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Abstract

Heart failure (HF) is a major cause of morbidity and mortality in the Western
world, yet early diagnosis and treatment remain a major challenge. As computational
cardiac models are becoming more mature, they are slowly evolving into clinical tools
to better stratify HF patients, predict risk and perform treatment planning. A critical
prerequisite, however, is their ability to precisely capture an individual patient’s
physiology. The process of fitting a model to patient data is called personalization,
which is the overarching topic of this thesis.

An image-based, multi-physics 3D whole-heart model is employed in this work.
It consists of several components covering anatomy, electrophysiology, biomechanics
and hemodynamics. Building upon state-of-the-art personalization techniques, the
first goal was to develop an automated pipeline for personalizing all components of the
model in a streamlined and reproducible fashion, based on routinely acquired clinical
data. Evaluation was performed on a multi-clinic cohort consisting of 113 patients,
the largest cohort in any comparable study to date. The goodness of fit between per-
sonalized models and ground-truth clinical data was mostly below clinical variability,
while a full personalization was finalized within only few hours. This showcases the
ability of the proposed pipeline to extract advanced biophysical parameters robustly
and efficiently.

Designing such personalization algorithms is a tedious, model- and data-specific
process. The second goal was to investigate whether artificial intelligence (AI) con-
cepts can be used to learn this task, inspired by how humans manually perform it. A
self-taught artificial agent based on reinforcement learning (RL) is proposed, which
first learns how the model behaves, then computes an optimal strategy for person-
alization. The algorithm is model-independent; applying it to a new model requires
only adjusting few hyper-parameters. The obtained results for two different mod-
els suggested that equivalent, if not better goodness of fit than standard methods
could be achieved, while being more robust and with faster convergence rate. AI ap-
proaches could thus make personalization algorithms generalizable and self-adaptable
to any patient and any model.

Due to limited data, uncertainty in the clinical measurements, parameter non-
identifiability, and modeling assumptions, various combinations of parameter val-
ues may exist that yield the same quality of fit. The third goal of this work was
uncertainty quantification (UQ) of the estimated parameters and to ascertain the
uniqueness of the found solution. A stochastic method based on Bayesian inference
and fast surrogate models is proposed, which estimates the posterior of the model,
taking into account uncertainties due to measurement noise. Experiments on the
biomechanics model showed that not only goodness of fits equivalent to the standard
methods could be achieved, but also the non-uniqueness of the problem could be
demonstrated and uncertainty estimates reported, crucial information for subsequent
clinical assessments of the personalized models.



Kurzfassung

Herzfehler gehören zu den häufigsten Erkrankungen und Todesursachen in der
westlichen Welt, dennoch stellen deren Früherkennung und Behandlung auch heute
noch eine große Herausforderung dar. Computermodelle des Herzens werden immer
ausgereifter und stehen kurz davor, Einzug in Kliniken zu erhalten, um dabei zu
helfen, Patienten mit Herzfehlern besser zu stratifizieren, Risiken vorherzusagen und
die Planung von Eingriffen zu unterstützen. Zuvor muss aber sichergestellt werden,
dass die Modelle auch tatsächlich die Physiologie von individuellen Patienten abbilden
können. Diese Dissertation befasst sich mit der Personalisierung solcher Modelle, das
heißt, mit dem Prozess der Anpassung eines Modells an Patientendaten.

Hierfür kommt ein bildbasiertes Computermodell des Herzens zum Einsatz, welches
aus Anatomie-, Elektrophysiologie-, Biomechanik- und Hämodynamikkomponenten
besteht. Der erste Teil der Arbeit befasst sich mit der Entwicklung einer automa-
tisierten Pipeline zur reproduzierbaren Personalisierung aller Komponenten, wobei
nur Daten verwendet werden, die routinemäßig zur Verfügung stehen. Die Pipeline
wurde auf 113 Patienten aus mehreren Kliniken evaluiert. Die erzielte Ähnlichkeit
zwischen personalisierten Modellen und klinischen Daten war dabei größtenteils besser
als die klinische Variabilität, und jede Personalisierung war innerhalb weniger Stun-
den abgeschlossen. Diese Ergebnisse lassen darauf schließen, dass biophysikalische
Parameter robust und effizient aus den Daten extrahiert werden konnten.

Das Design solcher Personalisierungsalgorithmen ist oft langwierig und modell-
und datenspezifisch. Im zweiten Teil der Arbeit wird untersucht, inwiefern künstliche
Intelligenz dabei helfen kann, diese Aufgabe zu lernen, so wie es auch Menschen
tun. Ein selbstlernender künstlicher Agent basierend auf “Reinforcement Learning”
wird vorgestellt, der zunächst die Verhaltensweisen des Modells lernt, um im An-
schluss daraus eine optimale Personalisierungsstrategie zu berechnen. Der Algorith-
mus funktioniert unabhängig vom verwendeten Modell, es müssen lediglich wenige
“Hyperparameter” angepasst werden. Die Ergebnisse auf zwei verschiedenen Mod-
ellen zeigen, dass im Vergleich zu Standardmethoden äquivalente, oder sogar bessere
Personalisierungsergebnisse erzielt werden konnten. Gleichzeitig war der künstliche
Agent robuster und konvergierte schneller. Künstliche Intelligenz könnte also Per-
sonalisierungsalgorithmen generalisierbarer und adaptierbarer machen.

Aufgrund der limitierten Datenmenge, Unsicherheiten in klinischen Messwerten,
Nicht-Identifizierbarkeit von Parametern und Modellannahmen könnten mehrere Kom-
binationen von Modellparametern existieren, die äquivalente Personalisierungsergeb-
nisse erzeugen. Der dritte Teil der Arbeit befasst sich daher mit der Quantifizierung
der Unsicherheit der geschätzten Parameter und der Frage der Eindeutigkeit der
Ergebnisse. Es wird ein stochastischer Ansatz vorgestellt, der auf Bayes-Inferenz
und schnellen Ersatzmodellen basiert, um die A-posteriori Wahrscheinlichkeit des
Modells unter Berüchsichtigung der Messunsicherheiten zu schätzen. Die Experi-
mente zeigten nicht nur, dass damit vergleichbare Personalisierungsqualität wie bei
deterministischen Standardmethoden erzielt werden konnte, sondern es wurde auch
die Nicht-Eindeutigkeit des Personalisierungsproblems demonstriert. Die automa-
tisch berechneten Konfidenzintervalle können außerdem zur klinischen Beurteilung
der personalisierten Modelle verwendet werden.
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C H A P T E R 1

Introduction
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The first part of this chapter, Sec. 1.1.1, provides the clinical motivation of this
work, followed by a discussion about the potential of patient-specific computational
modeling in Sec. 1.1.2. The main scientific contributions are listed in Sec. 1.2, followed
by an overview of the structure of the remainder of this thesis in Sec. 1.3.

1.1 Motivation

1.1.1 Clinical Background
Heart Failure

Heart failure (HF) is a cardiovascular condition characterized by the decline of cardiac
function, which leads to insufficient blood delivery to the organs, thus causing organ
dysfunction or failure [Lloy 10, McMu 12]. Increasing number of incidences and high
mortality and morbidity rates make HF one of the leading causes of death in the
Western world [Murr 97, Lope 06, Sant 13]. About 1–2 % of the adult population is
affected. The incidence rate among the elderly (70 years and older) is even above
10 % [Poni 16]. HF accounts for a significant burden to the national healthcare
systems. The wide variety of etiologies and pathophysiologies call for new strategies
for early diagnosis and treatment planning.

Dilated Cardiomyopathy

Cardiomyopathies are a group of diseases affecting the heart muscle. Among the
most common types, and one of the leading causes of HF, is dilated cardiomyopathy
(DCM), which is characterized by an enlargement of the heart in one or more of its
chambers [Kuma 17]. As the chambers dilate, the walls become thinner and contrac-
tion less powerful (Fig. 1.1). Patients suffering from DCM thus have impaired heart
function, which can in turn affect other organs and systems of the body. DCM is
often a genetic condition, but it can also have other non-genetic causes such as viral
infections, auto-immune disease or exposure to toxins. Many DCM patients show
no or only minor symptoms, which makes early diagnosis and treatment difficult.
Others develop early symptoms such as shortness of breath, swelling of legs, fatigue,

1



2 Introduction

Figure 1.1: Four-chamber views of healthy heart on the left compared to a DCM
heart with severely dilated left ventricle on the right as captured by cardiac magnetic
resonance imaging (MRI). First and third image show hearts during diastolic phase,
where the chambers are filled with blood (white), versus systolic phase (heart is fully
contracted) in images two and four. Images courtesy of Siemens Healthineers.

etc., which may become worse as severity of DCM increases, when chest pain, blood
clots in the heart chambers or even sudden cardiac death can occur [Kuma 17]. If
diagnosed early, progression of DCM can sometimes be slowed down using medica-
tion and changes in lifestyle only. At later stages of the disease, minimally-invasive or
surgical procedures aimed towards improving pump function become necessary. Car-
diac resynchronization therapy (CRT), implantable cardioverter-defibrillators (ICD),
or heart transplants may be viable options depending on the severity of the disease
and comorbidities. In light of these complex diseases, new avenues for improved
patient management are being explored.

Cardiac Resynchronization Therapy

Cardiac resynchronization therapy (CRT) is an efficient and minimally invasive treat-
ment for heart failure with cardiac dyssynchrony. CRT consists in pacing the
cardiac myocardium with an advanced pacemaker to recover intra-ventricular and
inter-ventricular synchronization. Despite progresses in therapy planning and pa-
tient selection, 30% to 50% of the patients do not respond to the therapy although
they are within clinical guidelines [Isma 10]. Novel approaches are therefore necessary
to compute CRT predictors from preoperative data for improved patient selection and
therapy optimization.

1.1.2 What If We Could Create a Virtual Heart of a Patient?
If we could create a virtual heart, meaning that we can accurately simulate patient-
specific cardiac function, we can better describe the state of the patient through non-
invasive functional measurements. Second, a virtual heart can help to diagnose the
patient’s condition more holistically, it provides new ways for disease understanding
and can help to improve patient stratification. Third, it could predict disease course
and therapy outcome, and thus can be used to proactively prescribe an optimal
intervention for the patient. In essence, a virtual heart could ultimately lead to
improved clinical management of patients suffering from cardiomyopathies [Kayv 15,
Amr 16].

https://www.healthcare.siemens.com/


1.2 Scientific Contributions 3

Virtual hearts, i. e., computational cardiac models, attracted significant attention
in cardiac research over the last decades [Fran 01, Nobl 02, Hunt 03, Kerc 08, Clay 11,
Kuij 12, Kris 13, Nied 16]. However, their application in clinical practice faces many
challenges. For example, model parameters need to be identified, the process of build-
ing the virtual heart needs to be robust and automated, and it needs to be intuitive
to use to make model-enhanced diagnosis and prediction accessible. Furthermore, a
framework needs to be set in place that can provide to the user the confidence of
the model prediction, and that offers certain guarantees with respect to failure rates,
etc., all of which may require large scale validation efforts. This thesis provides novel
solutions to image-based model personalization and tackles some of these challenges
by proposing robust algorithms for large-scale personalization and streamlined cre-
ation of image-based computational cardiac models. Furthermore, a novel machine
learning (ML) approach to automatically learn optimal personalization strategies,
and a stochastic approach to analyze model uncertainties, are proposed.

1.2 Scientific Contributions

In this section, the contributions of this work to the progress of research are reviewed
briefly and the corresponding peer-reviewed scientific publications are listed.

1.2.1 Streamlined Multi-Physics Cardiac Model Personalization

A multitude of computational models of cardiac physiology have been proposed in the
literature. One example is an image-based, multi-physics electromechanical 3D whole-
heart model [Zett 13], which has been used and enhanced (Chap. 3) in the course of
this work. In order to transform such models into tools that could become mean-
ingful in clinical practice, they need to be personalized, i. e., fitted to an individual
patient. The first major contribution is a robust and efficient pipeline for streamlined
global personalization of this complex model integrating novel optimization-based in-
verse modeling algorithms, and its successful application to a very large population
of 113 patients. The latter makes this work particularly distinctive as most pub-
lications in this field are limited to synthetic data and/or only few (typically less
than ten) patients. Methods and results are detailed in Chap. 4 and early versions
of the pipeline evaluated on smaller populations were presented at an international
conference (accepted for oral presentation) and in two clinical publications:

[Neum 14c]
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of the Heart”. In: IEEE 11th International Symposium on Biomed-
ical Imaging, pp. 935–938, IEEE, Beijing, China, Apr. 2014.
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In the context of cardiac electrophysiology (EP) model personalization, additional
research activities were carried out, which are, however, not the main focus of this
thesis and therefore not explained in detail in this document. In particular, pub-
lications covering an ML approach for fast global EP personalization and a novel
approach for regional personalization of electrical tissue properties for patients with
localized cardiac conduction abnormalities, were co-authored:
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and D. Comaniciu. “Data-Driven Estimation of Cardiac Electrical
Diffusivity from 12-Lead ECG Signals”. Medical Image Analysis,
Vol. 18, No. 8, pp. 1361–1376, Dec. 2014.

[Seeg 15]

P. Seegerer, T. Mansi, M.-P. Jolly, D. Neumann, B. Georgescu,
A. Kamen, E. Kayvanpour, A. Amr, F. Sedaghat-Hamedani,
J. Haas, H. Katus, B. Meder, and D. Comaniciu. “Estimation of
Regional Electrical Properties of the Heart from 12-Lead ECG and
Images”. In: Statistical Atlases and Computational Models of the
Heart, pp. 204–212, Springer, Cham, Switzerland, Jan. 2015.

1.2.2 Artificially Intelligent Personalization Agent

The second major contribution is a novel paradigm for personalization based on
artificial intelligence (AI) concepts. For the first time, personalization was formulated
in terms of reinforcement learning (RL) to create an artificial agent with the ability
to learn by itself how to personalize a model. Methods and results are described in
Chap. 5 and were presented at an international conference, and published in a major
international journal:
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Switzerland, Oct. 2015.
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ficial Agent for Multi-Physics Computational Model Personaliza-
tion”. Medical Image Analysis, Vol. 34, pp. 52–64, Dec. 2016.

Based on very similar principles, a versatile artificial agent for fast and robust
anatomical landmark detection in medical images was co-developed (not focus of this
thesis):

[Ghes 16a]

F. C. Ghesu, B. Georgescu, T. Mansi, D. Neumann, J. Hornegger,
and D. Comaniciu. “An Artificial Agent for Anatomical Land-
mark Detection in Medical Images”. In: Medical Image Computing
and Computer-Assisted Intervention, pp. 229–237, Springer Inter-
national Publishing, Cham, Switzerland, Oct. 2016.

1.2.3 Uncertainty and Uniqueness of Parameter Estimates
The third area of scientific contributions towards the progress of research in image-
based cardiac modeling is uncertainty quantification (UQ). A novel stochastic per-
sonalization method is proposed that enables not only the computation of the most
likely model parameters of the biomechanics model, but also the estimation of uncer-
tainty due to noise in the clinical data. Methods and results are described in Chap. 6
and were presented at an international conference (accepted for oral presentation and
awarded the “MICCAI 2014 Student Travel Award”):

[Neum 14b]

D. Neumann, T. Mansi, B. Georgescu, A. Kamen, E. Kayvanpour,
A. Amr, F. Sedaghat-Hamedani, J. Haas, H. Katus, B. Meder,
J. Hornegger, and D. Comaniciu. “Robust Image-Based Estima-
tion of Cardiac Tissue Parameters and Their Uncertainty from
Noisy Data”. In: Medical Image Computing and Computer-Assisted
Intervention, pp. 9–16, Springer International Publishing, Cham,
Switzerland, Sep. 2014.

In addition to this UQ-driven personalization framework, a case study analyz-
ing the impact of uncertainty in myocardial fiber architecture on estimated model
parameters was performed (not focus of this thesis):
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N. Ayache, D. Comaniciu, O. Ecabert, M. Chinali, G. Rinelli, et
al. “Propagation of Myocardial Fibre Architecture Uncertainty on
Electromechanical Model Parameter Estimation: A Case Study”.
In: International Conference on Functional Imaging and Modeling
of the Heart, pp. 448–456, Springer, Cham, Switzerland, June 2015.

1.2.4 Other Contributions Related to Cardiac Modeling
Two other related research activities in the context of cardiac modeling were carried
out (both not focus of this thesis). First, a framework for mitral valve segmentation
and biomechanical closure computation based on ex vivo animal data:

[Neum 14a]

D. Neumann, S. Grbic, T. Mansi, I. Voigt, J. Rabbah, A. Siefert,
N. Saikrishnan, A. Yoganathan, D. Yuh, and R. Ionasec. “Multi-
modal Pipeline for Comprehensive Validation of Mitral Valve Ge-
ometry and Functional Computational Models”. In: Statistical
Atlases and Computational Models of the Heart, pp. 188–195,
Springer, Cham, Switzerland, Oct. 2014.

[Grbi 17]

S. Grbic, T. F. Easley, T. Mansi, C. H. Bloodworth, E. L. Pierce,
I. Voigt, D. Neumann, J. Krebs, D. D. Yuh, M. O. Jensen, D. Co-
maniciu, and A. P. Yoganathan. “Personalized Mitral Valve Clo-
sure Computation and Uncertainty Analysis from 3D Echocardio-
graphy”. Medical Image Analysis, Vol. 35, pp. 238–249, Jan. 2017.

Finally, an ML-based probabilistic multi-modality cardiac image fusion approach
that could facilitate integration of data from multiple imaging modalities into com-
putational models was proposed:

[Neum 15a]

D. Neumann, S. Grbic, M. John, N. Navab, J. Hornegger, and
R. Ionasec. “Probabilistic Sparse Matching for Robust 3D/3D Fu-
sion in Minimally Invasive Surgery”. IEEE Transactions on Medical
Imaging, Vol. 34, No. 1, pp. 49–60, Jan. 2015.

1.3 Organization of this Thesis
The remainder of this thesis is organized as follows. First, in Chap. 2, the clinical
knowledge and terminology required to follow the ideas and concepts in this document
are introduced. Anatomy and physiology of the human heart are described in Sec. 2.1
and ways to measure it using imaging and other devices in Sec. 2.2.

The core of this thesis divides into two main parts. Part one is concerned with
comprehensive tools for building patient-specific virtual hearts. It starts from the
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description of the multi-physics computational 3D whole-heart model that is used
throughout this thesis in Chap. 3. Its four main components, anatomy, electrophysi-
ology, biomechanics and hemodynamics boundary conditions are described in Sec. 3.1,
Sec. 3.2, Sec. 3.3 and Sec. 3.4, respectively. Then in Chap. 4, the proposed integrated
pipeline for comprehensive personalization of the whole-heart model from the pre-
vious chapter, which enables streamlined generation of reproducible, individualized
heart models, is described. An overview of state-of-the-art model personalization ap-
proaches is given in Sec. 4.1 and a generic formulation of the personalization problem
in Sec. 4.2. The main ideas behind each module of the personalization pipeline, the
derived personalization strategies, and the employed inverse optimization methods
and cost functions are then detailed in Sec. 4.3. Comprehensive evaluation of all as-
pects of the pipeline on a large patient population in Sec. 4.4 shows the good match
between personalized models and patient data, with errors often below clinical vari-
ability of the measurements. The predictive power of the model personalized using
the proposed pipeline is then tested in a pilot experiment reported in Sec. 4.5. A
short summary of the chapter in Sec. 4.6 concludes the first main part.

While the first part is focused on streamlined processing, reproducibility and
large patient cohorts, which are important steps towards clinical translation, the sec-
ond main part is more futuristic and may suggest novel research directions. First,
Chap. 5 explores the feasibility and opportunities (Sec. 5.1) of applying modern ar-
tificial intelligence concepts to computational model personalization. The core ideas
and methods of this chapter are then detailed in Sec. 5.2. An artificially intelligent
agent with the ability to learn by itself how to personalize a model from the available
data, while being model- and data-independent, is introduced. This is the first time
that reinforcement learning has been applied to computational biophysical model
personalization. A large variety of experiments and their results are described in
Sec. 5.3, which suggest that the proposed algorithm can indeed learn how to person-
alize models while being faster and more robust than hand-crafted methods in many
cases. The chapter is briefly summarized in Sec. 5.4. The second topic of part two
in Chap. 6 is concerned with the various uncertainties in computational modeling,
in particular with inverse uncertainty quantification. To this end, the sources of un-
certainty in computational modeling are identified in Sec. 6.1. Next, the proposed
method for parameter uncertainty quantification is detailed in Sec. 6.2. In a nutshell,
a stochastic framework based on Bayesian inference, polynomial chaos expansion,
and probability density aggregation for estimating an approximation of the posterior
of the model parameters given the clinical measurements is proposed. Experimen-
tal results on real clinical data in Sec. 6.3 showed that not only the approach is as
effective as standard methods, but that it is also computationally efficient and can
provide rich information about uncertainties in the model parameters due to noise in
the data. Finally, the main ideas and findings from this chapter are summarized in
Sec. 6.4.

Chap. 7 then concludes this thesis with a comprehensive summary in Sec. 7.1 and
an outlook for future work in Sec. 7.2. Supplementary material is provided in the
appendix, Chap. A.
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C H A P T E R 2

The Human Heart

2.1 Heart Anatomy and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Measuring Structure and Function of the Heart . . . . . . . . . . . . . . . . . . . . . . . 11

The first part of this chapter, Sec. 2.1, provides a brief overview of the morphology
and physiology of the human heart. Sec. 2.2 introduces commonly used modalities
to measure it.

2.1 Heart Anatomy and Function

The heart is a powerful muscular organ that weighs between 148 and 296 grams and
233 and 383 grams in normal, young women and men, respectively [Moli 15, Moli 12],
and is about the size of a fist. It acts as a pump through rhythmic contractions of
the heart muscle at an average rate of 70 to 75 beats per minute, and thus is the
main driver of the cardiovascular system. Throughout a human lifespan, a heart can
beat more than 3.5 billion times, each day pumping 7 500 liters of blood in more than
100 000 beats.

2.1.1 Cardiovascular System

The heart and the circulatory system define the human cardiovascular system, a
closed loop network that transports blood to ensure continuous oxygen and nutrition
supply to the entire human organism, to organs, tissues and individual cells, while
removing the waste products produced by them. Continuous and flawless function-
ing of the cardiovascular system is essential for survival. It consists of two main,
interconnected loops: the pulmonary circulation and the systemic circulation. The
pulmonary circulation is responsible for the oxygenation of blood, while carbon diox-
ide is eliminated by exhalation. The heart pumps oxygen-deficient blood through the
pulmonary artery to the lungs, where it is oxygenated and then flows back to the
heart through the pulmonary veins. The systemic circulation transports oxygenated
blood to the entire body starting from the aorta, then the other great arteries, arte-
rioles and finally into the capillaries, where oxygen and nutrients are released. The
blood then flows back to the heart through venules, veins and inferior and superior
venae cavae.

