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Pattern Recognition Pipeline 

  Classification 
  Supervised Classification 

  Statistical classifiers 
  Polynomial classifiers 
  Non-Parametric classifiers 

  Unsupervised Classification 
  Self-Organizing Maps 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Unsupervised Classification 

  Based on unlabelled data. 

  There is still a database of example input samples. 

  There is no label associated with each sample. We 
do not know to which class each sample belongs. 

  Unsupervised classification is a harder problem. 

  Sometimes we do not have the expertise to label 
tha data. 

  Classifier has to derive some form of similarity 
between the different samples presented to it.  
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Basic Concept of SOMs 

  A Self-Organizing Map, or Kohonen Map or Kohonen 
network is a type of Artificial Neural Network. 

  It is composed of a lattice (grid) of neurons in the 
hidden layer. 

  Each hidden neuron,    , has:  
  a weight vector (sometimes referred 

to as codebook vector),   
 It has the same dimensionality as the 
input vector,  

  a position        in the lattice (or map) 
space 

  an associated label,     - optionally 
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Basic Concept - continued 

  The nodes in the hidden layer can have different 
types of connectivity. 

  Common layouts include the rectanular grid and a 
hexagonal grid. 
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Applications of SOMs 

  Originally developed by Teuvo Kohonen as a means 
of representing high dimensional data in lower 
dimensions. 

  SOMs are often used in dimensionality reduction. 

  SOMs are also used in unsupervised classification, 
as  they can cluster data in groups of similar value. 

  SOMs are commonly used in vector quantization.  
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Operation of SOMs 

  As in most Artificial Neural Networks, SOMS have 
two modes of operation: 

1.  Training 

 During training a map is built using the training 
samples. 

2.  Mapping  

 During mapping a new sample is automatically 
classified by using the map created during training.  



 Seite 8 

Page 8 

SOM Training 

1)  Initialize each node’s weights. 

2)  Choose a random vector from training data and present 
it to the SOM. 

3)  Every node is examined to find the Best Matching Unit 
(BMU). 

4)  The radius of the neighborhood around the BMU is 
calculated. The size of the neighborhood decreases 
with each iteration. 

5)  Each node in the BMU’s neighborhood has its weights 
adjusted to become more like the BMU.  Nodes closest 
to the BMU are altered more than the nodes furthest 
away in the neighborhood. 

6)  Repeat steps 2-6 for until convergence. 
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Calculating the Best Matching Unit 

  Calculating the BMU is done according to the 
distance (often Euclidean distance) between the 
node’s weights (w1, w2, … , wd) and the input 
vector’s values (c1, c2, … , cd). 
  This gives a good measurement of how similar the two sets of 

data are to each other. 
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  Size of the neighborhood: An exponential decay function is often 
used. It shrinks on each iteration until eventually the neighborhood 
is just the BMU itself. 

  Effect of location within the neighborhood: The neighborhood is 
defined by a gaussian curve so that nodes that are closer are 
influenced more than farther nodes. 

Determining the BMU neighborhood 
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Modifying Nodes’ Weights 

  The new weight for a node is the old weight, plus a 
fraction (L) of the difference between the old weight 
and the input vector… adjusted (theta) based on 
distance from the BMU. 

  The learning rate, L, is also an exponential decay 
function. 
  This ensures that the SOM will converge. 

  The lambda represents a time constant, and t is the 
time step 



 Seite 12 

Page 12 

Simple Example 

  2-D square grid of nodes. 
  Inputs are colors. 
  SOM converges so that similar colors are grouped 

together. 

a)  Input space 
b)  Initial weights 
c)  Final weights 
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A Very Fresh SOM Example 

  We currently use SOMs at LME to classify 
multispectral data in classes of similar color. 

  Why? 
  Dimensionality Reduction 
  Edge Detection 
  Segmentation 

  Challenge: Which colors are considered similar in 
high dimensions? 
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  RGB: composed of three intensity images 

  Multispectral: composed of N intensity images 
  Bandfilter capture energy over smaller range of wavelengths 
  Many small bands (e.g. 30)  higher spectral resolution 

Multispectral Imaging 

Blue Green   Red 



 Seite 15 

Page 15 

Multispectral Cube 

Scene with fake and real fruits and 
vegetables captured with an RGB 
camera. 

Same scene with captured with a 
multispectral camera with 31 color 
bands. 
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Edge detection on multi-spectral images (MSI) 

  Aims: 
  Generate edge image out of multiple spectral bands 
  Reveal information that is hidden by normal RGB cameras 
  Keep artificial/false edges minimal 
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Edge Detection using SOM (Toivanen et. al, 2003) 

Grayscale 
edge detector 

Multispectral image 

Edge image Grayscale image 

Pixel ordering 

 SOM Linearization 
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  At iteration          
Initialize neurons randomly with a uniform distribution 

  For  

 Present representative input data to the SOM 
a)  Randomly select a multispectral pixel vector 
b)  Find the neuron      , that is closest to this input vector 

c)  Shift this neuron and its neighborhood in direction of the input 

   

SOM – Learning Process 

: time-dependent learning rate 

: time and topolgy-dependent neighborhood function 
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  Clustering of the input space 

  „Similiar colors“ move close to each other 

SOM – Learning Process: Example 

Input 100 iterations 5000 iterations 
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  Aim: Mapping of SOM neurons to scalar values 
  Constraint: Neuron vectors that are spatially close to each 

other should also get similiar indices 

  Solution: Traversing SOM with         
space-filling curve (e.g. Hilbert, Peano) 

  Ordering of neurons in SOM 

  Conversion to grayscale image 
  Determine best matching neuron for each multispectral pixel 
  Rank of this neuron becomes new pixel intensity 

Linearization of Space 

Hilbert curve: 3rd order 
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Hilbert-curve Construction 

1st order 2nd order 3rd order 4rd order 
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SOM – Learning Performance 

  More neurons  lower quantization error 

  2D SOMs need some minimal size to evolve properly 

  Remark: Linear correlation of running time and iterations on all SOMs 
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  Cave - Multispectral image database 
  Wavelength range: 400nm – 700nm 
  31 Bands, 10nm steps 
  Resolution: 512 x 512 pixel 

Real Data 

www.cs.columbia.edu/CAVE/databases/multispectral/ 



 Seite 24 

Page 24 

Multispectral Image: „fake & real beers“ 

Few colors, but specularities and translucent matarial 
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1D SOMs on „beers“ 

SOM 1x64 SOM 1x16 

Rank images Canny thresholds: 35, 70 Canny thresholds: 15, 48 
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2D SOM for Comparison 

SOM 16x16 

Linearization can cause wrong intensity differences! 

Canny thresholds: 10, 30 Canny thresholds: 100, 150 

Edge image 

214 

30 
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Edge detection using SOM 
Direct distance 

  Linearization introduces artificial artifacts => Skip linearization 

  Calculate distances directly in SOM space to avoid linearization artifacts 

  Map distances intensities. Run Canny on the “distance image”. 
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So How Did We Perform? 
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Original Idea: SOM Linearization 

Input image 16x16 SOM, Canny on linearized SOM 
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New Idea: SOM Distances 

Input image 16x16 SOM, Canny on SOM distances 
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Side by Side 

16x16 SOM, Canny on SOM distances 16x16 SOM, Canny on linearized SOM 
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Side by Side, Higher Sensitivity Canny 

16x16 SOM, Canny on SOM distances 16x16 SOM, Canny on linearized SOM 
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