1 Introduction

The lme_cunstom_ops are layers for Tensorflow which can compute the forward
projection and the back-projection of your object with parallel and fan-beam ge-
ometry. The forward projectors are implemented in CUDA on the graphics-card
as ray-driven forward projector exploiting the texture interpolation capability of

the gpu. The back-projectors are implemented as voxel-driven back-projectors
using again the texture interpolation of the GPU.

2 API definition

2.1 Parallel Forward-projection Layer

Ime_custom_ops. parallel _projection2d
volume = input_volume

volume_shape = [height, width]
<type:python list>

projection_shape = [number_of_projections , detector_width]
<type:python list>

volume _origin = [ volume_origin_.y, volume_origin_x]
<type:tensor proto>

detector_origin [ detector_origin_x ]

<type:tesnor proto>

volume_spacing = [ spacing.y, spacing_x]
<type: tensor proto

detector_spacing = [ detector_spacing_x]
<type: tensor proto>

ray_vectors = [ projection_vectors(y,x) ]
<type: tensor proto>

2.2 Parallel Back-projection Layer

Ime_custom_ops. parallel_backprojection2d

volume = input_sinogram



sinogram_shape = [number_of_projections, detector_width]
<type:python list>

volume_shape = [height , width]
<type:python list>

volume_origin = [ volume_origin_y , volume_origin_x]
<type:tensor proto>

detector_origin = [ detector_origin_x ]
<type:tesnor proto>

volume_spacing = [ spacing.y, spacing_x]
<type: tensor proto

detector_spacing = [ detector_spacing_x]
<type: tensor proto>

ray_vectors = [ projection_vectors (y,x) ]
<type: tensor proto>

2.3 Fan-beam Forward-projection Layer
Ime_custom_ops.fan_projection2d
volume = input_volume

volume_shape = [height , width]
<type:python list>

projection_shape = [number_of_projections , detector_width]
<type:python list>

volume_origin = [ volume_origin_y , volume_origin_x|
<type:tensor proto>

detector_origin = [ detector_origin_x |
<type:tesnor proto>

volume_spacing = [ spacing.y, spacing_x]
<type: tensor proto

detector_spacing = [ detector_spacing_x |
<type: tensor proto>

sid = source_iso_center_distance



<type: float>

sdd = source_detector_distance
<type: float>

ray_vectors = [ projection_vectors(y,x) |
<type: tensor proto>

2.4 Fan-beam Back-projection Layer
Ime_custom_ops.fan_backprojection2d
volume = input

projection_shape = [number_of_projections , detector_width]
<type:python list>

volume_shape = [height, width]
<type:python list>

volume_origin = [ volume_origin_y , volume_origin_x]
<type:tensor proto>

detector_origin = [ detector_origin_x ]
<type:tesnor proto>

volume_spacing = [ spacing.y, spacing_x]
<type: tensor proto

detector_spacing = [ detector_spacing_x|
<type: tensor proto>

ray_vectors = [ projection_vectors(y,x) |
<type: tensor proto>

2.5 Gradient Calculation

To use these layers in Networks the gradients need to be propagated through the
network. Based on the back-propagation algorithm we need the derivative of the
Layer. Since the derivative of the forward-projector (A) is the back-projector
(AT). Thus, if we use a back-projection layer we need to tell Tensorflow that
the gradient can be propagated using the forward-projection layer. This can be
done by the following construct (example for the parallel back-projection):

from tensorflow.python.framework import ops

PR

Compute the gradient of the backprojection op



by invoking the forward projector.