9
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Figure 2.1: Diagram of the human heart depicting chambers and valves. Drawing
adapted, original version by Wapcaplet / CC BY-SA 3.0.

2.1.2 Chambers and Valves
The heart is divided into four chambers as shown in Fig. 2.1: the two upper chambers
left atrium (LA) and right atrium (RA), and the two lower chambers left ventricle
(LV) and right ventricle (RV). The two left (LA and LV) and the two right chambers
(RA and RV) form the left heart and the right heart, respectively. The heart has four
valves that regulate the flow of blood through the heart chambers and to the systemic
and pulmonary circulation. All four valves are located on approximately one level,
the valve plane. Atria and ventricles are separated by the atrioventricular valves: the
mitral valve lets oxygenated blood from the lungs pass from the LA into the LV, and
the tricuspid valve regulates the flow of deoxygenated blood from the RA into the RV.
The arterial valves, i. e., the aortic valve and the pulmonary valve are the entry points
to the systemic and pulmonary circulation, as they are located at the base of the aorta
and pulmonary artery, respectively. Opening and closure of valves is determined by
pressure differences in front of and behind the valves. Hereby, the healthy valves’
structures ensure unidirectional blood flow from the ventricle to the artery for the
arterial valves, and from the atrium to the ventricle for the atrioventricular valves.
The papillary muscles and the chordae tendineae, which connect the papillary muscles
to the atrioventricular valves, support the valves to remain sealed when the pressure
in the ventricles is higher than in the atria. Certain types of cardiovascular disease
can prevent the valves from closing properly and thus blood can flow backwards.
This condition is called regurgitation. Chronic regurgitations can cause functional
impairments and myocardial dilation [Beau 13].

2.1.3 Myocardium
The myocardium is a thick wall of muscle tissue, which is encapsulated and protected
by two thin layers of endothelial tissue: the endocardium inside the cavities, and the

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
https://en.wikipedia.org/wiki/User:Wapcaplet
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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epicardium outside. It consists of cardiomyocytes, the cardiac muscle cells, which con-
tain organelles consisting of long chains of flexible sarcomeres that enable shortening
and stretching of the cell, thus enabling a contracting and relaxing heart. The left
and right ventricle cavities are separated by the “inner” section of the myocardium:
the septum. The outer myocardium is referred to as the free wall. The thickness
of the myocardium varies between the chambers depending on the force it needs to
generate. The atrial walls are rather thin (approximately 2 mm) as not much con-
traction force is required to push blood from atria to ventricles. The right ventricular
myocardium is thicker (approximately 5 mm) to ensure that sufficient force can be
generated to push blood through the lungs and pulmonary circulation. The left ven-
tricular myocardium is the thickest (approximately 15 mm) as it must pump blood
through the systemic circulation, which is much larger and exhibits greater vascular
resistance than the pulmonary circulation. The heart is contained in a thin sac, the
pericardium, consisting of a thin two-layered fibrous membrane. To minimize friction
and thus to enable smooth cardiac motion, a thin fluid layer is located between the
pericardium and the epicardium.

2.1.4 Cardiac Activity and Electrical Conduction System
Cardiac activity is controlled by the sympathetic nervous system [Silv 09]. The sinoa-
trial node can be seen as the natural pacemaker as it periodically generates the
electrical impulse that causes cardiac contraction. First the atria are stimulated.
The impulse then travels to the atrioventricular node, where it is first delayed, then
propagated to the bundle of His. From there it reaches Purkinje’s system, a network
of fast conducting Purkinje fibers organized in bundles that rapidly transmit and
distribute the electrical impulse to the endocardia of the ventricles. From there an
electrical wave propagates through the entire ventricular myocardium until reaching
the epicardia. The speed of electrical propagation through the myocardium is con-
trolled by the tissue conductivity, which can vary spatially, especially in the presence
of myocardial scars or cardiac fibrosis.

Electrical signals trigger the contraction of cardiomyocytes by depolarizing them,
which causes the heart beat. The heart beat is the result of two biophysical phe-
nomena. First, an electrical wave traveling through the heart’s electrical conduction
system activates the cardiomyocytes, as described above. Second, on cell-level, the
cardiomyocytes contract and later relax, which, on a macroscopic scale, translates to
the periodic global cardiac motion, the beating of the heart. Myocyte contraction is
mainly caused by two proteins: actin and myosin, also called myofilaments.

2.2 Measuring Structure and Function of the Heart

2.2.1 Cardiac Imaging
Cardiac anatomy and function can be assessed by a variety of imaging modalities
such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography
(CT) and many others. In most cases, a cardiac US scan (echocardiography) is
the first method of choice due to its low cost and fast acquisition speed. It can
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Figure 2.2: Example SSFP cardiac cine MRI: one diastolic (maximum ventricular
blood volume) and one systolic (contracted heart, minimum blood volume) frame
among typically 25–30 frames are visualized. Images courtesy of Siemens Healthi-
neers.

be used to measure the time-varying blood volume in the ventricles at the different
heart phases and thus to compute important clinical indicators such ejection fraction
(EF) and stroke volume (SV) based on the end-systolic and end-diastolic volume
measurements. In addition, cardiac dynamics and motion can be assessed, however
the imaging quality, resolution and signal-to-noise ratio are typically low, even with
modern US devices, due to physical limitations. CT offers high quality anatomical
information and fast acquisition speed at the cost of ionizing radiation, which can be
harmful to the patient. MRI could be seen as a good compromise between US and
CT as it can produce good quality time-resolved images without ionizing radiation,
but at the cost of slow acquisition speeds of up to one hour depending on the imaging
protocol. In this work, steady-state free precession (SSFP) cardiac cine MRI is the
main source of (spatio-temporal) cardiac imaging information, see Fig. 2.2 for an
example. Temporal images are acquired, which enable monitoring of cardiac motion
and estimation of time-varying ventricular volumes.

2.2.2 Electrocardiography
The electrical activity of the heart can be recorded indirectly using electrodes on the
surface of the body. The electrodes are designed to detect small electrical gradients
caused by the depolarization and repolarization of muscle cells in the heart and
propagated through the torso to the skin. These small changes are typically recorded
continuously over a short period (e. g., one or more heart beats) in the form of an
electrocardiogram (ECG) on a sheet of paper, or electronically. In today’s clinical
cardiology practice, ECG is commonly used for diagnosis of heart failure due to its low
cost, non-invasiveness, and high versatility. It can provide helpful information in a
wide range of situations, for instance by diagnosing myocardial infarctions, identifying
life-threatening cardiac arrhythmias, and many more [Thal 10]. In this work, standard
12-lead ECG is used, consisting in Einthoven and Goldberger limb leads (I, II, III,
aVR, aVL, aVF), see Fig. 2.3, and Wilson precordial leads (V1, V2, . . . , V6). The
Einthoven leads, i. e., the three basic bipolar limb leads (I, II, III) are computed from
the electrodes on the extremities:

• I: left arm − right arm

https://www.healthcare.siemens.com/
https://www.healthcare.siemens.com/
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Figure 2.3: Einthoven and Goldberger leads and their correspondence to the heart’s
electrical axis (EA). EA between −30◦ and 90◦ is considered normal. Variations can
be classified as left, right or extreme axis deviation, represented by the different colors
in the plot

• II: left leg − right arm

• III: left leg − left arm

The Goldberger leads, i. e., the three augmented limb leads (aVR, aVL, aVF) are
derived from the same electrodes, however they enable a look at cardiac electrophys-
iology from different angles:

• aVR: right arm − (left arm + left leg) / 2

• aVL: left arm − (right arm + left leg) / 2

• aVF: left leg − (right arm + left arm) / 2

Finally, the Wilson leads, i. e., the six precordial leads (V1, V2, . . . , V6) are obtained
by directly relating the six chest electrodes with Wilson’s central terminal: (right
arm + left arm + left leg) / 3.

Among the most clinically relevant ECG features are QRS duration, i. e., the
width of the QRS complex, QT duration, and electrical axis (EA) of the heart, which
represents direction of the average electrical depolarization in the heart. EA can be
classified into intermediary (normal) or deviated: left deviation, right deviation or
extreme deviation, see Fig. 2.3.

2.2.3 Blood Pressure
Arterial pressure is commonly measured non-invasively using a sphygmomanometer,
also known as blood pressure meter or “cuff” pressure. It is usually placed around the
upper arm and consists of an inflatable cuff, which is inflated while the measurements
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are being taken, and a measuring unit. Sphygmomanometers measure mean arterial
pressure (MAP), diastolic arterial pressure (DBP) and systolic arterial pressure (SBP)
within the brachial artery by oscillometric detection. When precise aortic or intra-
cardiac pressure information such as ventricular or atrial pressures are required (see
Fig. 2.4), cardiac catheterization, or “cath” pressure, is the method of choice, both
for diagnostic and interventional purposes. In a minimally invasive procedure, a
catheter is inserted into a chamber or vessel of the heart, accessed via, e. g., the
femoral vein. Once the catheter reached its desired position, pressures are being
monitored continuously over a certain time frame, yielding time-varying pressure
curves covering one or more heart cycles.

2.2.4 Normal Values and Relations
Some key clinical measurements that can be extracted using the methods and modal-
ities described above and their normal values according to [Mace 06a, Mace 06b,
Klin 11] are listed in Tab. 2.1. Relationship between various time-varying measure-

Table 2.1: Measurements of heart function and corresponding normal values for the
healthy population.

Measure Modalities Normal values

Heart rate ECG 60–100 bpm

End-diastolic volume (EDV) Imaging 142± 21 ml
End-systolic volume (ESV) Imaging 47± 10 ml
Stroke volume (SV) Imaging 95± 14 ml
Ejection fraction (EF) Imaging 67± 5 %
Cardiac output (CO) Imaging 4–8 L/min

QRS duration ECG 0.06–0.1 s
QT duration ECG ≈0.4 s
Electrical axis (EA) ECG −30◦–105◦

Diastolic arterial pressure (DBP) Cath, cuff 60–90 mmHg
Systolic arterial pressure (SBP) Cath, cuff 90–140 mmHg
Mean arterial pressure (MAP) Cath, cuff 70–105 mmHg

Diastolic ventricular pressure Cath 3–12 mmHg
Systolic ventricular pressure Cath 100–140 mmHg

ments and certain cardiac events (e. g., valve opening and closing) during the course of
the cardiac phases can be illustrated nicely in a so-called Wiggers diagram [Wigg 24]
as shown in Fig. 2.4.
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The heart is a highly complex organ, in which a variety of biophysical systems
interact with each other at different scales. A cardiac model is a representation of
the complex organ using a set of mathematical relationships. The model used in this
work was developed by a team of researchers at Siemens Healthineers [Zett 13]. It
consists of a set of coupled components, which can be computed independently, but
interact with each other, see Fig. 3.1. Each of the four main components models
an integral part of the heart morphology or physiology: anatomy, electrophysiology
(EP), biomechanics and hemodynamics (HD) boundary conditions, as described in
the following sections.

3.1 Anatomy
First, the patient-specific heart morphology and dynamics need to be modeled.

3.1.1 Geometry Segmentation from Imaging Data
In order to derive a patient-specific geometric representation of the cardiac anatomy,
previously developed comprehensive geometric models of the heart [Zhen 07, Iona 10]
are integrated. Physiological landmarks are explicitly encoded in the model and pro-
vide semantic associations to the underlying anatomy. The models are highly modular
and can be customized depending on the application. For the purpose of this work,
models of the left and right ventricle are selected. The models have explicit geomet-
rical representations for the left ventricle endocardium, epicardium, mitral annulus,
left ventricular outflow tract, ventricular regions, tricuspid and pulmonary valve lo-
cations. The models can be personalized from a variety of 3D imaging modalities,
including computed tomography (CT), magnetic resonance imaging (MRI) or ultra-
sound (US), and the model parameters are automatically determined from imaging
data using a database-guided machine learning (ML) framework [Geor 05, Wang 13].
The framework provides robust parameter estimation for complex cardiac models by

19
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Figure 3.1: Schematic overview of the four main components of the computational
heart model and their interactions (arrows).

exploiting expert knowledge from annotated medical imaging databases. Discrimi-
native learning methods with semantic constraints have proven to be the solution
of choice for estimation problems in high-dimensional spaces. While several other
image segmentation algorithms to extract cardiac chambers exist [Fran 01, Peng 16],
marginal space learning (MSL) [Zhen 08, Zhen 14] is among the most efficient ways to
learn high-dimensional models and perform fast online search by operating on spaces
of increasing dimensionality. The discriminative classifiers are trained with a proba-
bilistic boosting tree [Tu 05], which accounts for patterns of large intra-class variabil-
ity for complex data distributions. Using such methods that learn context and prior
knowledge, even whole-body volume analysis can be performed efficiently [Seif 09].
Recently, the successor of MSL, marginal space deep learning (MSDL) [Ghes 16b],
was introduced and showed potential towards further improving the performance of
such algorithms by making use of the latest advancements in modern deep learning
(DL). Motion manifold learning [Yang 08] is a state-of-the-art method for estimat-
ing temporal components and dynamics of the heart models derived explicitly from
temporal patient scans such as steady-state free precession (SSFP) cine MRI.

Volumetric Representation

As shown in Fig. 3.2, after fitting the geometric model to the patient data at end-
diastasis, the resulting left and right ventricular anatomies are fused into a sin-
gle bi-ventricular volumetric tetrahedral mesh representation using the CGAL li-
brary [CGAL 17]. The vertices of the mesh are then tagged into surface zones ac-
cording to the underlying anatomy. Myocardial scars or fibrosis identified in images
like delayed-enhancement MRI can be mapped onto the anatomical model to simulate
their specific properties.

3.1.2 Automatic Mesh Tagging
The anatomical model is enhanced with tags that represent certain types of tissues or
tissue regions useful for modeling. Two such tags are highlighted here, fibrous tissue,
and regional segments of the left ventricle (LV).

Fibrous Tissue Mapping

The aim of the fibrous tissue tags is to properly model the inactive electrical property
of this tissue type (collagen tissue does not depolarize as it does not contain any
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Figure 3.2: From images to patient-specific anatomical models.

myocyte-type cell). Based on communication with clinical collaborators, a rule-based
classification of fibrous tissue is employed. It comprises the fibrous rings of the
pulmonary and aortic valves as well as fibrous connections linking these rings to the
atrioventricular valves. Therefore all mesh elements in the left ventricular outflow
tract as well as all mesh elements in the right ventricular outflow tract and above the
plane of the atrioventricular valves are tagged as fibrous tissue.

Automatic AHA Segmentation

In order to enable modeling regionally varying properties of the left-ventricular my-
ocardium, such as regional alterations of conductivity (EP) in left-bundle-branch
block patients, or regional alterations in active and passive force (biomechanics) due
to myocardial scars, the LV is divided into 17 segments according to the widely-
used standard established by the American Heart Association (AHA) [Cerq 02], see
Fig. 3.3, left panel.

The AHA segmentation procedure takes as input the tagged tetrahedral heart
model and is performed as described below:

1. Compute the long axis of the heart defined by two points: the barycenter of
the mitral valve and the LV barycenter.

2. Compute the endocardial apex, i. e., the point on the endocardium that is closest
to the apex of the myocardium, by intersecting the LV endocardial surface with
the long axis.

3. Divide LV endocardium into equal thirds perpendicular to the long axis (top:
basal; mid: mid-cavity; bottom: apical). All myocardial mesh cells (tetrahedra)
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Figure 3.3: Left: Bull’s eye representation of the 17 standardized American Heart
Association (AHA) segments of the LV. The two outermost circles define basal (seg-
ments 1–6) and mid (segments 7–12) anterior, anteroseptal, inferoseptal, inferior,
inferolateral and anterolateral segments, respectively. Segments 13–16 are apical seg-
ments: anterior, septal, inferior and lateral, and 17 is the apex segment. Right: AHA
segmentation example. Different colors represent the 17 segments. Note that the
right ventricle (RV) and connective tissue, visualized in dark blue color, are not part
of the AHA segment model.

whose barycenters are below the apical region are classified as segment 17, the
apex segment.

4. Further divide the three regions into circular segments by defining cutting planes
along the long axis. The plane orientations are based on angles (short-axis
plane) with respect to the vector connecting the LV and right ventricle (RV)
barycenters. The left ventricular myocardial cells are then divided into:

(a) Basal and mid-cavity regions: six segments of 60◦ each.
(b) Apical region: four segments of 90◦ each.

The process described above runs fully automatically. An example result is illustrated
in Fig. 3.3, right panel.

3.1.3 Rule-based Myocardial Fiber Architecture
Myocardium fibers play a crucial role in cardiac function. In particular, the myocar-
dial tissue has orthotropic mechanical properties. It is therefore sensitive to fiber
orientation and to the arrangement of fibers in sheets. Moreover, electrical conduc-
tivity is affected by fibers, because the electrical wave propagates faster along the
local direction of fibers. Integrating fiber architecture into the anatomical model
is therefore essential. The distribution of the fibers across the myocardium has
been widely studied on ex vivo hearts using histology or diffusion tensor imaging
(DTI) [Vett 98, Peyr 07, Pop 09]. Because measuring them in vivo is still an open
challenge [Wu 09, Tous 13], atlases of fiber orientations are being computed from dog
hearts [Peyr 07] or human hearts [Lomb 12]. However, it is not clear how well such
atlases translate to pathological hearts.
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While advanced in vivo DTI acquisition protocols are currently being developed
by the community, the fiber architecture used in this work relies on a rule-based
model [Serm 06a, Baye 12, Zett 13], if not stated otherwise. The model, which is
derived from ex vivo studies [LeGr 95, Arts 05], covers fiber orientation and fiber sheets
and is automatically mapped to the patient-specific anatomy. It can be adjusted by
the user to adapt it to the investigated pathology.

The rule-based fibers are computed as described in [Zett 13]. Below the basal
plane, the fiber elevation angle ]fiber, i. e., the angle with respect to the short-axis
plane, varies linearly across the myocardium from ]endo

fiber = −66◦ (−80◦ for RV) on
the epicardium to ]epi

fiber = +66◦ (+80◦ for RV) on the endocardium. Similarly, the
sheet directions, defined by an angle ]sheet with respect to the outward transmural
axis, vary transmurally from ]endo

sheet = +45◦ on the epicardium to ]epi
sheet = −45◦ on

the endocardium. Note that these values could be personalized as well, if appropriate
data such as DTI is available. Between the apex and the basal plane, for every vertex
v of the tetrahedral myocardium mesh, the elevation angle ]v

fiber is varied according
to the geodesic distance of v to the endocardium dendo and epicardium depi:

]v
fiber = depi · ]endo

fiber + dendo · ]epi
fiber

depi + dendo
. (3.1)

The sheet angles ]v
sheet are varied accordingly.

Next, the fiber and sheet orientations around each valve are computed. Fol-
lowing [Moir 09], around the aortic valve the fibers are longitudinal, and tangential
elsewhere. The sheet normals are oriented towards the barycenter of each valve. The
local orthonormal basis is interpolated from the basal plane to the valve, first by
following the myocardium surface and then transmurally.

All these operations are performed per vertex. As the employed computational
model solvers require the coordinate system to be defined per tetrahedron, the tetra-
hedral fiber coordinate systems are computed using barycentric interpolation. To
preserve orthonormality, the Log-Euclidean framework [Arsi 06] is used for all inter-
polation operations.

3.2 Electrophysiology
The first biophysical phenomenon that needs to be simulated is cardiac electrophys-
iology (EP), which is one of the main determinants of cardiac function as it trig-
gers myocardial contraction. Cardiac EP is solved on the patient-specific anatomical
model (Sec. 3.1). Since the seminal work of [Hodg 52, Fitz 61, Nagu 62], a large variety
of computational EP models have been proposed [Clay 08, Elsh 14] to deal with dif-
ferent biological scales and theoretical complexities. These models can be organized
into three different categories: biophysical, phenomenological and Eikonal.

Biophysical Models

The most complex category of models aims to simulate the ionic interactions across
the cell membrane and the biological phenomena underlying the ion channels [Nobl 62,
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Luo 91, Nobl 98, Ten 04]. These models are highly detailed and controlled by a
large number of parameters. The cell models are then integrated at the tissue scale
using semi-linear reaction-diffusion equations, where two main categories exist: mono-
domain and bi-domain. The more computationally efficient mono-domain approach
considers the myocardium as a single excitable tissue, while bi-domain separates the
intra- and extra-cellular domains [Coud 06, Bour 09], which allows investigation of
biological phenomena happening outside the cell.

Phenomenological Models

Historically, phenomenological models were the first to be developed, as they can be
derived from experimental observations on nerves or cardiac tissue samples [Fitz 61,
Nagu 62]. These models aim to reproduce the shape of the experimentally observed
action potential (AP) and its variation under changing external conditions. While also
integrated at the organ scale using mono-domain [Alie 96, Fent 98, Mitc 03, Corr 16]
or bi-domain [Clay 08] equations, phenomenological models are simplifications of bio-
physical models as they do not compute the underlying ionic phenomena. This allows
for a much smaller number of parameters (typically two or three), which are often
directly related to the shape of the AP or electrocardiogram (ECG) measurements.

Eikonal Models

If the mathematical formulation is further simplified to the sole propagation of the
electrical wave, one speaks of Eikonal models. In this category, the AP is not directly
simulated. Instead, the propagation of the electrical wave is reproduced by computing
its arrival time at each location on the myocardium [Fran 90, Serm 07]. The main
advantages of Eikonal models are their high computational efficiency and simple
parametrization using only one or two parameters. For example, solvers based on fast
marching methods [Serm 07] enable almost real-time simulations, where a full heart
depolarization can be simulated in seconds or less. Due to the drastic simplifications,
however, many pathological phenomena cannot be simulated, including arrhythmias,
fibrillations or tachycardia.

3.2.1 First Model: LBM-EP

For the purpose of this work it is sufficient to capture normal electrophysiology,
cardiac asynchrony and minor to mild arrhythmias as observed in typical dilated
cardiomyopathy (DCM) patients. While the modeling of ion channels may be useful
for particular applications, a strong requirement for this work was a low number
of parameters to overcome issues of identifiability and observability to be able to
adjust the model to patients from limited data. Therefore, the cells are considered
mono-domain spaces. The trans-membrane potential is computed directly. In-flow
and out-flow channels are lumped in two variables to further limit the number of
parameters of the system.
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Figure 3.4: Qualitative plot of cardiac action potential (AP) voltage trace in a
myocardial cell illustrating relationship between model parameters, action potential
duration (APD) and shape of the AP.

