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Images over Time 

  So far we have analyzed either single images, or multiple images 
acquired simultaneously. We have only captured stationary 
information about a scene. 

  As time passes:  
  objects in the scene may move  
  the camera may move 

 either way, there is motion. 

  In computer vision when use the term Motion to refer to images 
taken over time. 

  In the presence of motion: 
  some objects will move while others will not  
  different objects move in different directions  
  there may be rigid as well as non-rigid motion  
  there may be occlusion.  

  What can we tell about images acquired over time? (i.e. movie). 
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Motion 

  There are two main goals within the topic of motion analysis: 
  Detect which objects are moving and in which direction.  

  Extract shape information if possible. 

  Motion analysis typically involves: 
  Motion detection.  

  Moving-object detection and location (tracking).  

  Derivation of 3D object properties. 

  The information extracted from such an analysis can be used in 
the following applications: 
  Track object behavior 

  Correct for camera jitter (stabilization) 

  Align images (mosaics) 

  3D shape reconstruction 

  Special effects 
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Tracking Rigid Objects 

(Simon Baker et al., Carnegie Mellon University) 
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(Dorin Comaniciu et al., Siemens Corporate Research) 

Tracking Non-Rigid Objects 



 Page 6  Page 6 

Elli Angelopoulou Motion 

(Simon Baker et al., Carnegie Mellon University) 

Face Tracking - Initialization 
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(Simon Baker et al., Carnegie Mellon University) 

Face Tracking 
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(David Nister, University of Kentucky) 

Structure from Motion 

First the unknown camera motion and calibration is recovered. Then through the use of feature-
based correspondence over multiple scenes, the 3D geometry of the scene is recovered. 
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Structure from Motion – Final Result 

(David Nister, University of Kentucky) 



 Page 10  Page 10 

Elli Angelopoulou Motion 
(Michal Irani et al., Weizmann Institute of Science) 

Query 

Result 

Behavior Analysis 
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Motion Analysis Basics 

  What visual information can be extracted from the spatial and 
temporal changes that occur in an image sequence? 

  Image sequence: a series of N images (frames) acquired at 
discrete time instants                       , where      is a fixed time 
interval and                       . 

       is typically 1/24th sec, 1/30th of a second. This means that 
the apparent displacement (movement) between frames is at 
most a few pixels. This observation simplifies the 
correspondence problem (at the expense of accuracy). 

€ 

tk = t0 + (k δt)

€ 

δt
  

€ 

k = 0,1,…N −1

€ 

δt
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Image Differencing 

  Assuming the illumination conditions do not vary, image changes 
are caused by a relative motion between the camera and the 
scene. 

  Simple motion example: 

€ 

I(t)

  Idea: Subtract images. If there is a difference, then there is 
motion. Accordingly, no change means stationary part. 

  In the previous example: 

€ 

M(t) = I(t −1) − I(t)

€ 

M(t)

  Either the line moved to the right, or the camera moved to the 
left. We are interested in relative motion. 

€ 

I(t −1)
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Does Differencing Suffice? 

Spinning sphere of uniform color. 
Motion exists but is undetected. 

Stationary sphere under changing 
illumination direction. There is no motion 
field but the images have changed. 
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Aperture Problem 

€ 

I(t −1)
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Aperture Problem - continued 

€ 

I(t)
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Aperture Problem - continued 

€ 

I(t −1)

€ 

I(t)
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Aperture Problem - continued  
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Aperture Problem - continued  
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Aperture Problem - continued  
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Aperture Problem - continued  
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Motion Recovery 

  When dealing with image sequences over time, given the 
constraints in image capture, motion analysis can be 
summarized as follows: 

1.  Between          and            we observe a change in intensity 
in a pixel p. 

2.  We associate this change with motion. 

3.  We try to infer which motion in 3D caused this motion in 2D. 
€ 

I(tk )

€ 

I(tk+1)
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Background Subtraction 

  First we must estimate where motion occurs. 

  If we have a relatively stationary (or slowly changing 
background) we can remove it from the image. 

  Subtract the last two images: 

  Or compute a cumulative background image: 

  and then subtract: 
€ 

d(i, j) =
1   if   It+1(i, j) − It (i, j) ≤ ε
0     otherwise                  
 
 
 

€ 

d(i, j) =
1   if   It+1(i, j) − Bt+1(i, j) ≤ ε
0     otherwise                      
 
 
 € 

Bt+1 = waIt + wi
i=1

t−1

∑ Bt− i

 

 
 

 

 
 wc
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Background Subtraction Example 
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 Optical Flow: The apparent (observed) motion 
of the image brightness pattern. 

  It is a collection of 2D velocity vectors, each of 
them describing the velocity by which the 
brightness pattern moved. 

  It is a 2D vector field on the image. 