)0

@ops. RegisterGradient ( ” ParallelBackprojection2D” )
def _backproject_grad( op, grad ):

proj = lme_custom_ops.parallel_projection2d (

volume = grad,

volume_shape = op.get_attr( ”volume_shape” ),
projection_shape = op.get_attr( ”sinogram_shape” ),
volume_origin = op.get_attr( "volume_origin” ),
detector_origin = op.get_attr( ”"detector_origin” ),
volume_spacing = op.get_attr( "volume_spacing” ),
detector_spacing = op.get_attr( "detector_spacing” ),
ray_vectors = op.get_attr( "ray_vectors” ),

)

return | proj ]

3 Tensorflow related Hints and Examples

3.1 Tensorflow Session

with tf.Session() as sess:
sess.run (...)

You need Tensorflow Session! to construct a graph of your network and to run
the training process.

3.2 Placeholders

Due to the realization of Tensorflow you will need to use the placeholder construc-
tion if you want to change the value of a variable during the training procedure.
There are different variables you want to change during the training e.g. your
input and your label data or your learning rate (keyword: learning rate decay).
Thus, in the following an example implementation for the learning rate:

import tensorflow as tf

1. learning_rate = tf.get_variable (name=’learning_rate’,

dtype=tf.float32, initializer=tf.constant (0.0001), trainable=False)

2. learning_rate_placeholder =
tf.placeholder (tf.float32 , name=’learning_rate_placeholder’)

3. set_learning_rate =
learning _rate.assign(self.learning rate_placeholder)

! https://www.tensorflow.org/api_docs/python/tf/Session



1. with tf.get_variable we define a variable in tensorflow context. These variable
needs a name and a type and can be initialized by an default value. Such a
tensorflow variable can be set to trainable or non trainable. For the learning
rate example we set the attribute trainable to False since we do not want to
learn a learning rate.

2. As a second step we need to define a placeholder for this variable, the place-
holder has its own name and the type has to be the same as the tensorflow
variable.

3. The third step is to define a assign operation. With this operation we can feed
a normal python variable to the Tensorflow context using the placeholder and
assign the value to the variable we defined in step 1.

The variable can be then set with the following expression (you have to use your
current active Tensorflow Session):

sess.run(set_learning_rate ,
feed_dict={learning._rate_placeholder:learning_rate})

So you run the assign operation defined in Step 3 and feed you python variable
learning_rate into the placeholder created in Step 2 with the feed_dict.

4 Reconstruction/Implementation related Hints

To compute all necessary points and lines the easiest way is to setup a continuous
coordinate system and discretize to the pixel at the last step. Therefore we
need a way to switch between our pixel based and our continuous coordinate
systems. For the reconstruction we assume or define that the volume we want
to reconstruct or forward project is in the middle of our coordinate system.

Thus, we want to have our world coordinate system in the middle of our
volume array. We have to consider that our arrays are normally zero based. Thus
the middle of our array is the (width -1)/2.0 . Now we just have to incorporate
the size of a pixel in millimetres to come to a coordinate system which describes
our continuous real world:

origin = [ —(volume_height — 1) * spacing.y /2.0 ,
—(volume_width — 1) % spacing.x / 2.0 |
Some of the attributes of the provided layers need the tensor proto type. You

can create such a type with the following command (shown with an example):

_detector_spacing = 0.5
detector_spacing =
tf.contrib. util.make_tensor_proto ([ -detector_spacing], tf

4.1 PyConrad & SheppLogan

For visualization of your numpy array you can use pyconrad, which means you
can handle you arrays with image;j.
You can start pyconrad with the following code:

.float32)



import pyconrad as pyc

pyc.setup_pyconrad ()
pyc.start_gui ()
pyc.imshow(<your_numpy_array >,<A String for the window>)

you always need to call once setup_pyconrad() to initialize the communication
with the java virtual machine. You can call imshow(...) to visualze any numpy
array with imagej.

To get a 2D SheppLogan phantom you need the following lines of code:

import pyconrad as pyc
pyc.setup_pyconrad ()
_ = pyconrad. ClassGetter ("edu.stanford.rsl.tutorial.phantoms’)

your_phantom = _.SheppLogan(xy, False).as_numpy ()
pyc.imshow (your_phantom , ’SheppLogan _Phantom )