Selected Cell Model

Phenomenological models are a good trade-off between modeling detail and compu-
tational complexity. Therefore, the Mitchell-Schaeffer mono-domain model proposed
in [Mitc 03] is used. The time-varying trans-membrane potential field φφφ throughout
the myocardium is described with the following equation:

∂φφφ

∂t
= Jin + Jout + Jstim + ν · div(D∇φφφ) , (3.2)

scaled to the interval −70 mV to 30 mV. The model simplifies all ion channel interac-
tions to only two currents. First, the inward gated current:

Jin = hφφφ2(1− φφφ)
τin

, (3.3)

which captures the fast acting ionic currents in the myocyte. The gating variable h(t)
models the state of the ion channels and is defined based on the change-over voltage
φφφgate. It is computed as dh

dt = (1− h)/τopen if φφφ < φφφgate and dh
dt = −h/τclose otherwise.

Second, the ungated outward current:

Jout = −φ
φφ

τout
, (3.4)

which accounts for trans-membrane voltage decrease. A transient stimulus current
Jstim can further be added to mimic electrical pacing. The time constants τin, τout,
τopen and τclose are parameters of the model, which are related to the shape and
duration of the action potential as illustrated in Fig. 3.4.

The last term in Eq. (3.2) models spatial propagation by diffusion, which is mainly
controlled by diffusion coefficient ν and anisotropic diffusion tensor D = (1− ρ)I +
ρooᵀ along the fiber direction o. ρ denotes the anisotropy ratio and I the 3×3 identity
matrix. The operators ∇ and div denote gradient, i. e., direction of steepest increase
of φφφ, and divergence, a measure of increase in the given direction, respectively.
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Fast Solver

Eq. (3.2) is solved using LBM-EP [Rapa 12], which is based on Lattice-Boltzmann
method (LBM). It provides excellent scalability on modern computing architectures
due to local computations that can be performed in parallel. LBM-EP models EP
using fictive particles performing consecutive collision and propagation processes on
a discrete Cartesian grid with 7-connectivity topology (six neighbors and central
position) and Neumann boundary conditions. For each of the seven connections, a
function gi(v, t), i = 1 . . . 7, represents the probability of finding a particle traveling
along the respective edge ei of node v at time t. The trans-membrane potential
φφφ(v, t) is computed as the sum φφφ(v, t) = ∑7

i=1 gi(v, t).
The computation of gi is decomposed into two phases: collision and streaming.

First, the collision phase yields intermediate post-collision states g′i(v, t), taking into
account the anisotropic diffusion due to local fiber orientation and emphasizing the
contribution from the central position by applying connection-dependent weighting
factors. Due to node-wise computations, the collision phase can be implemented effi-
ciently on a graphics processing unit (GPU). Second, the streaming phase propagates
these functions along their corresponding edges: gi(v + ei, t+ δt) = g′i(v, t), where δt
is the time-step, and applies the boundary conditions. For more details see [Rapa 12].

After LBM-EP computations are finalized, the time-varying trans-membrane po-
tentials are mapped back from the Cartesian domain to the tetrahedral volume mesh
using tri-linear interpolation.

Purkinje Fibers

As described in Sec. 2.1, the electrical conduction system of the heart is composed
of several elements including the Purkinje fibers (Purkinje’s system). This macro-
scale system can be implemented in the framework of EP solvers based on Cartesian
computational grids, such as LBM-EP: the endocardial surface is rasterized on the
computational grid and the grid cells corresponding to endocardium are assigned a
high diffusion coefficient νPurk. A limitation of this approach is that the thickness of
the layer of high-speed conducting tissue cannot be controlled, i. e., it is always in
the order of one grid cell. Thus the Purkinje thickness changes if the grid resolution
changes, which is undesirable. To overcome this limitation, a rule to classify the
myocardial tissue as part of the high-speed bundles based on its distance from the
endocardial septum is defined. Tissue diffusion coefficient ν is defined as a piece-wise
constant field over the Cartesian grid, modeling each grid point as the center of a
voxel. The value assigned to each grid point v, ν(v), ranges from normal (νnormal) to
high (νPurk), based on the fraction ϕ of volume inside the voxel whose distance from
the endocardium is smaller than a user-defined thickness threshold:

ν(v) = ϕ · νPurk + (1− ϕ) · νnormal . (3.5)

3.2.2 Second Model: Graph-EP
Although LBM-EP provides significant gain in computational efficiency compared to
traditional methods (up to 45 times faster [Rapa 12]), the forward computation of one
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heart beat is still in the order of seconds, depending on the available processing power,
LBM grid resolution and size. This may not sound much, however, in the context of
model personalization, where a forward model may have to run up to a few hundred
times in order to converge to reasonable parameter estimates, these few seconds sum
up quite rapidly. There is therefore a need for even faster EP solvers. Such solvers
typically come at the price of reduced accuracy, which may however be acceptable
in certain scenarios. A highly efficient graph-based method for computation of EP
depolarization, inspired by [Wall 12], is called Graph-EP, an Eikonal EP model. The
computational domain of Graph-EP is the tetrahedral mesh of the patient’s anatom-
ical model, taking into account its per-vertex fiber orientations. Graph-EP computes
the activation time at each node of the mesh, i. e., the time at which the electrical
wave arrives, in the order of a few milliseconds.

Algorithm

The algorithm is based on a variant of Dijkstra’s shortest path algorithm [Dijk 59].
First, the nodes from where the electrical wave starts are added to a queue, and
a value equal to their stimulation time is stored. In particular, the LV and RV
septum nodes are added with an activation time corresponding to the atrioventricular
delay. Any additional activation point (e. g., due to pacing devices) can be added
to the queue analogously. The first node of the queue is then popped and all its
neighbors in the graph are processed. Let vi be the node that is currently being
processed, and vj one of its neighbors. A tentative activation time t′act(j) is computed
as t′act(j) = tact(i) + ttravel(i, j), where ttravel(i, j) is the travel time from vertex i to
j given by ttravel(i, j) = edge cost(i, j)/νij, where νij the conduction velocity of the
tissue crossed by the edge (vi, vj). If t′act(j) is smaller than the current activation
time estimate tact(j), then tact(j) is updated, tact(j) = t′act(j) and the node vj is added
to the queue for later processing. This process is iterated until the queue is empty,
i. e., no more nodes need to be processed and the graph (tetrahedral heart mesh) is
fully processed. Finally, the potentials are mapped by assigning at any given time a
value of −70 mV to the node that are still not activated, 30 mV otherwise.

Tissue Anisotropy

Anisotropy of myocardial tissue is modeled by modifying the edge cost to take into
account fiber orientation:

edge cost(i, j) =

√
(vj − vi)>D(vj − vi)
‖(vj − vi)‖

, (3.6)

where D is the anisotropy tensor defined by D = (1 − ρ)I + ρoijo>ij and ρ denotes
the anisotropy ratio, I the identity matrix and oij the edge-based fiber direction
(cf. Sec. 3.1). Since fibers are defined node-wise, oij = (oi + oj)/2.

Purkinje fibers

In Graph-EP, the Purkinje network is modeled by edge-based linear interpolation of
the fast conduction velocities.
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Figure 3.5: Overview of mapping procedure from cardiac extra-cellular potentials
to torso potentials and ECG.

3.2.3 From Cardiac Potentials to Torso Potentials to ECG
The standard clinical measure of cardiac electrical activity is ECG, which is derived
from electrical signals measured on the surface of the patient’s body (cf. Sec. 2.2.2). In
order to compare measured activity with computed activity, one needs to propagate
the potentials computed on the cardiac domain to the torso, and from there derive
the ECG leads and features.

Torso Fitting

First, patient-specific torso geometry is either segmented automatically from the im-
ages or, when the full torso is not available, the following procedure is applied. First,
the contours of the patient’s torso are outlined in coronal, sagittal and transverse
slices of the survey MRI sequences and visualized together with the heart model.
Then, an atlas of torso geometry, obtained from CT images, is manually registered
to these contours (affine transformation).

Torso Potentials

Next, a three-step procedure is employed to compute potentials on the patient-specific
torso mesh based on the previously computed cardiac EP as described in [Zett 14].
First, extra-cellular potentials are estimated from the trans-membrane potentials,
which were computed using LBM-EP, by using an elliptic formulation [Chha 12].
In the case of Graph-EP, the computed potentials are used directly. Second, the
extra-cellular potentials are mapped back to the epicardium surface mesh using tri-
linear interpolation. Third, the boundary element method (BEM) [Shou 09] is used
to project the extra-cellular potentials onto the torso surface, from where ECG lead
signals can be derived, see Fig. 3.5.

Electrocardiogram

Finally, based on the resulting torso potentials, the leads of the standard 12-lead ECG,
namely the Einthoven and Goldberger limb leads (I, II, III, aVR, aVL, aVF) and the
Wilson precordial leads (V1, V2, . . . , V6), are computed, see Sec. 2.2 for details.
ECG descriptors are derived from the computed leads as described in [Zett 14]. In
particular, QRS duration ∆QRS is detected by convolving the squared derivative of
each limb lead with a sliding average kernel and a threshold operation [Kohl 02],
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Electrical axis (EA), ]EA, is computed based on a trigonometric operation performed
on the R and S peak amplitudes in leads I and II: ]EA = arctan (2hII − hI)/(

√
3hI),

where hI and hII are the sum of R and S peak amplitudes in the respective lead.

3.3 Biomechanics
The second biophysical phenomenon to be modeled is cardiac biomechanics [Tray 11,
Kris 13, Lama 14, Wang 15]. The myocardium is an active, non-linear, anisotropic
viscoelastic tissue. Its constitutive law, which describes its elastic behavior, comprises
an active and a passive component. The active component is the active contraction of
the myocytes controlled by the action potential (AP). The passive component relates
to the elasticity of the tissue. Both components are linked together through the
Hill-Maxwell framework [Fung 93]. In practice, the active contraction is viewed as a
transient external force that makes the myocardium contract. The passive properties
of the tissue are internal forces that ensure realistic motion [Hunt 03].

3.3.1 Passive Properties
Models of myocardium passive properties aim to reproduce how the myocardium
deforms under given stress and boundary conditions. Mathematically, they solve
the partial differential equations modeling constitutive laws of tissue behavior on
the patient’s anatomical model. A multitude of models have been proposed in
the last decades to simulate myocardium passive properties, ranging from simple
isotropic linear elasticity [Serm 06b] to more realistic orthotropic non-linear hyper-
elasticity [Holz 09, Cans 15]. Linear elasticity assumes linear relationship between
strain and stress. It is often implemented within the infinitesimal, linear strain the-
ory (small deformation assumption) for computational efficiency, which, however,
becomes inaccurate for large deformations.

Linear models are limited in their application since heart tissue is non-linear.
Constitutive laws have been derived by stretching slabs of myocardium tissues in
several directions using bi-axial machines to measure tissue strain under known
load [Hunt 88, Hump 90a, Hump 90b, Gucc 93, Holz 09]. The most common laws are
the pole-zero law [Hunt 88] and the more recent Costa law [Cost 01]. The latter con-
siders both fiber orientation and their organization in sheets across the myocardium.
Yet, improving model accuracy is achieved at the price of complexity, with increasing
number of parameters. The Costa law, for instance, is governed by seven parameters,
most of them difficult to estimate in vivo.

In this work, a simplified version of the constitutive model proposed by Holzapfel
and Ogden [Holz 09] is used. Contrary to other, more phenomenological constitutive
laws like Costa [Cost 01] or Guccione [Gucc 93], the Holzapfel-Ogden (HO) model
is derived from considerations of the tissue structure and not by fitting exponential
functions to stress-strain relationship observed experimentally. The model starts from
the observation that cardiac tissue shows different behaviors whether it is stretched
along the fiber, tangential to the sheet structure, perpendicular to the sheets or in
the fibers-sheet direction. For all these conditions, the stress-strain relationship is
exponential. In this work, terms related to sheets are neglected, because measuring
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sheet orientation in vivo is difficult. Based on these considerations, the simplified HO
stress-strain energy function HO comprises two exponentials:

HO(β) = β · a

2 · b exp(b · (I1 − 3)) + β · af
2 · bf

{
exp(bf · (I4f − 1)2)− 1

}
, (3.7)

where a, b, af and bf are tissue parameters and I1 and I4f are invariants of the
deformation tensor, see [Holz 09] for more details. To simplify the tuning of the
model, a dimensionless factor β > 0 is introduced, which allows isotropic scaling of
tissue stiffness by modifying a single parameter only. To this end, a = 0.496 kPa,
b = 7.209, af = 15.193 kPa and bf = 20.417 are set to their default values [Gokt 11],
i. e., when β = 1, the model behaves like normal ex vivo myocardial tissue, if the
value is larger, the tissue is stiffer, and softer if β is between zero and one.

3.3.2 Active Force
The second component of the biomechanical model mimics the active force (myocyte
contraction) generated by every cell when it depolarizes, which fades out once the
cell repolarizes. Three categories of active contraction models can be distinguished.

The first category is biophysical models that simulate the ion interactions and the
actin-myosin bindings that generate cardiac motion [Hunt 88, Nied 08, Rice 08]. Most
biophysical models are highly detailed and were derived from experimental studies on
ex vivo animal hearts for hypothesis testing. In recent years, also clinically-focused
studies are appearing [Tray 11, Nied 12, Mang 18]. The model proposed in [Hunt 98]
and its extension [Nied 08] are commonly used for organ simulations as they stay
computationally tractable, however, they rely on biophysical EP models. Today’s
standard for single cell simulations is [Rice 08], as it captures most of the sub-cellular
and protein mechanisms involved in myofilament function, from troponin function
and ion binding to force generation. Scaling up this model to the organ level is,
however, challenging, as it comprises more than 40 differential equations per cell that
need to be integrated at every time step.

The idea behind the second category, multi-scale phenomenological models, is to
mathematically integrate the biological mechanisms spanning from the actin-myosin
interaction to the organ [Chap 01, Best 01]. The transition from one scale to another
(e. g., from the calcium concentration to actin-myosin binding) is achieved mathe-
matically, ultimately resulting in a set of simplified equations that are controlled by
fewer parameters (usually only four to five). In [Serm 06a], a simplified version of
these models with analytical integration for model-based image analysis was pro-
posed. More recently, a more comprehensive multi-scale model that also considers
energy exchange during the heart cycle, in particular the relation between oxygen
supply and energy consumption, was proposed [Chap 12].

The third category are lumped models, the most simple active contraction models
consisting of analytical formulations of fiber contraction that do not consider spatial
variability [Arts 91], thus they do not require meshes to be solved. Lumped models
can be solved very efficiently but they cannot capture regional abnormalities of the
myocardium, such as scars or localized fibrosis.

In this work, a simplified phenomenological model is used, assuming that active
contraction is directly related to the action potential (AP) through a multi-scale, lin-
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Figure 3.6: Qualitative plot showing variation of time-varying active force (blue
curve), which is controlled by the the maximum asymptotic contraction force σ̂, and
the contraction and relaxation rates kATP and kRS (red arrows).

ear law that relates trans-membrane voltage with the rates of adenosine triphosphate
(ATP) binding and release.1 Other sub-cellular mechanisms are not modeled. The
model is a linearization of the phenomenological model proposed in [Best 01], derived
in [Serm 06a]. It is computational efficient and has only few parameters, which are
all clinically-related. The active force σ(t) of a cell at a given time t, is controlled by
depolarization and repolarization times, tdep and trep, which are computed by the EP
model, cf. Sec. 3.2.

σ(t) =
σ̂ · [1− exp(kATP · (tdep − t))], if tdep ≤ t ≤ trep

σ(trep) · exp(−kRS · (trep − t)), if trep < t < tdep + tHP
(3.8)

where tHP is the duration of one heart cycle. The governing parameters of the model
are contraction and relaxation rate, kATP > 0 and kRS < 0, and the maximum
asymptotic contraction force, σ̂. An illustration of the time-varying active force is
provided in Fig. 3.6.

3.3.3 Finite Element Modeling
The active and passive component of the biomechanical model are solved on the
anatomical model using finite element method (FEM). The motion of the heart re-
sulting from these laws is computed by solving the dynamic system for all the vertices
of the mesh

Mü + Cu̇ + Ku = ha + hp + hb , (3.9)
where ü, u̇ and u denote accelerations, velocities and displacements of the mesh
nodes, and M , C and K are the mass, Rayleigh damping and internal elastic stiff-
ness matrix, respectively. Mass lumping is used with a mass density of 1.07 g/ml.
hp captures the pressures applied to the endocardia during the cardiac phases and
hb accounts for the external boundary conditions. ha is the active force generated
by the depolarized cells. At a given time t, for tetrahedron i with fiber direction oi,
the active stress σi(t) results in a 3D anisotropic stress tensor Λ = σi(t)oio>i , from
which the contraction force vector is obtained as follows:

ha =
∫

Λn dS , (3.10)

1ATP is a molecule involved in intra-cellular energy transfer.
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where S is the outer surface of the tetrahedron and n the surface normal.
First, cardiac electrophysiology is solved and the time-varying potentials per ver-

tex are stored. Then, for every iteration of the cardiac biomechanics solver, the
potential value corresponding to the current simulated time point is used to compute
the active force generated by the cell. The process is iterated to compute cardiac elec-
tromechanics (EM) over time. In this work, the non-linear total Lagrangian explicit
dynamics (TLED) framework [Mill 07] is used to solve cardiac biomechanics due to
its computational efficiency and support for GPU implementation [Coma 08].

3.4 Boundary Conditions
Heart function depends on external conditions mostly determined by neighboring
organs, blood flow and the circulatory system. Neighboring organs play a pivotal
role in cardiac mechanics. Heart ventricles are connected to the atrium and arter-
ies, which create some additional stiffness at the valves. A common way to model
these effects is to add additional stiffness forces in the base (valve) region using stiff
springs [Serm 06a, Nied 08]. Blood flow can be modeled using fluid-structure inter-
action (FSI) methods. Such approaches are highly detailed but also complex and
costly to solve, because coupled systems are governed by large sets of parameters,
see for instance [McQu 00, Miha 09] and references therein. Alternatively, only the
ventricular pressure is considered and applied as constraints to the biomechanical
model. The constraint can be computed from lumped models of the circulatory sys-
tem [Arts 05, Kerc 07], or directly input by the user [Serm 06b]. These approaches
rely on clinically related parameters and are fast to compute, but they ignore the flow
patterns in the ventricles, which may have long-term impact on the cardiac function
or on the effects of a therapy.

Assuming that spatial variations in flow patterns inside the ventricle have only
minor effects on global cardiac function, which we are interested in, the hemodynam-
ics parameters are modeled using lumped parameter models (homogeneous intra-
ventricular pressure) within each ventricle. The arterial pressure is modeled using
lumped Windkessel (WK) models, one for each artery. The atrial pressure is modeled
using an elastance model of atrial contraction. The cardiac phases are modeled as
sequential states.

3.4.1 Phase-Model of the Cardiac Cycle
The model simulates the four cardiac phases (cf. Fig. 2.4): filling, isovolumetric
contraction, ejection and isovolumetric relaxation, by alternating the boundary con-
ditions of the model according to the following rules.

1. When the blood flow, computed as the derivative of ventricular volume, is
positive and the ventricular and atrial pressure are equal, the ventricle is being
filled. A pressure equal to the atrial pressure is applied to the endocardium.

2. As soon as myocardial cells start to contract, the blood flow is reverted and
the atrioventricular valve closes. Yet, the pressure is still lower than the ar-
terial pressure. The arterial valves stay closed. The ventricular volume thus
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Figure 3.7: Electrical circuit analogy of the three-element WK model. See text for
details.

stays constant. This phase is called isovolumetric contraction phase. A pro-
jection/prediction constraint [Zett 13] is employed to compute the ventricular
pressure during this phase while ensuring constant ventricular volume.

3. When the ventricular pressure becomes higher than the arterial pressure, the
arterial valve opens and blood is ejected. The pressure of the artery is applied
to the endocardium to mimic the resistance of the vessels.

4. As soon as the ventricle starts to relax, the blood flow is reverted. The ar-
terial valve closes and the isovolumetric relaxation phase starts. A projec-
tion/prediction constraint is employed to compute the ventricular pressure dur-
ing this phase while ensuring constant ventricular volume.

During each phase, the pressure applied to the endocardial surfaces is computed
for each vertex and gathered into the global pressure vector hp of the dynamic system,
cf. Eq. (3.9). The cardiac phases are handled independently for LV and RV to enable
capturing of asynchronous cardiac motion.

3.4.2 Artery Model
Arterial pressure is modeled using a three-element Windkessel (WK) model [West 71],
which takes as input the arterial flow and returns the pressure within the artery
at every time step of the simulation. The model is derived from electrical circuit
analogies (Fig. 3.7), where the blood flow is the current and the arterial pressure
is the voltage. The first element of the model is a peripheral resistance Rp, which
accounts for the distal resistance of the circulatory system which is mainly due to the
small vessels. The compliance C accounts for the elasticity of the arterial walls. The
characteristic resistance Rc accounts for the blood mass and for the compliance of the
artery proximal to the valves. Let Qar(t) be the arterial flow (change in volume) at
time t, defined as the inverse of the ventricular flow, Par(t) be the arterial pressure at
time t and Pref be a constant low pressure of reference (pressure of the remote venous
system). When during ejection blood flows from the ventricles into the arteries,
Qar(t) > 0, the three-element WK model writes:

dPar(t)
dt = Rc

dQar(t)
dt +

(
1 + Rc

Rp

)
Qar(t)
C
− Par(t)− Pref

Rp · C
(3.11)
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When the valves are closed, the blood flow is stopped, Qar(t) = 0, and the model
writes:

dPar(t)
dt = −Par(t)− Pref

Rp · C
(3.12)

Two independent WK models are used for the aorta and the pulmonary artery.

3.4.3 Atrium Model
Atrium contraction, which happens just after diastasis and before systole, optimizes
ventricular filling. Because simulating atrial contraction explicitly in 3D may be com-
putationally prohibitive, a common approach is to rely on lumped models that mimic
the raise of ventricular pressure due to atrial contraction. While some simplified mod-
els consider atrial pressure constant, the most common strategy consists in using phe-
nomenological models of atrial pressure based on sigmoid functions, e. g., [Serm 06b].
More predictive elastance models have also been proposed to capture the interactions
between atrial volume, pressure, tissue stiffness and the circulatory system [Kerc 07].

The approach used in this work relies on a simplification of the circulatory model
proposed by [Kerc 07]. In particular, the arteries are decoupled from the atria: pul-
monic and systemic circulations are neglected. Atrial contraction is modeled using a
lumped time-varying elastance model. Minimum and maximum elastance parameters
enable to set the peak systolic and diastolic stiffness, which then controls atrial pres-
sure based on the current volume. A simple model of atrial activation synchronized
with ventricular electrophysiology through a time-shift parameter corresponding to
the duration of the PR interval ∆PR enables controlling atrial volume. Vena cava
pressure (PLA) and pulmonary vein pressure (PRA), are kept constant throughout the
cardiac cycle. They can be manually adjusted to control the baseline pressure of the
atrium.