Optical Flow 
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 The projection of the motion of the points in 
the scene. 

  It is a collection of 2D vectors, each vector 
being the projection of the 3D velocity of a 
scene point on the image plane. 

  It is a 2D array of 2D vectors representing 
the motion in 3D. 

  It is induced by the relative motion between 
the viewing camera and the observed scene. 

Motion Field 
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  Image velocity of a point moving in the scene and 
its projection on the image plane 

Motion Field 
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Optical Flow     Motion Field 

€ 

≠

rotation 
axis 

Barber’s pole 

Motion Field Optical Flow 

Barber’s Pole Illusion
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Velocity Basics 

  For motion on a straight line, the velocity is simply 
distance traveled per unit time: 

  If a point is moving on a circle (consider for 
example a nail stuck on a wheel), then the best way 
to describe its speed, is by how many degrees in 
travels per unit time, i.e. its angular velocity: 

€ 

v = dsdt = dx
dt ,
dy
dt

 
 
  

 
 

€ 

ω = dϑ dt
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Angular Velocity 

  In 3D angular velocity is a pseudo-vector.  

  It now has not only a magnitude, but also a direction.  

  The magnitude is the angular speed,  

 and the direction describes the axis of rotation:  

 where     is the linear vector connecting the position 
of the particle with the origin of the rotation,     is the 
linear momentum vector and     is a vector parallel to 
the axis of rotation. 

  

€ 

 
ω =

 r ×  v ( )
 r 2

=
 v sinθ
 r 
 n 

  

€ 

 
ω =

 r  v sinθ

  

€ 

 r 
  

€ 

 v 
  

€ 

 n 
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Motion Field Basics 

  Let P=(X,Y,Z) point in scene and p=(x,y,f) its projection. 

  Assume that P moved relative to the camera in such a way that 
both pure translation as well as rotation may be involved.  

  The relative motion between the point P and the camera can be 
described as: 

 where     is the pure translation part of the motion of P and     is 
the angular velocity. 

  Then: 

  

€ 

 
V = −

 
T −  ω ×

 
P 

€ 

Vx = −Tx −ωyZ +ωzY
Vy = −Ty −ωzX +ωxZ
Vz = −Tz −ωxY +ωyX

  

€ 

 
T   

€ 

 
ω 

€ 

p = P( f Z) (1) 

(2) 

(3) 
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Motion Field Basics 2 

  The motion field is the projection of the 3D motion of P on the 
image plane. The same projective relationship                applies 
for the velocities too. So, by taking the time derivative of eq. (1) 

  By combining equations (3) and (4): 
  

€ 

 v = f Z
 
V −Vz

 
P 

Z 2

 

 
 

 

 
 

€ 

vx =
Tzx −Tx f

Z
−ωy f +ωz y +

ωx xy
f

−
ωy x

2

f

vy =
Tzy −Ty f

Z
+ωx f −ωz x −

ωy xy
f

+
ωx y

2

f

€ 

p = P( f Z)

(4) 
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Motion Field Basics 3 

  The translational components of the motion field are: 

  The rotational components of the motion field are: 

  Note that the rotational component of the motion field does not 
convey any information about depth. 

€ 

ωvx = −ωy f +ωz y +
ωx xy
f

−
ωy x

2

f
ωvy = +ωx f −ωz x −

ωy xy
f

+
ωx y

2

f

€ 

T vx =
Tzx −Tx f

Z
Tvy =

Tzy −Ty f
Z
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Pure Translation 

  In the case of pure translation we have: 

  Consider first the case where there is a change in depth also, 
i.e.            . Let us define a point p0=(x0, y0) such that: 

€ 

vx =
Tzx −Tx f

Z
vy =

Tzy −Ty f
Z

€ 

Tz ≠ 0

(5) 

€ 

x0 = f Tx
Tz
⇒ Tx f = x0Tz

y0 = f
Ty
Tz
⇒ Ty f = y0Tz

(6) 
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Pure Translation 2 

  By combining eqs. (5) and (6): 

  This shows that the length of v(p) is proportional to the distance 
between p and p0 and inversely proportional to the depth of the 
3D point P. 

  The motion field of a pure translation when there is a change in 
depth is radial, i.e. all vectors emanate/radiate from a common 
origin, the point p0, which is known as the vanishing point of the 
translation direction. It is the intersection of the ray parallel to 
the translation vector with the image plane. 

€ 

vx = x − x0( )
Tz
Z

vy = y − y0( )
Tz
Z
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Focus of Expansion 

  If           (i.e. Z is decreasing, object moves towards 
the camera) the vectors point away from p0 and p0 
is the focus of expansion. 

€ 

Tz < 0

p0 
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Focus of Contraction 

  If           (i.e. Z is increasing, object moves away 
from the camera) the vectors point away towards p0 

and p0 is the focus of contraction. 

