecting the the most probable value becomes 
unreliable.  

  At the other extreme, if we converge to the correct pdf, 
after a few iterations all but one particle will have 
negligible weight. Resulting again in very high variance. 
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Degeneracy Problem 

  When our sampling distribution closely matches the target 
distribution, the weights should be approximately constant. We 
want low variance in the weights across the different particles.. 

  Measure for degeneracy: Effective sample size 

  Small Neff indicates severe degeneracy 

  Solution 1: Use very large N – can be problematic. 

  Solution 2: Resample, which means replicate particles in 
proportion to their weights. Particles with small weights are  
eliminated. Particles with large weights are replicated as many 
times as their weight.  
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Resampling Example 

x 
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Particle Weights Adjust to PDF 
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First Condensation Demo 
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Well-Known Condensation Demo 
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PF in Robot Localization 
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Stanford Car - Urban Challenge ’07- Test A 
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Stanford Car - Urban Challenge ’07- Test B 
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Stanford Car - Urban Challenge ’07- Test C 
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Importance Distribution Function  

  Which importance distribution function q() should 
one use? 

  Recall that one of the known problems of particle 
filters is degeneracy, which occurs when the 
effective sample size, Neff,  is small 

  One can choose an importance density q() that 
minimizes the variance of the weights,              . 
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Importance Distribution Function – cont.  

  An importance density q() that minimizes the 
variance of the weights               is: 

  Under this importance distribution function, the 
weight becomes: 
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Importance Weights: 

  However, when we use the importance distribution: 

  Then, this means that: 

a)  Either we can somehow sample  

b)  Or we can evaluate the integral over the new state 

  Neither of which is straightforward in practice. 
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Importance Density in Practice  

  In practice, we often use: 

  which leads to: 

  The particle filter then depends on what we use for: 

 In other words how do we associate a measurement 
at time tk with the state of the dynamic system at 
that time. 

  This becomes a design decision for a developer/user 
particle filters. 
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Example 

  Consider the case where we are tracking ball.  

  We have chosen the velocity of the ball as a 
representation of the dynamic state of the ball. 

  At each time instance we measure the position of the 
center of the ball.  

  For each particle we can get an estimate of where the 
center of the ball should be at time tk. 
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Example - continued 

  We now have for each particle an estimate 

  At time tk we measure the position of the center 

  We can measure the error in the estimated ball 
position over all the particles: 

 where N is the number of particles. 

  We then use as conditional probability the function: 

 where σ is empirically determined.  
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Further Resampling Improvements  

  Though the choice of q() is critical, in practice we do 
not use very sophisticated importance distributions.  

  As a consequence, despite resampling, degeneracy 
may still occur. 

  To further alleviate this problem, sample smoothing 
methods can be  used: 
  Roughening 

  Add an independent jitter to the resampled particles 
  Prior boosting  

  Increase the number of samples from the proposal distribution 
to M>N,  

  but in the resampling stage only draw N particles. 
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moving Gaussian + uniform, N=100 particles 

Particle Filter Example 1   
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moving Gaussian + uniform, N=1000 particles 

Particle Filter Example 2   
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moving (sharp) Gaussian + uniform, N=100 particles 

Particle Filter Example 3   
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moving (sharp) Gaussian + uniform, N=1000 particles 

Particle Filter Example 4   
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mixture of two 
Gaussians, 

filter loses track of 
smaller and less 

pronounced peaks 

Particle Filter Example 5   
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Advantages of Particle Filters 

  Ability to represent arbitrary densities, not just 
Gaussians. This is particularly important for 
multimodal distributions. 

  Adaptive focusing on probable regions of state-
space. 

  No Gaussian noise assumptions. 

  General state and measurement models (no linear 
assumption). 

  The framework allows the inclusion of multiple 
models. For example, simultaneously tracking 
multiple pedestrians, cars and bicycles. 
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Disadvantages of Particle Filters 

  High computational complexity (GPU and FPGA 
implementations). 

  It is difficult to determine optimal number of 
particles. 

  Number of particles increase with increasing model 
dimensionality. 

  Potential problems: degeneracy and loss of 
diversity. 

  The choice of importance density is crucial. 
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Particle Filters vs. Kalman Filter 

  Same Bayesian framework and Markovian 
assumption. 

  Recursive formulation composed of a prediction and 
update step. 

  The Kalman Filter is fast, but is optimal only for 
linear systems with Gaussian distributions. 

  Particle Filters are slow, but place no limitations on 
the system model or the distributions. 

  Is there any way we can get the advantages of the 
Kalman Filter and the Particle Filters? 
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Marginalized Particle Filters 

  There is a number of tracking applications where the 
system models are not entirely nonlinear and non-
Gaussian. 

  Some subset of the state vector is linear and 
Gaussian, conditional upon the other states.  

  Idea: Use Kalman filtering for the linear Gaussian 
part of the dynamic system and particle filtering for 
the nonlinear part. 

  This combination is known as: 
  Rao-Blackwellized particle filter 
  Marginalized particle filter 
  Mixture Kalman filter   
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MPF Setup: 

  Partition the state vector into a linear component     
and a nonlinear component     : 

  The linear part of the model uses the Kalman filter 
formulation: 

 where the noise vectors        and       follow  
independent zero-mean Gaussian distributions. 

  The state transition matrices A() and B() may depend 
on the non-linear component of the state vector. 
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MPF Setup -continued 

  The non-linear part of the model is expressed using 
the more general particle filter formulation: 

  The recursive formulation of the Kalman filter (5 eqs.) 
can be used for the linear part of the system. 

  The linear part of the state vector is then marginalized 
in order to obtain the posterior distribution of the non-
linear part of the state: 

  The particle filter is then run on the non-linear part of 
the dynamic system. 
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Image Sources 

1.  The condensation animation and examples are by M. Isard,  
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ISARD1/condensation.html 

2.  The animation on robot localization based on laser range finders is courtesy of S. Thrun, http://robots.stanford.edu 
3.  The urban challenge videos of the Stanford team can be found in the web-page http://cs.stanford.edu/group/roadrunner/ 
4.  The examples of how the particles are distributed for different types of pdf are courtesy of M. Pfeiffer 

http://www.igi.tugraz.at/pfeiffer/documents/particlefilters.ppt 
5.  The graphical example on Importance Sampling from the material on Probabilistic Robotics by S. Thurn, W. Burgard and D. 

Fox http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt 
6.  The resampling example is courtesy of M. Bolic 

http://www.site.uottawa.ca/research/spot/index_fichiers/Theory%20and%20Implementation%20of%20Particle
%20Filters.ppt 
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Meaning of the Densities  

Bearings-only tracking problem 
  p(xk|z1:k) posterior 

  What is the probability that the object is at the 
location xk for all possible locations xk if the history of 
measurements is z1:k? 

  p(xk|xk-1) prior 
  The motion model – where will the object be at time 

instant k given that it was previously at xk-1? 

  p(zk|xk) likelihood 
  The likelihood of making the observation zk given that 

the object is at the location xk. 