Atrial pressure Patr(t) is computed according to the equation:

Patr(t) = E(t) ·
(
Vatr(t)− V rest

atr (t)
)
, (3.13)

where elastance E and the rest volume V rest
atr are defined as:

E(t) = φ(t) ·
(
Emax − Emin

)
+ Emin , (3.14)

and
V rest

atr = (1− φ(t)) · (V dia
atr − V

sys
atr ) + V sys

atr . (3.15)
In these equations, four model parameters appear: Emax and Emin denote the maxi-
mum and minimum elastance, respectively, and V sys

atr and V dia
atr the diastolic and sys-

tolic atrial volumes at zero pressure, respectively. The activation function φ is defined
as:

φ(t) =
−12 cos

(
2π tatr(t)

ttwitch

)
+ 0.5, if tatr(t) < ttwitch

0, otherwise
(3.16)

where ttwitch is the duration of ventricular contraction and tatr:

tatr(t) =
mod(t− tactive +∆PR, tHP), if t ≥ tactive −∆PR

0, otherwise
(3.17)
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where ∆PR denotes the ECG PR interval and tHP the heart period (duration of one
cycle). Finally, the atrial volume is given by integrating:

dVatr(t)
dt = Qvein(t)−Qmitral(t) , (3.18)

where Qmitral is the blood flow from the atrium through the atrioventricular valve
into the ventricle, and Qvein is the flow from the vein to atrium. The latter is given
by:

Qvein(t) = Pvein − Patr(t)
Rvein

, (3.19)

where Pvein is the vein pressure and Rvein the resistance of the pulmonary vein.
Two independent models are used for left atrium (LA) and right atrium (RA). In

the LA model, Qvein is the pulmonary vein pressure and in the RA model the vena
cava pressure, denoted PLA and PRA, respectively.

3.4.4 Spatial Constraints
Base Stiffness

The effect of arteries and atria on the ventricular motion is simulated by connecting
the vertices of the valve plane to springs whose stiffness is Kbase. The fixed extremity
of the springs corresponds to the rest position of the nodes, taken at mid diastasis,
when the heart is at rest. The spring stiffness Kbase is anisotropic. A strong stiffness,
K l

base is applied along the long axis of the heart, while a lower stiffness, Ks1
base and

Ks2
base, is employed in the short-axis plane to allow free radial motion. Under these

definitions, the base stiffness force writes:

hbase(v) = T


K l

base 0 0
0 Ks1

base 0
0 0 Ks2

base

T−1(v − v0) , (3.20)

where T is the transformation matrix from world coordinates to the coordinate sys-
tem defined by the LV long axis and the short-axis plane, and v and v0 are the
position of a mesh vertex at a given time step and its initial position, respectively.
The computed forces hbase of all myocardial nodes are added to the boundary condi-
tion force vector hb from Eq. (3.9).

Pericardium Constraint

Many computational heart models rely on strong base stiffness to fix the heart in
3D space. However, as shown in [Nied 09, Mans 10], computed cardiac motion highly
depends on the strength of this boundary condition and also on the positions of the
spring attachments. In reality, the effect of the great arteries and of the atrium on
the bi-ventricular myocardium do not dominate overall cardiac contraction. Indeed,
the heart contracts longitudinally, the base moving downwards towards the apex.
Anatomically, the heart and the root of the great vessels are protected by a stiff sac,
the pericardium (cf. Sec. 2.1.3). The pericardium fixes the heart to the diaphragm
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and the sternum. Heart motion is also constrained by the neighboring lungs and liver.
On the other hand, the myocardium is free to move inside the pericardium bag. A
thin layer of pericardial fluid separates the epicardium to the pericardium, allowing
friction-free sliding of the myocardium.

In [Mans 10], a contact-based model of the pericardium has been proposed to
mimic the effects of the neighboring organs and of the pericardium on the cardiac
motion, while enabling fine-tuning the stiffness of the great vessels and atria attach-
ments to get realistic basal motion. Promising results were obtained in patients with
dilated right ventricles due to a tetralogy of Fallot repair. This constraint is also
integrated into the model used in this thesis.

The idea consists in limiting the motion of the epicardial nodes inside an autho-
rized area while preserving friction-free sliding. To this end, a signed distance map
is created from the epicardial boundary at end-diastole to identify the interior and
exterior of the pericardium. Let D(v) be that distance map, where v denotes the
spatial coordinate. D is negative inside the pericardium sac, positive outside. Next,
a gradient map is generated, which allows to compute for every point v a normalized
direction vector g(v) that points towards the closest point on the epicardial surface.
Based on this spatial information, motion of the epicardial nodes is limited to a re-
stricted zone by applying a force to every node that goes outside the pericardial sac
(to bring it back into the authorized area). The pericardium force, hperic, is computed
as follows:

hperic(v) =


k D(v)2

D(v)2+m2 g(v), if D(v) < din

−k D(v)2

D(v)2+m2 g(v), if D(v) > dout

0 , otherwise
(3.21)

where k is the maximum strength of the force, m is the rate at which the force
increases, and din and dout are parameters that enable to control the extent of the
authorized area around the pericardial region. With this definition, the epicardial
nodes can slide along the pericardium cavity, but their radial motion is limited to
emulate neighboring organs and the stiff pericardial sac. The computed forces hperic of
the epicardial nodes are added to hb, the full boundary condition force vector from
Eq. (3.9).
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Calculating the output of a computational model given its input parameters is
called forward modeling. Estimating the model parameters such that the output of
the forward model matches a set of observations is the inverse problem of computa-
tional modeling, also known as inverse modeling, or model personalization. In this
work, the term inverse optimization denotes a class of approaches that aim to solve
inverse modeling by using optimization techniques. In this chapter, a comprehensive,
modular pipeline for personalizing the coupled electromechanics (EM) whole-heart
model (cf. Chap. 3) using advanced inverse optimization is presented.

First, the state-of-the-art in cardiac model personalization is described in Sec. 4.1.
Then, in Sec. 4.2 the main nomenclature is introduced and the model personalization
problem is formulated mathematically. An overview of the automated personalization
pipeline developed during this thesis is presented in Sec. 4.3. Sec. 4.3.1 describes the
estimation of patient-specific hemodynamics (HD) boundary conditions from time-
varying ventricular volume and arterial pressure data. In Sec. 4.3.2, an automatic,
cascaded algorithm for global electrophysiology (EP) personalization from 12-lead
electrocardiogram (ECG) is presented. Sec. 4.3.3 then describes two algorithms for
global and regional electromechanics (EM) model personalization from ventricular
(regional) volume and pressure data. Next, quantitative and qualitative personaliza-
tion results based on the full personalization pipeline on a large and heterogeneous
patient population are presented in Sec. 4.4. Finally, Sec. 4.5 reports the results of
a pilot study concerning the predictive capabilities of the model personalized using
the proposed methodology. A short summary in Sec. 4.6 concludes the chapter.

37
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4.1 State-of-the-Art Model Personalization

Over the last decades, computational cardiac modeling has attracted significant in-
terest and great progress towards more realistic simulations and increased efficiency
of the models has been achieved by the community (Chap. 3). As models mature, a
critical step that is currently being undertaken is their translation into clinical appli-
cations and clinical practice in general [Nied 16], which requires the transition from
synthetic simulations to precisely personalized patient-specific models. A wide vari-
ety of manual and (semi-)automatic image-based model personalization approaches
using inverse problem techniques have been explored for the different components
of cardiac models. For instance, an overview of common arterial Windkessel (WK)
personalization approaches can be found in [Ster 95]. Personalization of complex 3D
electrophysiology (EP) and biomechanics models is, however, more challenging due
to the significantly higher computational cost of the forward simulations. There-
fore, such algorithms are still an area of active research. A number of different
classes of techniques can be identified in the literature [Talb 14, Mang 18], includ-
ing gradient-based and gradient-free inverse optimization methods, data assimilation
driven methods, methods based on machine learning (ML), and stochastic methods.

Inverse Optimization

In [Webe 10], an approach to personalize an atrial EP model using gradient-based
inverse optimization was proposed. Most authors of 3D model personalization ap-
proaches, however, tend to choose gradient-free over gradient-based methods, as gra-
dients of the involved, rather complex cost functions, are often difficult to obtain
analytically, and finite difference approximations are computationally expensive and
can introduce numerical difficulties. For instance, [Wong 15] proposed a gradient-
free inverse optimization approach for personalization of biomechanical contractility
parameters using a velocity-based objective function. In [Le F 13], mathematical cur-
rents represent information about heart shape and motion, which was exploited to
evaluate the goodness of fit between the biomechanical simulation and the real heart.
A multi-step optimization procedure for the estimation of left ventricular passive my-
ocardial properties was proposed in [Gao 15]. Recently, a combination of gradient-free
optimization and one-dimensional parameter sweeps for myocardial passive material
parameter estimation was presented in [Hadj 17], but like the above approach, it was
only applied to single-ventricle models. The authors of [Xi 13] suggested a similar
multi-step idea, where parameter sweeps are performed iteratively on pre-defined
two- and one-dimensional sample grids to obtain the most reasonable biomechan-
ical parameter estimates among the tested ones. Generally, while methods based
on parameter sweeps (exhaustive search) quickly become intractable, especially for
large numbers of parameters, they enable the exploration of the full landscape of
the objective function, but only at the pre-defined resolution. Optimization-based
methods for cardiac EP further include the work by [Chin 08, Serm 09], a multi-level
estimation approach for regional EP parameters, as well as the two-step approach
proposed by [Rela 11], where, first, Purkinje activity is estimated, then global myocar-
dial conductivity, in order to mitigate problems of parameter identifiability. [Seeg 15]
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proposed a method for iterative regional personalization of cardiac EP tailored for
patients with left-bundle-branch block.

Data Assimilation

In approaches based on data assimilation, the personalization problem is framed in
a way that aims at identifying unknown variables using observations of a dynamical
system. In each iteration, a forecast of the computational model and the assimi-
lated observations are analyzed to estimate the current state regarding uncertainty
in the state and in the observations. Two types of data assimilation are commonly
used: variational [Deli 12] and filtering approaches. The latter includes methods
for global [Chab 12] and regional [Marc 13] active contractility estimation, or passive
material parameter estimation [Xi 11], all based on unscented Kalman filters.

Machine Learning

Recently, data-driven machine learning (ML) methods started to appear, such as the
one-shot global EP personalization method proposed in [Zett 14], where a polynomial
regression model is trained to directly map observed ECG features to conductiv-
ity parameters of the model. In another work [Prak 14], the non-linear relationship
between heart motion descriptors derived from temporal images and parameters of
electrical propagation was learned to regress electrical parameters from observed mo-
tion using a support vector machine. These examples demonstrated that by using
ML, non-linear mappings from observations to cardiac model parameters can indeed
be learned. Even when only limited data was available, by carefully generating syn-
thetic training databases, the regression models could still produce valid predictions
for real data in the reported experiments. Another interesting idea with its root in
ML is to use genetic algorithms, which was successfully tested for estimation of re-
gional Purkinje system parameters in [Cama 10]. More recently, genetic algorithms
were combined with a multi-fidelity modeling approach, where the full 3D model is
approximated by an efficient 0D surrogate model to speed up of the overall estimation
process of active and passive tissue parameters [Moll 18].

Stochastic Methods

The last class of methods presented in this section are stochastic methods, which
aim to not only estimate a single “optimal” parameter set, but also provide insights
regarding confidence of the estimation and solution uniqueness taking into considera-
tion the variety of uncertainties involved in the estimation process [Konu 11, Wall 14,
Neum 14b]. More details are provided in Chap. 6 of this thesis.

Streamlined Whole-Heart Personalization

Most of the methods described above focus only on isolated sub-components of much
more complex cardiac models. Only few researchers tackled the holistic problem of
comprehensive and fast 3D whole-heart personalization by proposing automated and
robust personalization pipelines. [Serm 12] presented one such approach, however it
involves significant manual steps and its robustness to different patients, pathologies



40 Whole-Heart Personalization Through Inverse Optimization

Model 

parameters 
Model 

Model 

state 

Measured 

data 

Object ives 
Pat ient  

Figure 4.1: A computational model f is a dynamic system that maps model input
parameters x to model state (output) variables y. The goal of personalization is to
tune x such that the objectives c, defined as the misfit between y and the corre-
sponding measured data z of a given patient, are optimized (the misfit is minimized).

and data quality remains an open question, because it was tested only on a very
limited number of patients (two). To our knowledge, no comprehensive, integrated
pipeline has been presented to personalize full 3D whole-heart models, including
anatomy, electrophysiology, biomechanics and hemodynamics boundary conditions,
in a streamlined, consistent and automatic fashion on a large number of patients.

4.2 Problem Formulation
As illustrated in Fig. 4.1, any computational model f is governed by a set of param-
eters x = (x1, . . . , xnx )>, bounded within a physiologically plausible domain Ω, and
characterized by (observable) state variables y = (y1, . . . , yny )>. The state variables
can be used to estimate x. Note that some parameters may be pre-estimated or
assigned fixed values. The goal of personalization is to optimize a set of objectives
c = (c1, . . . , cnc)

>. The objectives are scalars defined as ci = ε(yi, zi), where ε is a
measure of misfit, and zi denotes the patient’s measured data (z) corresponding to
yi. For instance, ε(yi, zi) = yi − zi or ε(yi, zi) = (yi − zi)2. Personalization is con-
sidered successful if all user-defined convergence criteria ψ = (ψ1, . . . , ψnc)

> are met.
The criteria are usually defined in terms of maximum acceptable misfit per objective:
∀i ∈ {1, . . . , nc} : |ci| < ψi.

4.3 Integrated Personalization Pipeline
A robust, modular pipeline for comprehensive personalization of the coupled elec-
tromechanics (EM) whole-heart model has been developed. It enables generation of
reproducible, patient-specific models at a large scale by estimating model parameters
efficiently with minimal user interaction from routinely acquired clinical data.

An overview of the personalization modules, the input data, and their interac-
tions is illustrated in Fig. 4.2. First, the “Anatomy” module creates the detailed
bi-ventricular anatomical model as described in Sec. 3.1 from expert-guided segmen-
tations of the patient’s magnetic resonance imaging (MRI) data. Next, the endocardia
are tracked over time in the images to compute the time-varying ventricular volume
curves. Together with the pressure curves from cardiac catheterization, these are
input to the “Hemodynamics” module, which estimates the parameters of the WK
models for both arteries, see Sec. 4.3.1. These lumped models serve as boundary con-
straints for the biomechanics model in the final step. Next, the “Electrophysiology”
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Figure 4.2: Flowchart of the integrated personalization pipeline. Blue represents
data and flow of data, and red represents personalization modules.

module described in Sec. 4.3.2 uses 12-lead ECG and a torso atlas registered to the
patient to compute the personalized electrical potentials on the anatomical model do-
main. The potentials trigger myocyte contraction in the biomechanics model. Finally,
the active and passive mechanical tissue properties are estimated in the “Biomechan-
ics” module such that the output of the model matches well the time-varying ven-
tricular volume and ventricular pressure curves, as well as other important features
derived from the data, see Sec. 4.3.3.

The output of the pipeline is the personalized whole-heart EM model defined by
the patient’s anatomy and a set of personalized model parameters. In total, 23 model
parameters are estimated:

• Twelve parameters related to hemodynamics (HD) boundary conditions:

– Five WK parameters (C, Rc, Rp, Pref, Pinit) each for both arteries (aorta
and pulmonary artery).

– One parameter each for the pressure of the pulmonary vein (PLA) and vena
cava (PRA).

• Four EP parameters:

– Three diffusivity values (νMyo, νLV, νRV).
– Time during which the ion channels are closed (τclose).

• Seven active and passive parameters of the biomechanics model:

– Maximum contractility (σ̂) for both ventricles.
– Contraction rates (kATP) for both ventricles.
– Relaxation rates (kRS) for both ventricles.
– Global stiffness factor (β) of the Holzapfel-Ogden (HO) model.
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Note that in the case of regional biomechanics personalization (Sec. 4.3.4), up to
one contractility parameter per each of the 17 American Heart Association (AHA)
segments of the left ventricle (LV) is estimated, and one for the right ventricle (RV),
thus increasing the total count to up to 39 estimated parameters. In the following sec-
tions, the individual modules of the proposed personalization pipeline are presented.

4.3.1 Hemodynamics: Personalized Artery Boundary Conditions

The hemodynamics personalization consists in estimating the WK parameters of both
arteries.

Estimated Parameters

As described in Sec. 3.4, the parameters of the three-element WK models, fWK, are:
artery compliance C, characteristic resistance Rc, peripheral resistance Rp and remote
reference pressure Pref. In addition, the initial pressure Pinit is estimated to ensure
that the first computed cycle during a 3D whole-heart EM simulation is already close
to the steady state.

Personalization Approach

Some manual pre-processing steps are required to extract and synchronize the time-
varying pressure curves from the catheter data and the volume curve derived from
MRI tracking of the endocardium. First, the user interactively selects a cardiac cycle
in the pressure curve and low-pass filters the artery and ventricular pressures, Par and
Pven. Next, because the heart rate of a patient at the time of catheterization and
at the time of MRI acquisition can be different, the pressure curve is automatically
adjusted to match the heart rate at the MRI acquisition. As a simple temporal scaling
would not be physiologically coherent, the following algorithm is applied. First, the
systolic portion of the pressure curve is stretched such that the ejection time (ET)
observed in the pressure measurement (time during which ventricular pressure is
higher or equal than arterial pressure) matches the ET measured in the volume curve
(time during which the ventricular flow is negative). Then, the pressure curves are
shifted interactively such that they are synchronized with the volume curve.

Although pre-processing requires user interaction, the parameter estimation pro-
cedure itself is fully automatic. Let xWK be a vector of all parameters of the WK
model except the initial pressure Pinit. xWK is estimated automatically using inverse
optimization:

minimize
xWK

ζ(xWK)

subject to xWK ∈ ΩWK ,
(4.1)
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Figure 4.3: The different steps involved in the estimation of the WK parameters of
the arteries for an example case.

where ΩWK is the domain of physiologically plausible WK parameters (upper and
lower bounds for each parameter). The cost function ζ consists of three terms:

ζ(xWK) = 1
N

N∑
t=1

ε
(
Par[t], Par(fWK(xWK))[t]

)
+

ε
(
minPar,minPar(fWK(xWK))

)
+

ε
(
maxPar,maxPar(fWK(xWK))

) (4.2)

Par(fWK(xWK)) is the time-series of artery pressure computed by the model fWK using
the current parameters xWK and Par is the time-series of measured artery pressure.
N is the number of measured samples and ε(·, ·) is the misfit defined as the squared
difference between the two inputs. The first term in Eq. (4.2) ensures good overall fit
between both curves. It computes the normalized sum of squared differences between
the measured and computed curves. The second and third terms are penalty terms
that ensure accurate fit of the arterial pressure at end-diastole (ED) and end-systole
(ES), where the pressures reach their minimum and maximum, respectively. Solving
Eq. (4.1) amounts to estimating all the WK parameters but the initial pressure Pinit.
The latter is obtained automatically from the computed pressure curve over several
cycles such that the first computed cycle during a 3D whole-heart simulation is close
to the steady state.

Fig. 4.3 illustrates the full WK personalization procedure described above. For
each patient with complete catheter pressure data, the procedure is performed twice:
once for the aorta and once for the pulmonary artery.

4.3.2 Electrophysiology: Cascaded Inverse Optimization
In Sec. 3.2, two cardiac EP models were presented. The first option is LBM-EP, a
Lattice-Boltzmann method (LBM) approach that solves the mono-domain Mitchell-
Schaeffer cell model on a grid. The model parameters are closely related to the shape
of the action potential (AP). The second option is Graph-EP, a very fast graph-
based solver that uses a simplified AP formulation to compute repolarization. In
this section, the personalization strategy is presented in detail for LBM-EP, but the
approach works for both models.
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Estimated Parameters

Four parameters need to be personalized for the EP model fEP. The first parameter
is related to the timing of the AP: τclose, the time during which the ion channels
are closed. The other three parameters control the speed of electrical wave prop-
agation for three different regions of the computational domain: the left and right
endocardium with fast electrical diffusivity to mimic the Purkinje network, νLV and
νRV, and the remaining myocardium, νMyo. A major goal of this thesis was to develop
robust personalization strategies that do not require specialized electrical data such
as contact mapping catheters. The proposed approach is therefore solely based on
routinely acquired 12-lead ECG data.

Personalization Approach

The personalization algorithm, called cascadeEP, is outlined in Alg. 1.

Algorithm 1 Iterative, cascaded EP personalization
Require: Anatomical model, ECG features ∆QRS, ∆QT, ]EA

1: procedure cascadeEP
2: Initialize τ 0

close, ν
0
Myo, ν

0
LV, ν

0
RV . Default values

3: for i ∈ {1, . . . , niter} do
4: νiMyo, ν

i
LV, ν

i
RV ← fitQRS(τ i−1

close, ν
i−1
Myo, ν

i−1
LV , νi−1

RV ) . Stage 1
5: νiLV, ν

i
RV ← fitEA(τ i−1

close, ν
i
Myo, ν

i
LV, ν

i
RV) . Stage 2

6: τ iclose ← fitAPD(τ i−1
close, ν

i
Myo, ν

i
LV, ν

i
RV) . Stage 3

7: return τniter
close , ν

niter
Myo , ν

niter
LV , νniter

RV . Final personalized parameters

Subroutines

8: function fitQRS(τclose, νMyo, νLV, νRV) . Jointly scale diffusivities
9: κ̂← argminκ ε(∆QRS, ∆QRS(fEP(τclose, κνMyo, κνLV, κνRV)))

10: ν∗Myo, ν
∗
LV, ν

∗
RV ← κ̂νMyo, κ̂νLV, κ̂νRV

11: return ν∗Myo, ν
∗
LV, ν

∗
RV

12: function fitEA(τclose, νMyo, νLV, νRV) . Tune Purkinje diffusivities
13: ν∗LV, ν

∗
RV ← argminνLV,νRV

ε(]EA,]EA(fEP(τclose, νMyo, νLV, νRV)))
14: return ν∗LV, ν

∗
RV

15: function fitAPD(τclose, νMyo, νLV, νRV) . Rectify time constant
16: τ ∗close ← τclose +∆QT −∆QT(fEP(τclose, νMyo, νLV, νRV))
17: return τ ∗close

First, the model parameters are initialized to default values, which were empir-
ically set to τ 0

close = 150 ms, ν0
Myo = 500 mm2/s, ν0

LV = 2000 mm2/s, and ν0
RV =
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2000 mm2/s in all experiments. Next, the cascade strategy splits the fitting of differ-
ent personalization objectives into three different personalization stages (lines 4–6).
The first and second stage are geared towards ventricular depolarization, i. e., the
QRS complex, whereas the third stage aims at action potential duration (APD) and
thus covers also ventricular repolarization.