€ 

Tz > 0

p0 
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Parallel Motion Field  

  In the special case that           eq. (5) becomes  

  All the motion field vectors are parallel to each other. 

  The length of v(p) is inversely proportional to the depth of 
the 3D point P. 

€ 

Tz = 0

€ 

vx = −Tx
f
Z

 
 
  

 
 

vy = −Ty
f
Z

 
 
  

 
 
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  How to estimate pixel motion from image It to image It+1? 
  Find pixel correspondences: Given a pixel in It, look for nearby pixels of the 

same appearance (e.g. color) in It+1. 

  There are 2 main strategies for computing the Optical Flow: 
  Differential Methods: motion is computed at every pixel; these techniques are 

based on time derivatives and thus require small δt.  
  Matching/Prediction Methods: motion is estimated only on selected features; 

these methods make predictions about possible positions in the next frame. 

Optical Flow Estimation 

It It+1 

  We compute the optical flow and we assume that it is 
almost equivalent to the motion field 
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1.  Assumption 1: The image brightness is continuous and 
differentiable. (This is a key assumption in differential 
methods). 

2.  Assumption 2: The image brightness value (more 
properly the image irradiance E) of objects doesn't 
change over δt, in other words, 

This last assumption is known as the image brightness 
constancy assumption.  

3.  Assumption 3: Points do not move very far. It is also 
known as the small motion assumption. 

Assumptions 

€ 

dE
dt

= 0
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  For each image point (x,y) at time t we have a value 
E(x(t),y(t),t), so (by the chain rule): 

Differential Method 

€ 

dE(x(t),y(t), t)
dt

=
∂E
∂x

dx
dt

+
∂E
∂y

dy
dt

+
∂E
∂t

= 0

vx vy 

Gradient-based 
edge detector 

  Thus, this last equation can be written more compactly as: 

€ 

dE
dt

=Gxvx +Gyvy + Et = 0
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  In vector form we have: 

Differential Method 2 

  

€ 

 
G T  v + Et = 0

Image Brightness 
Constancy Equation 

  We can compute G and Et . Can we then directly 
estimate the motion field v? 

  

€ 

 
G T  v + Et = 0
 
G T  v = −Et
 
G T  v 
G

= −
Et

G
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Differential Method 3 

  We can compute 

  But this is not the motion field. Rather, what we 
compute is: 

 which is the component of the motion field v in the 
direction of the spatial image gradient. 

  So with the Image Brightness Constancy Equation, 
there is only sufficient information to determine the 
velocity in the direction parallel to the image gradient. 

  

€ 

 
G T  v 
G

= −
Et

G

  

€ 

ˆ v n =

 
G T  v 
G
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Error Analysis 

  Besides this limitation, how accurate is the estimate 
that we get? 

  Let Δv be the difference between the true vn and the 
one estimated through the image's optical flow. 

  Let’s use information from the image formation 
process. 

  Additional Assumption: Lambertian Surface 

 where ρ is the albedo, L the direction and intenisty 
of illumination and n the surface normal. 

€ 

Δv = vn − ˆ v n

  

€ 

E = ρ
 
L T  n 
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Error Analysis - continued 

  Under the Lambertian assumption 

  If we assume distant light sources and a distant 
camera position, then only a rotation will cause a 
change in image irradiance, E. 

  By incorporating the previous equations: 

  

€ 

dE
dt = ρ

 
L T d n 

dt( )

  

€ 

dE
dt = ρ

 
L T  ω ×

 n ( )

  

€ 

 
G T  v + Et = ρ

 
L T  ω ×

 n ( )
 
G T  v + Et
 
G 

=
ρ
 
L T  ω ×

 n ( )
 
G 
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Error Analysis - continued 

  We estimate:  

  So the difference between what we measure and the 
true vn is: 

  This means that             only: 
  under pure translation or  
  under rigid motion where the illuminant direction is parallel to ω. 

  Δv decreases as the magnitude of G increases.  

€ 

ˆ v n = −
Et

G

  

€ 

Δv = ρ

 
L T  ω ×

 n ( )
 
G 

€ 

Δv = 0
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Implementation of the Differential Method 

  There exist a large number of differential techniques: 
  Iteratively solve for the image brightness constancy equation. 
  Solve a system of partial differential equations (sometimes   

iteratively). 
  Use 2nd or higher order derivatives of image brightness, E. 
  Use a least squares method. 

  We will focus on the Least Squares Method. It tends 
to be more stable (Iterative methods may converge 
to  the wrong solution and are sensitive to 
discontinuities; Higher order derivatives are noisy due 
to the approximations used in computing them). 
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Least Squares Method 

  Assume that over a small NxN patch Q, i.e. 5x5 
region, all the pixels move with the same velocity. 