The purpose of the first stage, fitQRS, is to match measured ∆QRS and computed
∆QRS, the QRS duration derived from the model output fEP. This is achieved by
jointly scaling all three diffusivity parameters using a common scaling factor κ̂, which
is determined by optimization. The second stage, fitEA, reduces the electrical axis
(EA) misfit between measured ]EA and computed ]EA by tuning the fast endocardial
diffusivities νLV and νRV. In this stage νMyo remains fixed in order to minimize the
effect on ∆QRS. The third personalization stage, fitAPD, rectifies the time constant
τclose by adding the difference between ∆QT and ∆QT to its previous value. The opti-
mization calls (lines 9 and 13) are performed using bound optimization by quadratic
approximation (BOBYQA) [Powe 09], a robust and fast, bound-constrained, gradient-
free optimizer. In each stage, BOBYQA is initialized with the most recent parameter
values. The objective function ζEP = ε(·, ·) in lines 9 and 13 returns the squared
distance between the two scalar inputs. The bound-constraints for the optimization
are determined on-the-fly based on two requirements. First, myocardial diffusivity
has to be slower than endocardial (Purkinje) diffusivity, νMyo ≤ νLV, νMyo ≤ νRV. Sec-
ond, at any time, all parameters have to remain within the physiologically plausible
parameter domain ΩEP of the EP model.

The multi-stage cascade procedure described above is repeated niter = 3 times,
which was set empirically to facilitate escaping from local optima and to yield more
accurate and robust results, even for highly pathological cases.

4.3.3 Biomechanics: Global Volume and Pressure Fitting
Global biomechanics personalization of the cardiac EM model described in Sec. 3.3
consists in estimating the governing parameters of the active cell contraction model
and of the passive HO tissue model. In addition, HD parameters of the atrial models
are personalized during this process.

Estimated Parameters

Seven tissue parameters of the EM model, fEM, gathered in a parameter vector xtissue,
are personalized, one for the passive component of the model, the global stiffness fac-
tor β, and three parameters each for LV tissue and RV tissue for the active force
model. The active parameters per ventricle comprise maximum asymptotic contrac-
tion force σ̂, contraction rate kATP, and relaxation rate kRS. The choice of granular-
ity of these parameters (per ventricle) is based on considerations of computational
tractability and parameter identifiability, given the amount and quality of available
clinical measurements. In particular, the EM personalization approach has to rely
on ventricular volume measurements derived from cardiac cine MRI; and ventricular
pressures obtained from cardiac catheterization (cf. Sec. 4.3.1). The pressures are
further used to personalize two additional parameters of the left atrium (LA) and
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right atrium (RA) models: pulmonary vein pressure PLA, and vena cava pressure
PRA, combined in xveins.

Personalization Approach

The proposed EM personalization algorithm, globalEM, is outlined in Alg. 2.

Algorithm 2 Global EM personalization
Require: Anatomical model, ventricular volume and pressure measurements zEM

1: procedure globalEM
2: Initialize x0

tissue,x0
veins . Default values

3: x∗veins ← fitDP(x0
tissue,x0

veins) . Step 1
4: x∗tissue ← fitPV(x0

tissue,x∗veins) . Step 2
5: return x∗tissue,x∗veins . Final personalized parameters

Subroutines

6: function fitDP(xtissue,xveins = (PLA, PRA)) . Adjust vein pressures
7: yEM = fEM(xtissue,xveins)
8: P ∗LA ← PLA + minPven(zEM(LV))−minPven(yEM(LV))
9: P ∗RA ← PRA + minPven(zEM(RV))−minPven(yEM(RV))

10: return (P ∗LA, P
∗
RA)

11: function fitPV(xtissue,xveins) . Optimize tissue parameters
12: x∗tissue ← argminx ζEM(zEM, fEM(x,xveins))
13: return x∗tissue

After initializing all parameters (xtissue and xveins) with their default values, the
vein pressure parameters xveins of both atrial models are calibrated in fitDP. The
goal of this first step is to fit the the diastolic pressure of the ventricles to the mea-
surements. To this end, a forward model run of the EM model fEM is performed,
yielding the model output yEM. In lines 8–9, the parameters are adjusted by adding
the difference between measured and computed diastolic pressures (minimum ven-
tricular pressure approximately corresponds to the diastolic pressure) to the initial
parameter values. This fitting strategy is motivated by the fact that during diastole,
when the atrioventricular valves are open, pressure in the ventricles is dominated by
pressure in the atria, which in turn is dominated by pressure originating from the
veins.

The purpose of fitPV (step 2) is then to jointly optimize the biomechanical tissue
parameters xtissue by fitting of pressure and volume curves using BOBYQA optimiza-
tion: a carefully designed objective function ζEM determines the similarity between
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measured (zEM) and computed (yEM) pressure and volume curves by computing a
weighted sum of objectives:

ζEM(zEM,yEM) =
12∑
i=1

wiεi

(
zi −mzi

SDzi

,
yi −mzi

SDzi

)
, (4.3)

where wi is the weight of the ith objective, zi ∈ zEM and yi ∈ yEM are individual
measurements and model outcomes, respectively, and εi(·, ·) is the misfit function
(cf. Sec. 4.2). Incorporating the means and standard deviations (computed off-line
from all available patients) per measurement, mzi

and SDzi
, balances contributions of

the individual objectives to ζEM (prior to weighting), as they cancel out discrepancies
caused by different units and value ranges of the individual measurements.

The objectives and their manually tuned weights are listed in Tab. 4.1. All ob-

Table 4.1: Objectives of fitPV.

Measurement of objective ci Misfit function εi Weight wi

Time-varying LV volume SSD 22.2%
Time-varying LV pressure SSD 13.3%
LV ejection fraction (EF) L2-norm 8.9%
LV stroke volume (SV) L2-norm 8.9%
LV end-systolic volume (ESV) L2-norm 8.9%
LV end-diastolic volume (EDV) L2-norm 8.9%
LV end-systolic pressure (ESP) L2-norm 8.9%
LV end-diastolic pressure (EDP) L2-norm 4.4%

RV EDV L2-norm 4.4%
RV ESP L2-norm 4.4%
RV SV (computed) vs. LV SV (measured) L2-norm 4.4%
RV EDP L2-norm 2.4%

jectives can be computed from the measured and computed time-varying volume and
pressure curves. The misfit function SSD (first two objectives in Tab. 4.1) denotes the
sum of squared differences between two time-series (e. g., measured versus computed
ventricular volume Vven).

Remarks

As one may notice from Tab. 4.1, the combined weights of all RV-related objectives
are lower than those of the LV. This is an attempt to minimize the impact of the
often lower quality RV segmentation and tracking performance owed to the thin
RV myocardium, which is difficult to outline and track accurately in routine MRI.
Furthermore, the second-last objective in Tab. 4.1, the misfit between SV of LV and
RV, drives the model personalization towards equal SV for both ventricles. This is
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needed because measured ejected blood volume (SV) of RV might differ from LV due
to measurement errors. In a real heart, the amounts are precisely equal for both
ventricles [Fran 62]. Finally, in order to minimize transient effects, whenever the
forward model fEM is computed, two heart cycles are simulated and the computed
pressures and volumes in yEM are based on the second cycle only.

Parameter Default Values

Default values of the personalized atrium model parameters are based on normal val-
ues for healthy hearts, PLA = 1.6 kPa and PRA = 0.7 kPa, respectively. For LV and
RV maximum contraction force, the default value is 100 kPa and must remain within
[0; 500] kPa during personalization. Contraction and relaxation rates for both ven-
tricles are initialized with kATP = 20 s−1, kRS = −20 s−1 and bounded by [5; 100] s−1

and [−100;−5] s−1, respectively, and the stiffness parameter is initialized with β = 1
and bounded by [1/5, 5].

4.3.4 Towards Regional Biomechanics Personalization
While the global biomechanics personalization approach globalEM described above
can accurately adapt the model to fit global indicators of heart physiology such as
EF, SV, and pressure, it does not take into account potential localized functional
variations that are occurring only in specific regions of the myocardium, which could
be induced by scars or other (non-)pathological alterations. This could potentially
lead to inconsistencies between cardiac dynamics observed in the images and the
computed motion.

Estimated Parameters

An enhancement of the global pressure and volume fitting procedure fitPV from the
previous section is proposed, which introduces a set of regional active force parameters
based on the AHA segmentation (cf. Sec. 3.1) of the LV part of the anatomical model.
More precisely, instead of having only one global contractility parameter σ̂LV for the
entire LV, one value for each of the 17 AHA segments is defined: σ̂AHA1 . . . σ̂AHA17
(the one for RV, σ̂RV, remains).

Regional Volume Measurements

In order to identify regional alterations in cardiac function, localized observations
are extracted from the clinical data and compared against corresponding model out-
put. The proposed method relies on “regional volumes” [Marc 13] computed from the
LV endocardium meshes tracked from cine MRI, and from the simulated dynamic
meshes of the EM model fEM. Regional volume curves represent portions of the
time-varying LV cavity volume. These portions are computed from regional volume
meshes, which are formed by the endocardial surface patch of a given AHA segment
and the LV barycenter, cf. Fig. 4.4. Evaluation and comparison of regional volumes
could help identifying local alterations of heart function, as supported by clinical
literature [Baxl 71].
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Figure 4.4: Visualization of regional volumes meshes of three example AHA seg-
ments derived from a real patient’s anatomical model. From left to right: basal
anterolateral, mid anterolateral, and apical anterior (cf. Fig. 3.3). White dots repre-
sent the LV barycenter.

Joint Estimation of Regional Parameters

The global objective function from Eq. (4.3) is adapted (denoted ζreg
EM) to incorporate

regional volume measurements. In particular, the time-varying LV volume objective
from the global objectives listed in Tab. 4.1, is replaced by 17 equally-weighted re-
gional volume objectives, where the misfits are SSDs per time-varying regional volume
curve (one per AHA segment). The same is applied to all other objectives computed
from the LV volume curve. For example, 17 “regional EFs” replace the global LV EF
objective. All EM parameters including regional contractility values can be estimated
jointly by replacing the global cost function in the pressure and volume fitting proce-
dure fitPV by ζreg

EM in Alg. 2. It should be noted, however, that this approach may
not yield good results due to parameter identifiability issues, and it is computationally
demanding and may quickly fall victim to the curse of dimensionality [Bell 57].

Hierarchical Coarse-to-Fine Estimation Approach

To overcome these issues, a faster and more robust approach is proposed, which fol-
lows a multi-step coarse-to-fine strategy inspired by recent work in lung model estima-
tion [Fuer 15]. The idea is to address the multi-parameter optimization problem in a
hierarchical way. First, the global LV myocardium active force value σ̂LV is estimated
such that global EF, SV, etc., are fitted as described in Sec. 4.3.3. Then, the regional
volume for each AHA segment is analyzed to identify potential deviations between
model and measurements. The LV is finally divided into two regions, one with the
largest deviation, and the rest, and the active force is estimated separately for both re-
gions. The process could be iterated if needed. Such an approach is motivated by the
proven good performance record of hierarchical, coarse-to-fine optimization strategies
in terms of optimization results (less prone to local minima) and speed (require less
iterations overall), as demonstrated in machine learning (ML) [Zhen 14, Ghes 16b],
model personalization [Chin 08, Fuer 15, Dham 16, Dham 16, Phei 17, Bala 17], and
image registration [Verc 09].
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4.3.5 Implementation Details
The entire personalization pipeline is implemented in an integrated environment
based on C++ with an interactive user interface (UI) for live-testing (see appendix A.1
for more details), but also with bindings to the Python scripting language [Van 11]
to enable rapid experimentation and batch processing, which was used for all exper-
iments in this thesis. The framework is controlled through a per-patient XML study
file, which gathers the settings of the optimizations and other personalization steps to
ensure reproducibility, as well as the resulting estimated parameters. Python scripts
control the estimation sequence: first anatomy (cf. Sec. 3.1), then HD boundary con-
ditions (cf. Sec. 4.3.1), then EP (cf. Sec. 4.3.2), and finally biomechanics (cf. Sec. 4.3.3
or Sec. 4.3.4). At each stage, the estimated parameters can be saved to the XML
study file such that the process can be restarted or refined from any accomplished
stage. A generic BOBYQA optimizer [Powe 09] has also been integrated to handle
the EP and biomechanics personalization seamlessly, where the model is seen as a
black box that is called by the optimizer during each iteration.

4.4 Experiments and Results

4.4.1 Description of Study Cohort
A total of ndatasets = 113 patients, many suffering from dilated cardiomyopathy
(DCM), see Sec. 1.1.1, were included in this study. Patient data was acquired at
four clinical sites:

• Department of Medicine III, University of Heidelberg

• Ospedale Pediatrico Bambino Gesù, Rome

• Great Ormond Street Hospital, University College London

• Department of Congenital Heart Diseases, German Heart Center Berlin

The latter three sites and the collaboration partner of this thesis, Siemens Healthi-
neers, were involved in the MD-Paedigree project funded by the European Commis-
sion under grant agreement 600932 (FP7-ICT-2011-9), which focused on pediatric
cardiology. Therefore, a significant portion of the patients, about one third (33), are
children. The youngest patient was one year at the time of data acquisition, while
the oldest was 81 years (mean: 44.5 years). In some of the following analyses, the
cohort is divided into pediatric (< 18 years) and adult (≥ 18 years) population. The
two groups can be distinguished by their respective coloring in figures: yellow for
pediatric and purple for adult.

Required Data

A complete patient dataset (for the purpose of this work) consists in a steady-state
free precession (SSFP) cardiac cine MRI acquisition, a 12-lead ECG reading, and
time-varying pressure curves from catheterization of both ventricles and both arteries.

https://www.healthcare.siemens.com/
https://www.healthcare.siemens.com/
http://www.md-paedigree.eu/
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The different personalization modules (Sections 4.3.1 to 4.3.3) require different inputs.
If parts of the data were missing for a patient, some personalization steps could either
not be performed at all or performed only in a limited fashion:

• If MRI was incomplete or missing, no segmentation, no time-varying ventricu-
lar volume curves and no anatomical model could be generated. Those con-
stitute essential inputs for the different models and personalization modules.
Therefore, such datasets were never included. The total number of successfully
generated patient-specific anatomical models is 113.

• If artery pressures were missing, the respective WK models could not be
personalized and their parameters were set to default values. The number of
available aorta and pulmonary artery pressure data were 67 and 57, respectively:
a total of 124 WK models were personalized.

• If 12-lead ECG was missing, the EP model could not be personalized and its
parameters were set to default values. Only five ECG were missing, thus the
total number of personalized EP models was 108.

• If ventricle pressures were missing, the affected terms in the cost function for
personalizing the biomechanics model were disabled and thus the fitting was
based on volume curves only. For 55 patients, all pressures were available.

Although the number of complete patient datasets was only 53, the final output,
i. e., the whole-heart EM models, could be generated for all 113 patients that were
included in this study.

4.4.2 Whole-Heart Personalization: Goodness of Fit
Earlier versions of the proposed personalization pipeline and personalization outcomes
on a subset (only one clinical center and reduced number of patients) of the cohort
used in this thesis were reported at a biomedical imaging conference [Neum 14c] and
in two clinical journal publications [Kayv 15, Amr 16]. The results presented below
are—for the first time—based on the latest model and personalization pipeline ad-
vancements, also featuring the largest multi-clinic patient cohort yet.

Anatomical models

First, the 3D anatomical models for all cases were generated from cine MRI under
expert guidance and tracked over time to compute the time-varying volume curves
for both ventricles, see Sec. 3.1 for more details. Some results are visualized in
appendix A.2. The myocardium mass according to the myocardium volume at ED and
assuming muscle tissue density of 1.06 g/ml [Urba 01] ranged from 78.6 g to 537.4 g
with mean and SD of 274.2 g ± 82.4 g. The LV EF and SV means were measured as
36.1±12.4% and 79.5±28.2 ml, and ranged from 10.2 to 63.2% and 18.0 to 146.7 ml,
respectively. The differences in terms of EF were only minor between children and
adults, but for myocardium mass and SV a shift towards lower values was observed
for the pediatric group. For instance, the mean SVLV was about 30 ml less. This was
expected since young hearts are smaller and thus can have much lower EDV.
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Figure 4.5: Three example results of measured and fitted arterial pressure curves
computed using the personalized WK parameters and the flow derived from the ven-
tricular volume curves.

The severity of cardiac disease is often characterized in terms of left ventricular
ejection fraction EFLV. In this cohort, eight patients were identified as normal with
EFLV between 55% and 70%, 36 patients with moderate EFLV reduction between 40%
and 55%, and the majority, 69, with severe EF reduction (EFLV < 40%).

Estimation of Artery Parameters

Next, the Windkessel (WK) model parameters for both the aorta and pulmonary
artery were personalized for all cases with available arterial pressure measurements.
The semi-automatic pre-processing steps described in Sec. 4.3.1 could be performed
within minutes, after which the automatic personalization computed the five WK
parameters per artery within seconds. Personalized artery pressures matched quali-
tatively well for almost all patients. Example results are shown in Fig. 4.5. In some
cases, the trends were more difficult to capture. This could be explained by inaccu-
rate flow data, especially for RV flow, where segmentation is difficult. However, in
all cases, diastolic and peak pressures were still captured, which are the most impor-
tant features for the subsequent biomechanical computations, as the flow will then
be directly computed by the model (cf. Fig. 4.10). Cohort-specific analysis was not
performed as artery pressures were not acquired for pediatric patients.

Estimation of Electrophysiology Parameters

To evaluate the performance of the EP personalization module, first, the fit between
measured and computed ECG features after EP model personalization was analyzed
for all 108 patients with proper ECG data. Measured ECG statistics based on all
patients are shown in Tab. 4.2.

Fig. 4.6 shows the agreement between measured and computed electrical features
after EP personalization. Absolute errors are listed in Tab. 4.3. As one can see, the
QRS and QT fit were excellent. The mean errors were well below 1% of the respective
cohort-average values (cf. Tab. 4.2), and even the maximum observed errors could
be considered minor, which leads to the conclusion that the personalization pipeline
could match successfully both objectives for all cases. The EA is a more complex
measurement that was expected to be much harder to fit. Still, the mean absolute
error over the entire cohort was below 5% of the maximum possible error (180◦), and
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Table 4.2: Functional characteristics of the cohort derived from ECG.

Feature Mean SD Min Max Unit

∆QRS 110.0 27.6 68.0 185.0 ms
∆QT 398.6 42.6 302.0 520.0 ms
]EA 12.0 54.9 -174.0 120.0 deg
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Figure 4.6: Bland-Altman plots showing the good agreement between measured
and computed EP features: QRS and QT durations are shown in the left and mid
panel, respectively. The blue line is the mean of the differences and the red lines
delineate the 95% confidence interval (CI). The purple and yellow dots represent
adults and children, respectively. As one can see in the right panel, the goodness of
fit in terms of EA was good in the majority of patients, however for some patients
the fit was poor and even some larger outliers were present. The visualization uses
polar coordinates, where the center represents a difference of ]EA−]EA = −90◦ and
the thick, black outer circle +90◦. The dashed inner circles are located at 45◦ steps:
the circle closest to the mean (blue) represents zero difference (desired, perfect fit),
and the intermediate circles ±45◦.

almost 80% of the cases yielded acceptable errors of less than 15◦. One potential
reason for larger errors is solution non-existence due to possibly invalid assumptions
of the employed EP model for patients with complex pathologies.

One might expect that discrepancies are larger for patients with pathological heart
axis. However, as one can see from Fig. 4.6, right panel, even for the few patients with
extreme axis deviation (between −180◦ and −90◦, cf. Fig. 2.3), some models could be
fitted almost perfectly. Average errors in the “right-intermediary” and right-deviated
segments (between 30◦ and 120◦) were lower compared to the “left-intermediary” and
left-deviated segments (between −60◦ and 30◦). However, no general rules could be
derived since outliers (positive or negative) existed throughout the full EA spectrum.
These observations highlight the complexity and high uncertainties involved in the
inverse EP problem.

Next, the distributions of estimated EP parameters were analyzed, see Fig. 4.7.
The pediatric and the adult patient group were considered separately. Both τclose-
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Table 4.3: Goodness of fit in terms of absolute differences between ECG features.

Absolute error Mean SD Min 50% 80% 95% Max Unit

|∆QRS −∆QRS| 0.3 0.5 0.0 0.1 0.7 1.6 2.2 ms
|∆QT −∆QT| 3.1 2.3 0.0 2.7 4.7 6.7 11.3 ms
|]EA − ]EA| 8.9 17.1 0.0 0.5 16.2 43.9 86.3 deg
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Figure 4.7: Histograms showing the distributions of estimated EP parameters.
Purple and yellow colors represent adult and children group, respectively.

distributions were rather mono-modal, except for few outliers. However, the peak was
shifted slightly towards lower values for the pediatric group. This can be attributed
to the fact that especially in young children, heart rates are typically much higher
compared to adults. Because an increased heart rate can reduce action potential
duration (APD) and τclose is closely related to the shape of the AP, such a difference
could be expected. The νMyo-distributions looked qualitatively similar, yet the mean
myocardium diffusivity was more than 13% faster in the pediatric patient group.
This is in accordance with findings from animal experiments, suggesting a negative
correlation between age and conduction velocity [Jone 04].

Run-time performance was good considering the iterative nature of the cascaded
EP personalization algorithm (Alg. 1). The average number of forward model runs
until convergence was 108.7 ± 25.2. This translates to about five to 15 minutes on
a workstation computer with mid-range graphics processing unit (GPU). To reach
this level of performance, the internal parameters of BOBYQA (initial step lengths,
convergence criteria, . . . ) were tuned carefully on a subset of the patients. The goal
was to find the best trade-off between accuracy and minimum number of required
(costly) LBM-EP forward runs.

Estimation of Biomechanics Parameters

Next, the biomechanics personalization module was evaluated in terms of its ability
to capture global indicators of cardiac function, focusing on LV function. From the
results in Tab. 4.4 and Fig. 4.8 one can see that the personalization algorithm enabled
to fit the model such that computed EF and SV were accurate within 1.3± 1.3% and
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Figure 4.8: Bland-Altman plots showing the good agreement between measured
and computed global indicators of LV cardiac function. The blue line is the mean of
the differences and the red lines delineate the 95% CI. The purple and yellow dots
represent adults and children, respectively.

4.1 ± 3.2 ml of the corresponding measurements, which is below clinical variability
of 6% [Mood 15] (for EF measured from SSFP cardiac MRI, the imaging protocol
used in this work). Errors between computed RV SV and measured LV SV were

Table 4.4: Goodness of fit in terms of absolute differences between measured and
computed global LV function indicators.

Absolute error Mean SD Min 50% 80% 95% Max Unit

|EFLV − EFLV| 1.3 1.3 0.0 1.0 1.9 4.3 5.8 %
|SVLV − SVLV| 4.1 3.2 0.0 3.5 5.5 11.2 14.8 ml
|SVRV − SVLV| 9.0 9.7 0.1 5.8 15.1 26.6 56.0 ml

larger on average, albeit this was expected and is acceptable given the setup of the
the personalization procedure (globalEM), and in particular the employed objec-
tive function, which was designed to respect the difficulties in RV segmentation and
tracking (cf. Sec. 4.3.4). Overall, the personalized model could capture quantitatively
well the main global features of cardiac function for a large patient population.

Also qualitatively, the goodness of fit was evaluated. For instance, the dynamic
MRI sequences were compared to EM-simulated motion (Fig. 4.9), and the fit be-
tween measured and computed time-varying ventricular pressure and volume curves
were analyzed. For most patients, very good agreement was observed by visual in-
spection, see Fig. 4.10. Notable misfits occurred mostly towards the end of ventricular
diastole, when the atria contract (atrial systole) and rapidly push blood through the
atrioventricular valves into the ventricles, which can cause sudden increase in ven-
tricular volume and pressure. Since in the employed whole-heart model, the atrium
models are highly simplified, and because the current personalization pipeline covers
only rudimentary atrium model personalization, such mismatches were expected for
certain patients.
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Figure 4.9: Qualitative goodness of fit between cine MRI acquisition and motion
computed by the model. Contours overlaid on top of the short-axis image slice rep-
resent cut through the computed myocardium surface at three different time points,
from diastole (left) to peak-systole (right). Computed motion and images fit qual-
itatively well throughout the heart cycle. Colors encode active cell force (red is
strongest).
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Figure 4.10: Goodness of fit between measured (black) and computed (red) LV
pressure (top) and volume (bottom) curves for three example patients (left to right)
after whole-heart EM personalization. Thin curves in pressure plots represent arterial
(aortic) pressures.

Distributions of estimated passive and active biomechanics parameters for all
patients are visualized in Fig. 4.11. Estimates follow a fairly mono-modal distribu-
tion with highest frequency near the parameter default values (cf. last paragraph of
Sec. 4.3.3). No major differences between both patient groups were found, although
the passive stiffness parameter, β, appears to have more “outliers” towards larger
values (stiffer tissue) for the adult group, which may be explained to some extent by
fibrotic cardiac remodeling of the aging heart as suggested in literature [Bier 11].

Finally, run-time performance was evaluated. The average number of forward
model runs until convergence of the biomechanics personalization module was 58.5±
21.7. Considering that two heart cycles were computed in each iteration (measure-
ments taken from second cycle only) and the computation time of each cycle is typi-
cally two to five minutes (depending on mesh size, heart rate, etc.,), the full procedure
takes between four and twelve hours on standard hardware. It is therefore not suitable
for specific clinical applications where immediate answers are required. Nevertheless,
for many conceivable use-cases, especially in diagnostics and treatment planning, such
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Figure 4.11: Histograms showing the distributions of estimated LV active (σ̂, kATP,
kRS) and passive (β) biomechanics parameters. Purple and yellow colors represent
adult and children group, respectively.

wait times are acceptable (e. g., running the personalization over night and analyze
the results the next day).

4.4.3 Preliminary Evaluation of Regional Mechanics Approach
Next, the regional biomechanics personalization was evaluated.

Experiments on Synthetic Data

The performance of the regional parameter estimation method was first analyzed as-
suming an idealized setup where perfect fit can be achieved between measurements
and simulation. To this end, instead of relying on noisy and potentially erroneous
regional volume curves derived from the MRI-based LV tracking, synthetic measure-
ments were generated directly from the EM model of the selected patient. This implies
that the obtained measurements are free from measurement noise and thus they can
theoretically be matched perfectly during the personalization process. More impor-
tantly, the ground-truth regional contractility parameters, denoted σ̂AHA1 . . . σ̂AHA17,
were known, enabling quantitative evaluation of the estimated parameters.

Two patient datasets were selected for experimentation based on their evident
asynchronous cardiac motion. A coarse biomechanical model calibration was per-
formed based on measurements derived from global left and right ventricular volume
curves to define the baseline model, see Sec. 4.3.3. The seven estimated model pa-
rameters include contractility values of LV and RV (σ̂∗LV, σ̂∗RV). Since the regional
personalization method focuses on contractility only, all other parameters remained
fixed from now on. Next, all regional LV values were initialized to the estimated global
LV contractility: σ̂AHAi = σ̂∗LV∀i ∈ {1 . . . 17}. The to be tuned regional parameters
σ̂AHAi and the RV contractility σ̂RV are gathered in a parameter vector denoted xreg

EM.

Sensitivity Analysis. Before looking into evaluation of the regional parameter
estimation process itself, the idea was to make sure that the parameters in xreg

EM can be
identified from the regional volumes. Ideally, one would observe a one-to-one mapping
between parameters and measurements: modifying the contractility of a single AHA
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Figure 4.12: Regional parameter sensitivity for the first evaluated patient. Wedge
on the left to each AHA “Bull’s eye” plot represents the RV. The title of each plot
lists the parameter that has been modified to generate that plot.

segment would affect only the regional volume corresponding to that segment (or
a small subset of AHA segments in close neighborhood). To this end, a sensitivity
analysis was carried out. The forward EM model was computed using four different
settings per parameter, where the value of each parameter σ̂AHAi ∈ xreg

EM was modified
individually by ±50 kPa and ±100 kPa. Then, the regional volume variability was
quantified by computing the standard deviation of the regional volumes among the
four simulations per parameter.

Results for the variability in “regional EF” for one patient are illustrated in
Fig. 4.12. As one can see, there is a clear correlation between model parameter
and the region of measurement variability for all parameters. This is true for both
datasets (plots for the second evaluated patient are not shown but were qualitatively
similar), suggesting generalizability of these findings. Although a perfect one-to-one
mapping was not observed (due to the intrinsic inter-dependency between the differ-
ent regions in the ventricle), these findings suggest that the selected measurements
and parameters still provide a good basis for regional personalization of active con-
traction force.

Regional Personalization in a Simplified Setup. Building upon the results of
the sensitivity analysis, a simple experiment was designed to evaluate the identifia-
bility of the regional model parameters from the regional volume measurements in
the framework of an actual (but highly simplified) parameter estimation process. In
particular, a series of experiments was conducted, where for each experiment a sin-
gle parameter σ̂AHAi ∈ xreg

EM was modified by a given value. This mimics a scenario
where the LV is contracting normally everywhere, except in the AHA segment i, which
may be caused by a myocardial scar in that segment. Then the forward model was
computed and the resulting simulated regional volume curves were treated as mea-
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surements in the subsequent estimation process. The goal was to estimate σ̂AHAi,
while all other parameters remained fixed at their ground-truth values. This one-
parameter estimation problem was solved using BOBYQA optimization. Initialized
at the global LV contractility value, σ̂AHAi = σ̂LV, the optimizer iteratively minimized
the overall regional cost ζreg

EM from Sec. 4.3.4, yielding σ̂AHA
∗
i = argmin ζreg

EM.
Quantitative evaluation based on 20 experiments (two patients × five selected

regional contractility parameters (σ̂AHAi, i ∈ {1, 4, 8, 16, 17}) × four parameter mod-
ifications (±100 kPa)) showed that the estimation was robust and yielded low misfit
εi = |σ̂AHA

∗
i − σ̂AHAi| between estimated (σ̂AHA

∗
i ) and ground-truth (σ̂AHAi) parame-

ter values. On average, the absolute misfit was ε = 0.3 ± 0.4 kPa, i. e., less than 1%
of the parameter modification (±100 kPa).

Towards Realistic Regional Personalization Scenarios. Finally, a more com-
plex estimation scenario, much closer to a real case setup, was mimicked. In par-
ticular, the experiment design from the previous section was partially re-used, but
instead of estimating only the parameter of the modified region, σ̂AHAi, and assuming
the values for all other regions were known, the ideas of the hierarchical multi-step
estimation procedure described at the end of Sec. 4.3.4 were followed. The goal was
to evaluate whether the regional personalization approach can be used to identify
automatically the AHA region whose contractility was altered, by analyzing residual
errors. The contractility value σ̂AHAi for the modified region and the value for all
other regions were estimated as follows:

1. Synthetic data setup (same as in previous experiment)

(a) Select one parameter σ̂AHAi ∈ xreg
EM and alter its value by ±100 kPa.

(b) Compute (synthetic) regional volume measurements using forward EM
model.

2. Global personalization

(a) Estimate global LV contractility σ̂∗LV.
(b) Initialize regional LV contractility values with the estimated global LV

value: σ̂AHAi = σ̂∗LV∀i ∈ {1 . . . 17}.

3. Regional refinement

(a) Analyze residual errors for each AHA regional volume curve.
(b) Identify the modified parameter, σ̂AHAi, as the one corresponding to the

AHA region with the largest error.
(c) Estimate one contractility value for σ̂AHAi and one for all other regions,

xreg
EM \ σ̂AHAi, using BOBYQA and the regional cost function ζreg

EM.

The modified parameter could be identified correctly in all 20 experiments as select-
ing the largest residual regional volume error after the global personalization step.
Furthermore, low errors after regional refinement were observed for both estimated
parameters: 2.2±2.6 kPa and 0.0±0.1 kPa for the contractility values of the identified
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Figure 4.13: Left: residual regional EF misfit (color-coded) after initial global LV
contractility personalization. Right: Manual scar annotation based on review of non-
routine MRI protocol geared towards myocardial scar localization. A pronounced
transmural scar in the basal inferior (4), basal inferolateral (5), mid inferior (10),
mid inferolateral (11), and apical inferior (15) AHA segments is present according to
the annotation.

region and the value for all other regions, respectively. An explanation why the mean
error of the former is notably larger is the equal weighting of all regions in the cost
function, resulting in a 16× larger weight for the other regions. Adapted weights in
the cost function of the refinement step could possibly further improve the results.

Preliminary Test on Real Data

Finally, the regional personalization approach was evaluated in a real-case scenario.
The goal of this preliminary experiment was to determine whether the proposed strat-
egy can identify pathological regions in the LV myocardium after the initial coarse
personalization, which is the foundation for the subsequent (finer) personalization
steps. To this end, first, global contractility estimation was performed. Then, the
residual regional volume errors per AHA segment were computed and the spatial er-
ror distribution was compared qualitatively against manual clinical scar annotations
as shown in Fig. 4.13. A desirable outcome would be a clear overlap between scarred
segments in the clinical annotation (Fig. 4.13), and segments with large residual er-
rors (greenish and red colors in the plot on the left). Although not the entire extent
of the annotated transmural scar was identified, the good agreement in segments 11
and 15 suggests that the obtained results are promising. More work is needed in the
future to make sure this conclusion holds for larger populations.

Next, still blinded to the clinical annotation, the contractility was estimated in
two regions: the abnormal regions exhibiting the largest errors (here comprising AHA
segments 11 and 15) and the healthy region (all other AHA segments combined).
BOBYQA personalization using the regional cost function (cf. Sec. 4.3.4) estimated
contractility values of 52 kPa for the region defined as abnormal and 102 kPa for the
healthy region, respectively. The much lower contractility in the abnormal region
could indeed be seen as an indicator of potential regional pathologies such as scars.
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Figure 4.14: Left: Interactive positioning of CRT leads to mimic placement ob-
served in interventional imaging data. Right: Comparison of measured and predicted
QRS duration for the tested pacing protocols. “RV only” means that only the RV
was stimulated, “BiV” stands for bi-ventricular pacing. In brackets: the CRT lead
that was first stimulated and the delay between the first and second lead are noted.

4.5 Predictive Power of Personalized Model

The results presented in the previous section demonstrate that the proposed person-
alization pipeline can indeed fit the model to the available patient data. However,
good fit does not necessarily guarantee good predictive power of the model when it
comes to prediction of disease course or therapy outcome. As a first step towards
a large-scale and in-depth analysis of the model’s predictive power, a preliminary
virtual cardiac resynchronization therapy (CRT) pilot experiment was conducted.
The hypothesis was that the 3D whole-heart model personalized using the proposed
pipeline can provide predictors of acute CRT outcomes (cf. Sec. 1.1.1).

One patient from the cohort with wide QRS complex (∆QRS = 158 ms) and LV EF
of 45%, who underwent CRT, was selected for this experiment. Once the model was
fully personalized (baseline), virtual CRT was performed according to the following
protocol. First, the positions of the CRT leads (cf. Fig. 4.14) were selected interac-
tively on the 3D anatomical model (Sec. 3.1) at approximately the same position as
during the real procedure (based on interventional X-ray images). CRT stimulation
was then modeled by adding stimulation currents in the EP model at the identified
lead positions (cf. Sec. 3.2.1). Duration, timing and frequency of the pacing stimula-
tion were adjusted according to the electrophysiologist’s report. A forward simulation
of the 3D whole-heart model (with altered EP due to external stimulation) was then
performed per tested pacing protocol and acute CRT predictors were computed from
the model response. These predictors were then validated against the measurements
(∆QRS from ECG plots) acquired by the electrophysiologist during device program-
ming. Fig. 4.14, right panel, shows measured versus predicted ∆QRS at baseline and
for the five different pacing protocols. No protocol managed to improve ∆QRS of that
patient (ideally, ∆QRS should be below 120 ms), nevertheless, the model predicted
these outcomes accurately.
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Next, acute hemodynamics effects after virtual CRT were analyzed based on the
varying model responses of the different pacing protocols in terms of EF and max-
imum rate of ventricular pressure increase (max (dPven/dt)). The changes in hemo-
dynamics responses, despite being small in absolute value, were consistent with the
changes in ∆QRS in terms of the relative performance of the different CRT protocols.
Interestingly, all tested CRT protocols except “RV only” produced an improvement
in the hemodynamics parameters (e. g., 11% increase in max (dPven/dt) for simul-
taneous bi-ventricular pacing), although ∆QRS values worsened. This suggests that
cardiac function may be more sensitive to the spatial pattern of electrical activation
than to the overall width of the QRS complex.

These promising results and findings need to be further analyzed and validated.
Hemodynamics predictions need to be compared against true measurements of acute
hemodynamics response directly after CRT programming (e. g., based on interven-
tional echocardiography images), and the study needs to be extended to a larger
number of patients.

4.6 Summary
This chapter presented a streamlined pipeline for comprehensive personalization of
the multi-physics 3D whole-heart electromechanics (EM) model described in Chap. 3
using only routinely acquired clinical imaging and 12-lead ECG data, as well as intra-
cardiac pressures from cardiac catheterization, if available. Based on the anatomi-
cal model described in Sec. 3.1, first, an automatic approach for computation of
patient-specific hemodynamics (HD) boundary conditions from the available pres-
sure and volume data was presented. It relies on some simple semi-automated data
pre-processing steps, in particular for pressure selection and smoothing, and for syn-
chronization of pressure and volume curves, to automatically compute five parame-
ters each for both arterial Windkessel (WK) models (representing pulmonary artery
and aorta) using bound-constrained optimization and a specifically designed cost
function. Next, a fully-automated personalization strategy for four patient-specific
cardiac electrophysiology (EP) model parameters was proposed. It was designed to
match model-simulated ECG to the clinical data by fitting various ECG descrip-
tors using a carefully designed multi-stage cascaded inverse optimization procedure,
cascadeEP. Next, an approach for comprehensive biomechanics personalization by
global volume and pressure fitting, globalEM, was presented. It adjusts seven
biomechanical parameters, both active and passive, and two additional HD param-
eters of the atrial models to the patient measurements in a fully automatic fashion.
Furthermore, two methods towards a more regional personalization of active biome-
chanics parameters were proposed, where instead of one contractility parameter for
the entire left ventricle (LV), up to 17 parameters, one for each LV AHA segment,
are estimated.

The full pipeline was then evaluated on a heterogeneous cohort of 113 patients,
which to our knowledge is the largest patient number in any comparable study to
date. About one third were children suffering from various cardiomyopathies, and the
remaining ones were adults with dilated cardiomyopathy (DCM). The main objective
was to assess the ability of the pipeline to accurately capture patients’ measured
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cardiac physiology in the model. To this end, once personalization was performed,
the model outputs were compared to various measured clinical indicators of cardiac
function for all personalized model components. Throughout the entire spectrum
of models and patients, in the vast majority, good to excellent agreement could be
achieved: most errors were below the clinical variability of the measurements. Finally,
regional biomechanics personalization was analyzed. Results from partially synthetic
or idealized personalization setups were promising, and the test on real data even
suggested that the approach could potentially help to detect and localize scars in the
myocardium without using specialized imaging protocols. However, more work will be
needed in the future to verify this preliminary finding. Finally, a pilot study to analyze
the predictive capabilities of the model personalized with the proposed pipeline was
conducted in a virtual CRT prediction scenario. Computed acute predictors of cardiac
EP matched well the true measurements acquired by the electrophysiologist during
CRT device implantation.
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The design and implementation of robust model personalization algorithms like
the ones described in the previous chapter is often a tedious and time-consuming
task, and the resulting algorithms are highly model- and data-specific. Many “lessons
learned” from the design of one algorithm for one particular model do not necessarily
apply to a new algorithm for a new model. However, for specific clinical questions,
specialized models are required, therefore, novel personalization algorithms continue
to be designed frequently.

This chapter is based on [Neum 15b, Neum 16]. It revolves around the question
whether artificial intelligence (AI) can potentially support the designers of new models
by automatically designing efficient personalization methods that are tailored to their
model and are robust to their data. In the first section, Sec. 5.1, the potential of AI for
computational modeling, in particular model personalization, is discussed. Sec. 5.2
presents the proposed application of AI concepts to computational biophysical model
personalization: an intelligent agent that learns by itself how to estimate model
parameters from clinical data while being model-independent. In Sec. 5.3, the results
of both synthetic and real-data experiments are presented. The chapter concludes
with a short summary in Sec. 5.4.

5.1 The Potential of Artificial Intelligence for Model
Personalization

As elaborated in Sec. 4.1, over the last decades, a wide variety of computational
model personalization approaches have been proposed. Most methods aim to it-
eratively reduce the misfit between model output and measurements using inverse
optimization algorithms. Applied blindly, those techniques could easily fail on un-
seen data, if not supervised, due to parameter ambiguity, data noise and local min-

67
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ima [Konu 11, Neum 14b, Wall 14]. Therefore, complex algorithms, including cas-
cadeEP from Sec. 4.3.2, have been designed combining cascades of optimizers in
a very specific way to achieve high levels of robustness, even on larger popula-
tions [Kayv 15, Seeg 15, Neum 14c]. However, those methods are often designed from
tedious, trial-and-error-driven manual tuning, they are model-specific rather than
generic, and their generalization to varying data quality cannot be guaranteed. On
the contrary, if the personalization task is assigned to an experienced human, given
enough time, he or she almost always succeeds in manually personalizing a model for
any subject (although solution uniqueness is not guaranteed, see Chap. 6, but this is
inherent to the problem).

There are several potential reasons why a human expert is often superior to stan-
dard automatic methods in terms of personalization accuracy and success rates. First,
an expert is likely to have an intuition of the model’s behavior from his prior knowl-
edge of the physiology of the modeled organ. Second, knowledge about model design
and assumptions, and model limitations and implementation details certainly pro-
vide useful hints on the “mechanics” of the model. Third, past personalization of
other datasets allows the expert to build up experience. The combination of prior
knowledge, intuition and experience enables to solve the personalization task more
effectively, even on unseen data.

Inspired by humans and contrary to previous works, the personalization problem
is addressed from an AI perspective in this chapter. In particular, reinforcement
learning (RL) methods [Sutt 98] developed by the AI community are applied to solve
the parameter estimation task for computational physiological models. With its roots
in control theory on the one hand, and neuroscience theories of learning on the other
hand, RL encompasses a set of approaches to make an artificial agent learn from
experience generated by interacting with its environment. Contrary to standard
(supervised) machine learning (ML) [Bish 06], where the objective is to compute a
direct mapping from input features to a classification label or regression output,
RL aims to learn how to perform tasks. The goal of RL is to compute an optimal
problem-solving strategy (agent behavior), e. g., a strategy to play the game “tic-tac-
toe” successfully. In the AI field, such a behavior is often represented as a policy,
a mapping from states, describing the current “situation” the agent finds itself in
(such as the current locations of all “X” and “O” on the tic-tac-toe grid), to actions,
which allow the agent to interact with the environment (place “X” on an empty
cell) and thus influence that situation. The key underlying principle of RL is that
of reward [Kael 96], which provides an objective means for the agent to judge the
outcome of its actions. In tic-tac-toe, the agent may receive a high, positive reward
if the latest action led to a horizontal, vertical or diagonal row full of “X” marks
(winning), and a negative reward (punishment) if the latest action would allow the
opponent to win in his next move. Based on such rewards, the artificial agent learns
an optimal winning policy through trial-and-error interactions with the environment.

RL was first applied to game [Tesa 95] or simple control tasks. However, the
past few years saw tremendous breakthroughs in RL for more complex, real-world
problems [Nguy 11, Kvet 12]. Some noteworthy examples include [Mull 13], where the
control entity of a robot arm learned to select appropriate motor primitives to play
table tennis, and [Mnih 15], where the authors combine RL with deep learning to



5.2 Learning How to Personalize a Model 69

On-line phaseOff-line phase

Assimilate model 
behavior

Learn optimal 
personalization 

strategy

Personalize model 
for new patients

Figure 5.1: Overview of Vito: a self-taught artificial agent for computational
model personalization, inspired by how human operators approach the personalization
problem.

train an agent to play 49 Atari games, yielding better performance than an expert in
the majority of them. RL now also starts to appear more and more in the medical
imaging domain [Litj 17]. For instance, in [Ghes 16a], an agent learns how to detect
landmarks in 3D medical images, while being faster, more accurate and more generic
than previous algorithms. RL applied to medical image registration is explored
in [Liao 17].

Motivated by these recent successes, an RL-based personalization approach, hence-
forth called Vito, is proposed. The goal is to design a framework that can learn
by itself how to estimate model parameters from clinical data while being model-
independent. As illustrated in Fig. 5.1, first, like a human expert, Vito assimilates
the behavior of the physiological model under consideration in an off-line, one-time
only, data-driven exploration phase. From this knowledge, Vito learns the optimal
strategy using RL [Sutt 98]. The goal of Vito during the on-line personalization
phase is then to sequentially choose actions that maximize future rewards, and there-
fore bring Vito to the state representing the solution of the personalization prob-
lem. To setup the algorithm, the user needs to define what observations need to be
matched, the allowed actions, and a hyper-parameter related to the desired granular-
ity of the state space. Then everything is learned automatically. The algorithm does
not depend on the underlying biophysical model.

Vito was evaluated on three different tasks. First, in a synthetic environment,
convergence properties of the algorithm were analyzed. Then, two tasks involving
real clinical data were evaluated: the inverse problem of cardiac electrophysiology
(cf. Sec. 3.2) and the personalization of a lumped-parameter model of whole-body
circulation (cf. Sec. 3.4). The obtained results suggested that Vito can achieve
equivalent (or better) goodness of fit as standard optimization methods, increased
robustness and faster convergence rates.