1.  Compute the spatial and temporal derivatives, i.e. 
G and Et for each of the N2 pixels. 

 Et is a derivative over time, so one can use the 
same approximations as in edge detection, but over 
the time domain. For example, once can use Sobel 

 but this time the horizontal axis it t. 

€ 

Ht =

−1 0 1
−2 0 2
−1 0 1

 

 

 
 
 

 

 

 
 
 
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Least Squares Method - continued 

2.  We want to find a value v that keeps                close 
to 0 for all the N2 pixels.  

 Minimize the functional: 

 One way to do this is by solving an over-constrained 
linear system: 

  

€ 

 
G T  v + Et

  

€ 

f [ v ] =
 
G T  v + Et( )

p∈Q
∑

2

€ 

AT Av = ATb⇒ v = (AT A)−1ATb

  

€ 

A =

 
G (p1)
 
G (p2)


 
G (p

N 2 )

 

 

 
 
 
 

 

 

 
 
 
 

  

€ 

b = −

Et (p1)
Et (p2)


Et (pN 2 )

 

 

 
 
 
 

 

 

 
 
 
 

A is an 
N2x2 
matrix 

b is an N2 
vector 

v is the optical 
flow at the 
center of the 
NxN patch Q. 
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Least Squares Algorithm 

1.  Smooth spatially with a Gaussian of σ = 1.5 

2.  Smooth temporally with a Gaussian of σ = 1.5 

3.  Perform edge detection in the spatial domain. In 
other words, compute the spatial gradient G. 

4.  Perform edge detection in the temporal domain. In 
other words, compute the time derivative Et. 

5.  For each patch Q 
  Construct A and b 
  Compute v 
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Weighted Least Squares 

  There is an expected error in v as we incorporate 
spatial and temporal derivatives from pixels farther 
away from the center of the patch Q.  

  Solution: use a weighted least squares method. 

  W is a weight matrix where the weight decreases 
with distance from the center of the patch Q.  

  It is an N2xN2 diagonal matrix, where  

 where c is the location of the center of the patch Q 
and pi is the location of a pixel in the patch Q. 

€ 

v = (ATWA)−1ATWb

€ 

Wii =
1

d(pi,c)
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–  gradients have small magnitude 

Low Texture Region - Bad 
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–  large gradients, but all the same 
–  could cause “limited-aperture” inaccuracies 

Edges Can Be Problematic – Aperture Problem 
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–  gradients are different, large magnitudes 

High Textured Region - Good 
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  Is such a motion small enough? 

Small Motion Assumption 
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  Is such a motion small enough? 

  Probably not—it’s much larger than one pixel 
  How might we solve this problem? 

Small Motion Assumption 
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Reduce the Resolution 
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Gaussian pyramid of image It Gaussian pyramid of image It+1 

image It+1 image It 
N=10 pixels 

N=5 pixels 

N=2.5 pixels 

N=1.25 pixels 

Coarse to Fine Estimation 
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image It+1 image It 

Compute OF 

Compute OF 

upsample 

. 

. 

. 

Coarse to Fine Computation 

Gaussian pyramid of image It 
Gaussian pyramid of image It+1 
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  Goal:  Estimate  a single v 
translation (transformation) 
for the entire image. 

  The entire image has the same 
translation value so the optical 
flow values for every pixel is 
the same.  

  This is typically an easier 
problem than general motion 
estimation. 

  We can compute it very well 
with pyramid-based methods 
like the Lucas-Kanade one. 

Image Alignment 
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Mosaicing – input images 
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Mosaicing – Final Result 
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Image Sources 

1.  The car tracking example is courtesy of S. Baker, 
http://www.ri.cmu.edu/research_project_detail.html?project_id=513&menu_id=261 

2.  The American football tracking sequence is courtesy of D. Comaniciu, http://comaniciu.net/ 
3.  The face tracking example is courtesy of S. Baker, 

http://www.ri.cmu.edu/research_project_detail.html?project_id=448&menu_id=261 
4.  The Structure-from-Motion example is courtesy of D. Nister, http://www.vis.uky.edu/~dnister/Research/research.html 
5.  The behavior analysis example is courtesy of M. Irani http://www.wisdom.weizmann.ac.il/~vision/BehaviorCorrelation.html 
6.  The background subtraction figure is courtesy of D. Parks, http://dparks.wikidot.com/background-subtraction  
7.  The spinning barber’s pole is from Wikipedia http://en.wikipedia.org/wiki/Barber's_pole 
8.  The figures on angular velocity are from Wikipedia http://en.wikipedia.org/wiki/Angular_velocity 
9.  The mosaicing example is courtesy of M. Irani http://www.wisdom.weizmann.ac.il/~vision/ 
10.  A number of slides in this presentation have been adapted by the presentation of S. Narasimhan,  

http://ww.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-16.ppt 