5.2 Learning How to Personalize a Model

This section presents the RL framework for computational model personalization.
Sec. 5.2.1 introduces Markov decision process (MDP). Sec. 5.2.2 shows how the per-
sonalization problem can be reformulated in terms of an MDP. Sec. 5.2.3 describes
how the artificial agent, Vito, learns how the model behaves. Next, Sec. 5.2.4 pro-
vides details about state space quantization, and Sec. 5.2.5 describes how the model
knowledge is encoded in the form of transition probabilities. All steps mentioned so
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far are performed in an off-line training phase. Finally, Sec. 5.2.6 explains how the
learned knowledge is applied on-line to personalize unseen data.

5.2.1 Model-based Reinforcement Learning
MDP Definition

A crucial prerequisite for applying RL is that the problem of interest, here per-
sonalization, can be modeled as a Markov decision process (MDP). An MDP is a
mathematical framework for modeling decision making when the decision outcome
is partly random and partly controlled by a decision maker [Sutt 98]. Formally, an
MDP is a tuple M = (S,A, T ,R, γ), where:

• S is the finite set of nS states that describe the agent’s environment, and st ∈ S
is the state at time t.

• A is the finite set of nA actions, which allow the agent to interact with the
environment, and at ∈ A denotes the action performed at time t.

• T : S×A×S → [0; 1] is the stochastic transition function, where T (st, at, st+1)
describes the probability of arriving in state st+1 after the agent performed
action at in state st.

• R : S ×A×S → R is the scalar reward function, where rt+1 = R(st, at, st+1) is
the immediate reward the agent receives at time t + 1 after performing action
at in state st resulting in state st+1.

• γ ∈ [0; 1] is the discount factor that controls the importance of future versus
immediate rewards.

Value Iteration

The value of a state, V∗(s), is the expected discounted reward the agent accumulates
when it starts in state s and acts optimally in each step:

V∗(s) = E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}
, (5.1)

where E{·} denotes the expected value given the agent always selects the optimal
action, and t is any time step. V∗ can be computed using value iteration [Sutt 98],
an iterative algorithm based on dynamic programming. In the first iteration i = 0,
let Vi : S → R denote an “initial guess” for the value function that maps states to
arbitrary values. Further, let Qi : S × A → R denote the ith “state-action value
function”-guess, which is computed as:

Qi(s, a) =
∑
s′∈S
T (s, a, s′) [R(s, a, s′) + γVi(s′)] . (5.2)

Value iteration iteratively updates Vi+1 from the previous Qi:

∀s ∈ S : Vi+1(s) = max
a∈A
Qi(s, a) , (5.3)
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until the left- and right-hand side of Eq. (5.3) are equal for all s ∈ S; then V∗ ← Vi+1
and Q∗ ← Qi+1. From this equality relation, also known as the Bellman equa-
tion [Bell 57], one can obtain an optimal problem-solving strategy for the problem
described by the MDP (assuming that all components of the MDP are known pre-
cisely). It is encoded in terms of a deterministic optimal policy π∗ : S → A:

π∗(s) = argmax
a∈A

Q∗(s, a) , (5.4)

i. e., a mapping that tells the agent in each state the optimal action to take.

Stochastic Policy

In this work, not all components of the MDP are known precisely, instead some
are approximated from training data. Value iteration, however, assumes an exact
MDP to guarantee optimality of the computed policy. Therefore, instead of relying
on the deterministic policy π∗ (Eq. (5.4)), a generalization to stochastic policies
π̃∗ is proposed here to mitigate potential issues due to approximations. Contrary
to Eq. (5.4), where for each state only the one action with maximum Q∗-value is
considered, a stochastic policy stores several candidate actions with similar high Q∗-
value and returns one of them through a random process each time it is queried. To
this end, the Q∗(s, ·)-values for a given state s are first normalized:

Q̃∗s(a) = Q∗(s, a)−mina′∈A[Q∗(s, a′)]
maxa′∈A[Q∗(s, a′)]−mina′∈A[Q∗(s, a′)] . (5.5)

All actions whose normalized Q̃∗s-value is below a threshold of ε = 4
5 (set empirically)

are discarded, while actions with large values are stored as potential candidates. Each
time the stochastic policy is queried, a = π̃∗ε (s), it returns one of the candidate actions,
a, selected randomly with probability proportional to its Q̃∗s-value: Q̃∗s(a)/∑a′ Q̃∗s(a′);
the sum is over all candidate actions a′.

5.2.2 Reformulation of the Model Personalization Problem
The model personalization problem described in Sec. 4.2 is mapped to an MDP as
follows:

• States: An MDP state encodes the misfit between the computed model state
(outcome of forward model run) and the patient’s measurements. Thus, MDP
states carry the same type of information as objective vectors c, yet the number
of MDP states has to be finite (Sec. 5.2.1), while there are an infinite number of
different objective vectors due to their continuous nature. Therefore, the space
of objective vectors in Rnc is reduced to a finite set of representative states:
the MDP states S, each s ∈ S covering a small region in that space. One of
those states, ŝ ∈ S, encodes personalization success as it is designed such that
it covers exactly the region where all convergence criteria are satisfied. The
goal of Vito is to learn how to reach that state.
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• Actions: Vito’s actions modify the parameters x to fulfill the objectives c.
An action a ∈ A consists in either in- or decrementing one parameter xi by 1×,
10× or 100× a user-specified reference value δi with δ = (δ1, . . . , δnx )>. This
empirically defined quantization of the intrinsically continuous action space
yielded good results for the problems considered in this work.

• Transition function: T encodes the agent’s knowledge about the computa-
tional model f and is learned automatically as described in Sec. 5.2.5.

• Rewards: Inspired by the “mountain car” benchmark [Sutt 98], the rewards are
defined as always being equal to R(s, a, s′) = −1 (punishment), except when
the agent performs an action resulting in personalization success, i. e., when
s′ = ŝ. In that case, R(·, ·, ŝ) = 0 (no punishment).

• Discount factor: The large discount factor γ = 0.99 encourages finding a
policy that favors future over immediate rewards, as the latter could prefer
finding local over global optima.

5.2.3 Learning Model Behavior through Model Exploration
Like a human operator, Vito first learns how the model “behaves” by experimenting
with it. This is done through a “self-guided sensitivity analysis”. A batch of sample
transitions is collected through model exploration episodes Ep = {ep1, ep2, . . . }. An
episode epi is a sequence of ne-steps consecutive transitions generated from the model
f and the patient p for whom the target measurements zp are known. An episode
is initiated at time t = 0 by generating random initial model parameters xt within
the physiologically plausible domain Ω. From the outputs of a forward model run
yt = f(xt), the misfits to the patient’s corresponding measurements are computed,
yielding the objectives vector ct = ε(yt, zp). Next, a random exploration policy
πrand that selects an action according to a discrete uniform probability distribution
over the set of actions is employed. The obtained at ∈ A is then applied to the
current parameter vector, yielding modified parameter values xt+1 = at(xt). From
the output of the forward model run yt+1 = f(xt+1) the next objectives ct+1 are
computed. The next action at+1 is then selected according to πrand, and this process
is repeated ne-steps− 1 times. Hence, each episode can be seen as a set of consecutive
tuples:

e = {(xt,yt, ct, at,xt+1,yt+1, ct+1), t = 0, . . . , ne-steps − 1} . (5.6)

In this work, ne-steps = 100 transitions are created in each episode as a trade-off
between sufficient length of an episode to cover a real personalization scenario and
sufficient exploration of the parameter space.

The model is explored with many different training patients and the resulting
episodes are combined into one large training episode set E = ⋃

p Ep. The underlying
hypothesis (verified in experiments) is that the combined E allows to cancel out
peculiarities of individual patients, i. e., to abstract from patient-specific to model-
specific knowledge.
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Figure 5.2: Left: Example data-driven quantization of a two-dimensional state
space into nS = 120 representative states. The states are distributed according to
the observed objective vectors c in one of the experiments in Sec. 5.3.2, where the
objectives were QRS duration [ms] (c1) and electrical axis [deg] (c2). The center
rectangle (green region) denotes the success state ŝ. Right: Manual quantization as
suggested initially in [Neum 15b].

5.2.4 From Computed Objectives to Representative MDP State
As mentioned above, the continuous space of objective vectors is quantized into a
finite set of representative MDP states S. A data-driven approach is proposed. First,
all objective vectors observed during training are clustered according to their distance
to each other. To ensure equal contribution among all objectives (to cancel out
different units, etc.), the distance between two objective vectors (c1, c2) is defined
relative to the inverse of the convergence criteria ψ:

‖c1 − c2‖ψ =
√

(c1 − c2)> diag (ψ)−1 (c1 − c2) , (5.7)

where diag (ψ)−1 denotes a diagonal matrix with ( 1
ψ1
, 1
ψ2
, . . . ) along its diagonal. The

centroid of a cluster is the centroid of a representative state. In addition, a special
“success state” representing personalization success, denoted ŝ, is created, which
covers the region in state space where all objectives are met: ∀i : |ci| < ψi. The full
algorithm is described in appendix A.3.1.

Finally, an operator φ : Rnc → S that maps continuous objective vectors c to
representative MDP states is introduced:

φ(c) = argmin
s∈S

‖c − ξs‖ψ (5.8)

where ξs denotes the centroid corresponding to state s. For an example state space
quantization see Fig. 5.2.

5.2.5 Transition Function as Probabilistic Model Representation
In this work, the stochastic MDP transition function T encodes the agent’s knowledge
about the computational model f . It is learned from the training data E . First, the
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Figure 5.3: Vito’s probabilistic on-line personalization phase. See text for details.

individual samples (xt,yt, ct, at,xt+1,yt+1, ct+1) are converted to state-action-state
transition tuples Ê = {(s, a, s′)}, where s = φ(ct), a = at and s′ = φ(ct+1). Then,
T is approximated from statistics over the observed transition samples:

T (s, a, s′) = |{(s, a, s′) ∈ Ê}|∑
s′′∈S |{(s, a, s′′) ∈ Ê}|

, (5.9)

where |{·}| denotes the cardinality of a set. If nS and nA are large compared to
the total number of samples it may occur that some state-action combinations are
not observed: |{(s, a, ·) ∈ Ê}| = 0. In that case uniformity is assumed: ∀s′′ ∈ S :
T (s, a, s′′) = 1/nS .
M is now fully defined. Value iteration (Sec. 5.2.1) is applied and the stochastic

policy π̃∗ε is computed, which completes the off-line phase.

5.2.6 On-line Model Personalization
On-line personalization, as illustrated in Fig. 5.3, can be seen as a two-step procedure.
First, Vito initializes the personalization of unseen patients from training data.
Second, Vito relies on the computed policy π̃∗ε to guide the personalization process.

Data-driven Initialization

Good initialization can be decisive for a successful personalization. Vito’s strategy
is to search for forward model runs in the training database E for which the model
state f(x) = y ≈ zp is similar to the patient’s measurements. To this end, Vito
examines all parameters Ξ = {x ∈ E | f(x) ≈ zp} that yielded model states similar
to the patient’s measurements. Due to ambiguities induced by the different training
patients, data noise and model assumptions, Ξ could contain significantly dissimilar
parameters. Hence, picking a single x ∈ Ξ might not yield the best initialization.
Analyzing Ξ probabilistically instead helps Vito to find likely initialization candi-
dates. The details of the initialization procedure are described in appendix A.3.2.
Given the patient’s measurements zp, the procedure outputs a set of initialization
candidates {x0}, sorted by likelihood.

Probabilistic Personalization

As illustrated in Fig. 5.3, from the most likely initial parameters x0 ∈ {x0}, Vito
computes the forward model y0 = f(x0) and the misfit between the model output
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Figure 5.4: Left: Contour plot of the Rosenbrock function fα=1 with global min-
imum at x = (1, 1)> (red dot). The color scale is logarithmic for visualization pur-
poses: the darker, the lower the function value. Mid: Maximum L2-error in parameter
space after personalization over all functions for varying initial parameter values. See
text for details. Yellow represents errors ≥ 5 (maximum observed error ≈ 110).
Right: Same as mid panel, except the extended action set was used. The red dots
are the 100 ground-truth parameters x = (α, α2)> generated for random α.

and the patient’s measurements c0 = ε(y0, zp) to derive the first state s0 = φ(c0).
Given s0, Vito decides from its policy the first action to take a0 = π̃∗ε (s0), and walks
through state-action-state sequences to personalize the computational model f by
iteratively updating the model parameters through MDP actions. Bad initialization
could lead to oscillations between states as reported in literature RL works [Kvet 12,
Neum 15b]. Therefore, upon detection of an oscillation, which is done by monitoring
the parameter traces to detect recurring sets of parameter values, the personalization
is re-initialized at the second-most-likely x0 ∈ {x0}, etc. If all |{x0}| initialization
candidates have been tested, a potential re-initialization will default to fully random
within the physiologically plausible parameter domain Ω. The process terminates
once Vito reaches state ŝ (success), or when a pre-defined maximum number of
iterations is reached (failure).

5.3 Experiments and Results

Vito was applied to a synthetic parameter estimation problem and to two challenging
problems involving real clinical data: personalization of a cardiac electrophysiology
(EP) model (cf. Sec. 3.2), and a whole-body circulation (WBC) model. All experi-
ments were conducted using leave-one-out cross-validation.

5.3.1 Synthetic Experiment: the Rosenbrock Function

First, Vito was employed in a synthetic scenario, where the ground-truth model
parameters were known. The goals were to test the ability of Vito to optimize cost
functions generically, and to directly evaluate the performance in parameter space.
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Forward Model Description

The Rosenbrock function [Rose 60], see Fig. 5.4, left panel, is a non-convex function
that is often used to benchmark optimization algorithms. It was treated as the
forward model in this experiment:

fα(x1, x2) = (α− x1)2 + 100 · (x2 − x2
1)2

, (5.10)

where x = (x1, x2)> were the model parameters to estimate for any α, and fα : Ω →
R. As described in Sec. 5.2, each of Vito’s actions a ∈ A in- or decrements a param-
eter value by multiples (1×, 10×, 100×) of parameter-specific reference values. The
reference values were set to δ = (0.01, 0.01)>, determined as 0.1% of the defined ad-
missible parameter space per dimension, Ω = [−5; 5]2. The parameter α ∈ R defines
a family of functions {fα}. The goal was to find generically argminx1,x2 f

α(x1, x2).
The Rosenbrock function has a unique global minimum at x = (α, α2)>, where

both terms T1 = (α − x1) and T2 = (x2 − x2
1) evaluate to 0. The personalization

objectives were therefore defined as c = (|T1 − 0|, |T2 − 0|)>, with the measured data
z = (0, 0)> were zero for both objectives and the computed data y = (T1, T2)>. The
convergence criteria were set empirically to ψ = (0.05, 0.05)>.

Evaluation

Vito was evaluated on ndatasets = 100 functions fα with randomly generated α ∈
[−2, 2]. In the off-line phase, for each function, nsamples = 10 ·ne-steps = 1000 samples,
i. e., ten training episodes, each consisting in ne-steps = 100 transitions (Sec. 5.2.3),
were generated to learn the policy. The number of representative states was set to
nS = 100. To focus on Vito’s on-line personalization capabilities, both the data-
driven initialization and the re-initialization on oscillation (Sec. 5.2.6) were disabled.
In total, 441 experiments with different initializations (sampled on a 21× 21 uniform
grid spanned in Ω) were conducted. For each experiment all 100 functions were
personalized using leave-one-family-function-out cross validation, and the error value
from the function exhibiting the maximum L2-error (worst-case scenario) between
ground-truth (α, α2) and estimated parameters was plotted. As one can see from the
large blue region in Fig. 5.4, mid panel, for the majority of initial parameter values
Vito always converged to the solution (maximum L2-error < 0.25; the maximum
achievable accuracy depended on the specified convergence criteria ψ and on the
reference values δ, which “discretized” the parameter space). However, especially for
initializations far from the ground-truth (near border regions of Ω), Vito was unable
to personalize some functions properly, which was likely due to the high similarity of
the Rosenbrock function shape in these regions.

To investigate this issue, the experiment was repeated after additional larger pa-
rameter steps were added to the set of available actions: A′ = A∪{±500δ1;±500δ2}.
As shown in Fig. 5.4, right panel, Vito could now personalize successfully starting
from any point in Ω. The single spot with larger maximum error (bright spot at
approximately x = (−1, 2)>) can be explained by Vito’s stochastic behavior: Vito
may have become unlucky if it selected many unfavorable actions in sequence due
to the randomness introduced by the stochastic policy. Enabling re-initialization on
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oscillation solved this issue entirely. In conclusion, this experiment showed that Vito
can learn how to minimize a cost function generically.

5.3.2 Personalization of Cardiac Electrophysiology Model
Vito was then tested in a cardiac electrophysiology scenario, in particular for person-
alization of the Graph-EP model coupled with 12-lead ECG as described in Sec. 3.2.
Personalization was performed for real patients from actual clinical data. A total
of ndatasets = 83 patients from the study cohort described in Sec. 4.4.1 were used
for experimentation. As outlined in Sec. 3.1, for each patient, the end-diastolic
bi-ventricular anatomy was segmented from short-axis steady-state free precession
(SSFP) cine magnetic resonance imaging (MRI), a tetrahedral anatomical model in-
cluding myofibers was estimated and a torso atlas affinely registered to the patient
based on MRI scout images.

Forward Model Description

The Graph-EP algorithm itself, the propagation of computed myocardium potentials
to torso potentials, and the derivation of electrocardiogram (ECG) measurements
thereof is described in detail in Sec. 3.2. The model is controlled by the conduction
velocities (in m/s) of myocardial tissue and left and right Purkinje network: x =
(νMyo, νLV, νRV)>. The admissible parameter space Ω was set to [200; 1000] mm/s for
νMyo and [500; 5000] mm/s for both νLV and νRV. Reference increment values to build
the action set A were set to δ = (5, 5, 5)>mm/s for the three model parameters.
The goal of personalization was to estimate x from the measured QRS duration
and electrical axis (EA), denoted ∆QRS and ]EA. Accounting for uncertainty in the
measurements and errors in the model, a patient was considered personalized if ∆QRS

and ]EAmisfits were below ψ = (5 ms, 10◦)>, respectively.

Number of Representative States

In contrast to [Neum 15b], where state space quantization required manual tuning
of various threshold values, the latest version of Vito relies on a single hyper-
parameter only: nS , the number of representative states (Sec. 5.2.4). To specify
nS , eight patients were selected for scouting. Exhaustive search was performed for
nS ∈ {10, 20, . . . , 490, 500} representative states. The goodness of a given configura-
tion was evaluated based on the success rate (relative number of successfully person-
alized cases according to convergence criteria ψ) over five independent, consecutive,
leave-one-patient-out cross-validated personalization runs of the eight patients. Fur-
thermore, the average number of required forward model runs was considered. To
this end, 100 training episodes (100 · ne-steps = 104 transition samples) per patient
were generated for each personalization run as described in Sec. 5.2.3. As one can see
from Fig. 5.5, good performance was achieved from 50 to 300 representative states.
The large range of well performing nS indicates a certain level of robustness with
respect to that hyper-parameter. A slight performance peak at 120 representative
states was observed. Therefore, nS = 120 was selected for further experimentation
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Figure 5.5: Hyper-parameter scouting: Vito’s performance for varying number of
representative states nS . The plot shows aggregated results over five consecutive per-
sonalization runs on the eight scouting datasets, each run based on different training
data.

as compromise between maintaining a low number of states and sufficient state gran-
ularity. An example quantization with nS = 120 is visualized in Fig. 5.2. The eight
scouting datasets were discarded for the following experiments to avoid bias in the
analysis.

Reference Methods

Vito’s results were compared to two optimization-based personalization methods us-
ing BOBYQA [Powe 09]. The first approach, called simpleGEP, mimicked the most
basic estimation setup, where only the minimum level of model and problem knowl-
edge were assumed. The objective function was the sum of absolute ∆QRS and ]EA
errors: ∑nc

i=1 |ci|. It was minimized in a single optimizer run where all three parame-
ters in x were tuned simultaneously. The algorithm terminated once all convergence
criteria ψ were satisfied (success) or if the number of forward model evaluations ex-
ceeded 100 (failure). The second approach, cascadeGEP, implemented an advanced
estimator with strong focus on robustness, which computed the optimum parameters
in a multi-step iterative fashion. In particular, Alg. 1 from Sec. 4.3.2 was adapted
for Graph-EP, simply by replacing the LBM-EP forward model by Graph-EP and
removing fitAPD (step 3) from the personalization procedure, as this experiment
focuses on depolarization only.

To remove bias towards the choice of initial parameter values, for each of the
two methods all datasets were personalized 100 times with different random initial-
izations within the range of physiologically plausible values Ω. The differences in
performance were striking: only by changing the initialization, the number of suc-
cessfully personalized cases varied from 13 to 37 for simpleGEP, and from 31 to 51
for cascadeGEP (variability of more than 25% of the total number of patients).
These results highlight the non-convexity of the cost function to minimize.
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Figure 5.6: Absolute errors over all patients after initialization with fixed parameter
values (blue), after data-driven initialization for increasing amount of training data
(white), and after full personalization with Vito (green). Data-driven initialization
yielded significantly reduced errors if sufficient training data were available (> 102)
compared to initialization with fixed values. Full personalization further reduced the
errors significantly. The red bar and the box edges indicate the median absolute
error, and the 25 and 75 percentiles, respectively. Left: ∆QRS errors. Right: ]EA
errors.

Full Personalization Performance

First, Vito’s overall performance was evaluated. The full personalization pipeline
consisting in off-line learning, initialization, and on-line personalization was run on
all patients with leave-one-patient-out cross-validation using 1 000 training episodes
(nsamples = 1 000 · ne-steps = 105 transition samples) per patient. The maximum num-
ber of iterations was set to 100. The green box plots in the two panels of Fig. 5.6
summarize the results. The mean absolute errors were 4.1± 5.6 ms and 12.4± 13.3◦
in terms of ∆QRS and ]EA, respectively, a significant improvement over the residual
error after initialization. In comparison to the reference methods, the best sim-
pleGEP run yielded absolute errors of 4.4± 10.8 ms ∆QRS and 15.5± 18.6◦ ]EA on
average, and the best cascadeGEP run 0.1 ± 0.2 ms ∆QRS and 11.2 ± 15.8◦ ]EA,
respectively. Thus, in terms of ]EA error all three methods yielded comparable per-
formance, and while simpleGEP and Vito performed similarly in terms of ∆QRS
cascadeGEP outperformed both in this regard. However, considering success rates,
i. e., successfully personalized patients according to the defined convergence criteria
(ψ) divided by total number of patients, both the performance of Vito (67%) and
cascadeGEP (68%) were equivalent, while simpleGEP reached only 49% or less.
In terms of run-time, i. e., average number of forward model runs until convergence,
Vito (31.8) almost reached the high efficiency of simpleGEP (best: 20.1 iterations)
and clearly outperformed cascadeGEP (best: 86.6 iterations), which means Vito
was ≈ 2.5× faster.
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Residual Error after Initialization

A major advantage over standard methods such as the two BOBYQA approaches is
Vito’s automated, data-driven initialization method (Sec. 5.2.6), which eliminates
the need for user-provided initial parameter values. To evaluate the utility of this
step, personalization using Vito was stopped directly after initialization (the most
likely x0 was used) and the errors in terms of ∆QRS and ]EA resulting from a for-
ward model run f with the computed initial parameter values were quantified. This
experiment was repeated for increasing number of transition samples per dataset:
nsamples = 100 . . . 105, and the results were compared to the error after initialization
when fixed initial values were used (the initialization of the best performing BOBYQA
experiment was used). As one can see from Fig. 5.6, with increasing amount of train-
ing data both errors decreased notably. As few as 102 transitions per dataset already
provided more accurate initialization than the best tested fixed initial values. Thus,
not only does this procedure simplify the setup of Vito for new problems (no user-
defined initialization needed), this experiment showed that it can reduce initial errors
by a large margin, even when only few training transitions were available. It should
be noted that Vito further improves the model fit in its normal operating mode
(continue personalization after initialization), as shown in the previous experiment.

Convergence Analysis

An important question in any RL application relates to the amount of training needed
until convergence of the artificial agent’s behavior. For Vito in particular, this
translates to the amount of transition samples required to accurately estimate the
MDP transition function T to compute a solid policy on the one hand, and to have
enough training data for reliable parameter initialization on the other hand. To this
end, Vito’s overall performance (off-line learning, initialization, personalization) was
evaluated for varying number of training transition samples per dataset. As one
can see from the results in Fig. 5.7, with increasing amount of training data the
performance increased, suggesting that the learning process was working properly.
Even with relatively limited training data of only nsamples = 102 samples per patient,
Vito outperformed the best version of simpleGEP (49% success rate). Starting
from nsamples ≈ 3000, a plateau at ≈ 66% success rate was reached, which remained
approximately constant until the maximum tested number of samples. This was
almost on par with the top cascadeGEP performance (68% success rate). Also
the run-time performance increased with more training data. For instance, Vito’s
average number of iterations was 36.2 at 103 samples, 31.5 at 104 samples, or 31.8 at
105 samples.

These results suggested that not only Vito can achieve similar performance as
an advanced, manually engineered method, but also the number of required training
samples was not excessive. In fact, a rather limited and thus well manageable amount
of data, which can be computed in a reasonable time-frame, sufficed.
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Figure 5.7: EP model personalization results: personalization success rate in blue
and average number of iterations in red. Left: Vito’s performance for increasing
number of training transition samples per dataset. Each dot represents results from
one experiment (cross-validated personalization of all 75 datasets), solid/dashed line
is low-pass filtered mean, shaded areas represent 0.5 × SD and 1 × SD (standard
deviation). Right: Performance of both reference methods. Each shade represents
10% of the results, sorted by performance.

5.3.3 Personalization of a Whole-Body Circulation Model
Next, Vito was asked to personalize a lumped-parameter WBC model from pressure
catheterization (cf. Sec. 2.2) and volume data. A subset of ndatasets = 56 patients
from the previous experiments were used for experimentation. The discrepancy was
due to missing catheterization data for some patients, which was required for WBC
personalization only.

Forward Model Description

The WBC model to personalize was the one proposed in [Itu 14]. It contained a heart
model (consisting of left ventricle (LV) and left atrium (LA), right ventricle (RV) and
right atrium (RA), and valves), the systemic circulation (arteries, capillaries, veins)
and the pulmonary circulation (arteries, capillaries, veins). Time-varying elastance
models were used for all four chambers of the heart. The valves were modeled through
a resistance and an inertance. A three-element Windkessel (WK) model was used
for the systemic and pulmonary arterial circulation, while a two-element WK model
was used for the systemic and pulmonary venous circulation. The full model and
its components are described in detail in [Itu 14, Neum 15b]. Personalization was
performed with respect to the patient’s heart rate as measured during catheterization.

The goal of this experiment was to compare Vito’s personalization performance
for the systemic part of the model in setups with increasing number of parameters to
tune and objectives to match. To this end, Vito was employed on setups with two to
six parameters (2p, 3p, 5p, 6p): initial blood volume, LV maximum elastance, time
until maximum elastance is reached, total aortic resistance and compliance, and LV
dead volume. The reference values δ to define Vito’s allowed actions A were set to
0.5% of the admissible parameter range Ω for each individual parameter, see Tab. 5.1
for details. The personalization objectives were LV MRI-derived end-diastolic vol-
ume (EDV), LV end-systolic volume (ESV), ejection time (time duration during which
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Table 5.1: WBC parameters x, their default values and domain Ω. The last col-
umn denotes the experiment setups in which a parameter was personalized (e. g., “5”:
parameter was among the estimated parameters in “WBC 5p” experiment). Default
values were used in experiments where the respective parameters were not personal-
ized.

x Default value Ω Setups

Initial volume 400 ml [200; 1000] ml 6, 5, 3, 2
LV max. elastance 2.4 mmHg/ml [0.2; 5] mmHg/ml 6, 5, 3, 2
Aortic resistance 1100 g / (cm4 s) [500; 2500] g / (cm4 s) 6, 5, 3
Aortic compliance 1.4 ·109 cm4 s2/g [0.5; 6] ·109 cm4 s2/g 6, 5
LV dead volume 10 ml [−50; 500] ml 6, 5
Time to Emax 300 ms [100; 600] ms 6

Table 5.2: WBC objectives c, their convergence criteria ψ and range of measured
values in the patient population used for experimentation.

c ψ Measured range Setups

End-diastolic LV volume 20 ml [129; 647] ml 6, 5, 3, 2
End-systolic LV volume 20 ml [63; 529] ml 6, 5, 3, 2
Mean aortic pressure 10 mmHg [68; 121] mmHg 6, 5, 3
Peak-systolic aortic pressure 10 mmHg [83; 182] mmHg 6, 5
End-diastolic aortic pressure 10 mmHg [48; 99] mmHg 6, 5
Ejection time 50 ms [115; 514] ms 6

the aortic valve is open and blood is ejected), and peak-systolic, end-diastolic, and
mean aortic blood pressures as measured during cardiac catheterization, see Fig. 5.8.
To account for measurement noise, personalization was considered successful if the
misfits per objective were below acceptable threshold values ψ as listed in Tab. 5.2.

Number of Representative States

Along the same lines as Sec. 5.3.2, the hyper-parameter for state space quantization
was tuned based on the eight scouting patients. The larger the dimensionality of the
state space, the more representative states were needed to yield good performance.
In particular, for the different WBC setups, the numbers of representative states (nS)
yielding the best scouting performance were 70, 150, 400 and 600 for the 2p, 3p, 5p
and 6p setup, respectively. The scouting datasets were discarded for the following
experiments.
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Figure 5.8: Goodness of fit in terms of time-varying LV volume and aortic pressure
for Vito personalizing an example patient based on the different WBC setups. The
added objectives per setup are highlighted in the respective column. With increasing
number of parameters and objectives Vito manages to improve the fit between model
and measurements.

Reference Method

A gradient-free optimizer [Laga 98] based on the simplex method was used to bench-
mark Vito. The objective function was the sum of squared differences between
computed and measured values, weighted by the inverse of the convergence criteria
to respect the different ranges of objective values: ‖c‖ψ, cf. Eq. (5.7). Personaliza-
tion was terminated once all convergence criteria were satisfied (success), or when the
maximum number of iterations was reached (failure). To account for the increasing
complexity of optimization with increasing number of parameters nx , the maximum
number of iterations was set to 50 · nx for the different setups.

As one can see from Fig. 5.9, right panels, with increasing number of parameters
to be estimated, the performance in terms of success rate and number of forward
model runs decreased slightly. This is expected as the problem becomes harder. To
suppress bias originating from (potentially poor) initialization, the reference method
was run 100 times per setup (as in EP experiments), each time with a different,
randomly generated set of initial parameter values. The individual performances
varied significantly for all setups.

Convergence Analysis

For each WBC setup the full Vito personalization pipeline was evaluated for increas-
ing training data (nsamples = 100 . . . 105) using leave-one-patient-out cross-validation.
The same iteration limits as for the reference method were used. The results are
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Figure 5.9: WBC model personalization results (top: success rate, bottom: aver-
age number of forward model runs until convergence) for various estimation setups
(different colors), see text for details. Left: Vito’s performance for increasing num-
ber of training transition samples per dataset. Each dot represents results from one
experiment (cross-validated personalization of all 48 datasets), solid/dashed lines are
low-pass filtered mean, shaded areas represent 0.5 × SD and 1 × SD. Right: Per-
formance of reference method. Each shade represents 10% of the results, sorted by
performance; darkest shade: best 10%.
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presented in Fig. 5.9, left panels. With increasing data, Vito’s performance, both in
terms of success rate and run-time (iterations until convergence), increased steadily
until reaching a plateau. As one would expect, the more complex the problem,
i. e., the more parameters and objectives involved in the personalization, the more
training data was needed to reach the same level of performance. For instance, Vito
reached 80% success rate with less than nsamples = 50 training samples per dataset
in the 2p setup, whereas almost 90× as many samples were required to achieve the
same performance in the 6p setup.

Compared to the reference method, given enough training data, Vito reached
equivalent or better success rates (e. g., up to 11% higher success rate for 6p) while
significantly outperforming the reference method in terms of run-time performance.
In the most basic setup (2p), if nsamples ≥ 103, Vito converged after 3.0 iterations
on average, while the best reference method run required 22.6 iterations on average,
i. e., Vito was seven times faster. For the more complex setups (3p, 5p, 6p), the
speed-up was not as drastic. Yet, in all cases Vito outperformed even the best run
of the reference method by a factor of 1.8 or larger.

5.4 Summary

In this chapter, a novel personalization approach called Vito has been presented.
To our knowledge, it is the first time that cardiac model personalization is addressed
using artificial intelligence (AI) concepts. Inspired by how humans approach the
personalization problem, Vito first learns the characteristics of the computational
model under consideration using a data-driven approach. This knowledge is then
utilized to learn how to personalize the model using reinforcement learning (RL).
Vito is generic in the sense that it requires only minimal and intuitive user input
(parameter ranges, authorized actions, number of representative states) to learn by
itself how to personalize a model.

Vito was applied to a synthetic scenario and to two challenging personalization
tasks in cardiac computational modeling. The problem setups and hyper-parameter
configurations are listed in Tab. 5.3. In most setups the majority of hyper-parameters
were identical and only few (nS) required manual tuning, suggesting good general-
ization properties of Vito. Another key result was that Vito was up to 11% more
robust (higher success rates) compared to standard personalization methods. Vito’s
ability to generalize the knowledge obtained from a set of training patients to person-
alize unseen patients was shown as all experiments were based on cross-validation.
Furthermore, Vito’s robustness against training patients for whom we could not find
a solution was tested. In particular, for about 20% of the patients, in none of the
electrophysiology experiments in Sec. 5.3.2 any personalization (neither Vito nor
the reference methods) could produce a result that satisfied all convergence criteria.
Hence, for some patients no solution may exist under the given electrophysiology
model configuration, possibly due to invalid assumptions of Graph-EP for patients
with complex pathologies. Still, all patients were used to train Vito, and surpris-
ingly Vito was able to achieve equivalent success rates as the manually engineered
personalization approach for cardiac EP.
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Table 5.3: Applications considered in this chapter described in terms of the num-
ber of parameters (nx), objectives (nc) and datasets (ndatasets) used for experimen-
tation (in brackets: excluding scouting patients, if applicable); and Vito’s hyper-
parameters: the number of representative MDP states (nS) and the number of actions
per parameter (nA/nx). The last column (nplateau) denotes the approximate number
of samples needed to reach the performance “plateau” (see convergence analyses in
Sec. 5.3.2 and Sec. 5.3.3).

Application nx nc ndatasets nS nA/nx nplateau

Rosenbrock 2 2 100 100 6 n/a
Rosenbrock ext. 2 2 100 100 8 n/a
EP 3 2 83 (75) 120 6 3 000
WBC 2p 2 2 56 (48) 70 6 450
WBC 3p 3 3 56 (48) 150 6 2 000
WBC 5p 5 5 56 (48) 400 6 3 500
WBC 6p 6 6 56 (48) 600 6 20 000

Generating training data could be considered Vito’s computational bottleneck.
However, on the one hand, training is performed off-line and one-time only, and
on the other hand, it is independent for each training episode and each patient.
Therefore, large compute clusters could be employed to perform rapid training by
parallelizing this phase. On-line personalization, on the contrary, is not parallelizable
in its current form: the parameters for each forward model run depend on the outcome
of the previous iteration. Since the forward computations are the same for every
“standard” personalization method (not including surrogate-based approaches), the
number of forward model runs until convergence was used for benchmarking: Vito
was up to seven times faster compared to the reference methods. The on-line overhead
introduced by Vito (convert data into an MDP state, then query policy) is negligible.

As such, Vito could become a unified framework for personalization of any com-
putational physiological model, potentially eliminating the need for an expert opera-
tor with in-depth knowledge to design and engineer complex optimization procedures.
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The heart is a highly complex system, computational heart models are based
on assumptions, and the data acquired to measure the heart and to drive person-
alization are sparse and noisy. Still, for the vast majority of cardiac computational
model personalization approaches, including those described in the previous chap-
ters, personalization equals estimation of a single, “most likely” solution (parameter
estimate). Considering the many sources of uncertainties involved, the clinical value
of a single estimate can, however, be questioned, if no information about the shape
of the solution space is offered: solution uniqueness cannot be guaranteed.

This chapter is based on [Neum 14b]. First, sources of uncertainties in the context
of cardiac modeling and personalization are listed and the uncertainty quantification
(UQ) problem is introduced in Sec. 6.1. Then the proposed approach that shows
how personalization with inverse UQ could be tackled is described in Sec. 6.2 and
evaluated in Sec. 6.3. Finally, the main ideas and results are summarized in Sec. 6.4.

6.1 Uncertainty Quantification
Uncertainty quantification (UQ) encompasses a set of methods that aim to charac-

terize and quantify uncertainties. A comprehensive overview of the various sources of
uncertainties that are relevant for computational modeling applications can be found
in [Kenn 01, Mira 16]. These include:

• Parameter uncertainty due to model input parameters whose exact values
are not known.

• Experimental uncertainty due to the variability of experimental measure-
ments (e. g., noise).

• Structural uncertainty due to modeling assumptions.

• Algorithmic uncertainty due to numerical errors and approximations.

87
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Two main types of UQ problems exist: forward UQ and inverse UQ (also called
parameter UQ). Just like forward modeling computes deterministic model output
given a set of deterministic model parameters, forward UQ computes the variability
in model output due to uncertain model parameters. An example for forward UQ
is the following. Consider a patient-specific computational cardiac model that com-
putes ejection fraction (EF) as output based on a number of input parameters, some
of which are known as they can be measured directly, some are personalized from
measurements, and others are not identifiable. For the latter, default values are used
as the model requires all parameters to be set in order to evaluate its mathematical
equations to be able to compute the EF value. If instead of default values one would
provide a distribution of input values, e. g., from population studies, and propagate
this uncertainty through the model to its output, then the output would change from
a single EF value to a distribution, which can then be used to analyze the likelihood of
certain EF values and their variability due to the uncertain input. Such information
can be decisive if e. g., the output is used in guidelines for clinical decision making.
The more difficult problem is inverse UQ, where uncertainties in the measurements
used to personalize certain parameters of the model need to be propagated backwards
through the model parameter estimation process in order to compute a distribution
of input parameters that may have lead to that observation.

6.2 Robust Estimation of Model Parameters and Their
Uncertainty

Uncertainty in clinical measurements and model assumptions are known to increase
the non-identifiability of parameters. In particular, solution uniqueness is not guar-
anteed and multiple solutions or entire manifolds of solutions with equal level of
confidence may exist. As a result, the clinical value of one single estimate can be
questioned. Yet, to the best of our knowledge, only little work exists in the cardiac
modeling community which addresses these challenges. Parameter UQ due to noise
in the data has been investigated in [Wall 14, Konu 11] for the cardiac electrophysi-
ology (EP) problem. However, the authors do not take into account this knowledge
to estimate a robust optimum for the model parameters under consideration as their
main focus was on UQ. In [Konu 11], the mean of the posterior density was selected
as parameter value, which can become inaccurate for skewed or multi-modal distri-
butions. In [Wall 14], the maximum posterior was used and evaluated on synthetic
data only. It is not clear though whether that choice would be robust under uncertain
data noise level.

6.2.1 Overview of the Method
This section presents a stochastic method for the robust estimation of biomechanical
parameters of the myocardium and their uncertainty due to noisy data. A gen-
eral overview of the main steps of the method with inputs and outputs is shown in
Fig. 6.1. First, a fast surrogate model of the image-based cardiac electromechanics
(EM) model of the heart from Chap. 3 is estimated by using polynomial chaos ex-
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Figure 6.1: Proposed robust estimation framework. From imaging and clinical data,
the posterior of the biomechanical computational model parameters, i. e., their most
likely value and their uncertainty, are inferred through robust estimation and UQ.
See text for details.

pansion (PCE). The surrogate model is then used in a Bayesian inference framework
to estimate posterior probabilities of model parameters. Then, mean-shift is applied
on the posteriors to find the optimal parameter value by integrating the space of
measurement uncertainties. Experiments on eight dilated cardiomyopathy (DCM)
patients from the cohort described in Sec. 4.4.1 showed that the proposed approach
yielded goodness of fit equivalent to a deterministic method, while being computa-
tionally efficient and providing additional information such as confidence intervals
(CIs). More importantly, we show that the manifold of possible solutions is much
larger, including multi-modal posteriors, which are automatically identified, therefore
enabling quantitative assessment of the clinical utility of estimated parameters.

For the purpose of presenting the stochastic personalization and UQ approach,
the computational model to be personalized is reformulated as a statistical problem,
denoted f(x) = y, where x and y are random input (model parameters) and output
(model responses) variables. The approach is designed to be suitable even for the
highly complex and computationally demanding EM model from Sec. 3.3.

6.2.2 Bayesian Inference

Inverse UQ is solved within the framework of Bayesian calibration [Kenn 01]: the
parameter values x are inferred and their uncertainty due to noisy measurements z
is quantified. The goal is to compute the probability density function (PDF) p(x|z),
i. e., the posterior of the model parameters given the patient’s measurements z. This
is achieved by forward propagation of uncertainty [Marz 07] through the model.

Following Bayes’ rule:

p(x|z) ∝ p(z|x) · p(x) . (6.1)

The first term on the right-hand side, p(z|x), is called likelihood. It describes how
well each set of parameters is supported by the measured data. As in [Wall 14], the
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likelihood is approximated by expressing it in terms of the misfit between responses
and measurements:

p(z|x) = exp
(
−1

2ε(y, z)>S−1ε(y, z)
)
, (6.2)

where ε(y, z) = y − z. The misfit is modeled as a normal distribution N (0 ,S) with
zero mean and covariance matrix S. In this work, all sources of error are aggregated
under ε. The second term in Eq. (6.1), p(x), is the prior :

p(x) ∼ Ux . (6.3)

It represents the knowledge on the parameters independently from the measurements,
and is modeled in this work using a uniform distribution Ux .

Now that the posterior p(x|z) is defined analytically, i. e., it can be evaluated
for any given set of input parameters, the next step is to estimate its density. To
this end, a Markov chain Monte Carlo (MCMC) method is used. In brief, MCMC
samples from the statistical distribution of input parameters x to iteratively build up
the distribution of the output (the model posterior p(x|z)). The problem with MCMC
is that it requires a large number of evaluations of the likelihood to estimate even
simple properties of the distribution, let alone its entire shape. Because evaluating
the likelihood (cf. Eq. (6.2)) requires the model output for the given parameter,
y = f(x), each step involves computation of the forward model, which is by itself
computationally demanding. Various extensions and improvements of MCMC aimed
towards reducing the computational burden are available, such as “delayed rejection
adaptive Metropolis” [Haar 06], which is used in this work. However, still thousands
of forward model evaluations are required, thus rendering MCMC intractable for the
models employed in this work.

6.2.3 Fast Surrogate of the Computational Model
To make estimation of the posterior density using MCMC sampling computationally
tractable, a very fast forward model is required. As the full EM model is too compu-
tationally prohibitive to be used directly in MCMC, the involvement of a surrogate
model is proposed. The surrogate model, denoted f̃ , should reasonably approximate
the full model f for a specified range of input parameters at vastly reduced compu-
tational cost.

To this end, an approach based on finite polynomial chaos expansion (PCE) is
employed [Adam 13]. PCE provides an efficient functional mapping from model in-
put x to individual responses y ∈ y = f(x) through multidimensional orthogonal
polynomial approximations of f . More specifically, for each individual response y, a
dedicated PCE surrogate f̃y(x) is estimated. f̃y(x) corresponds to expressing y in
terms of a linear combination of polynomials:

f̃y(x) =
ncoeff−1∑
i=0

αi · Ψi(x) (6.4)

where the multivariate polynomial basis Ψi(x) is defined as combination of univariate
1D basis Legendre polynomials, and ncoeff denotes the total number of coefficients.
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Let nx denote the number of parameters to estimate, the total number of coefficients
is determined as

ncoeff = (npoly + 1)nx , (6.5)

where npoly is the maximum polynomial order as specified by the user. The higher
npoly, the more fidel is the approximation, but also more coefficients need to be
estimated.

The PCE coefficients αi are obtained in a training phase using the spectral projec-
tion approach [Eldr 09]. The main idea is that model responses are projected against
each basis function Ψi using inner products, then polynomial orthogonality properties
are employed to extract the coefficients. The reader is referred to [Marz 07, Eldr 09,
Adam 13] for additional details. A total of ncoeff forward model runs of the full model
are required as “training data”.

6.2.4 Posterior Analysis under Uncertainty
From the surrogate model and the Bayesian calibration described above, the poste-
rior PDF p(x|z) of the model parameters can be estimated under the assumption
that the level of noise in the data is known. Coming back to the main objective,
i. e., model personalization, the next step is to derive an estimate of the most likely
model parameters, denoted x∗, and their uncertainty. In particular, the main goal
is to estimate parameter values that are most robust to varying level of noise in the
data, because the exact noise level is often difficult to precisely identify. To that end,
an algorithm to aggregate posteriors p(x|z) calculated for different levels of noise into
one PDF is proposed. The most likely parameter values are then estimated from the
aggregated PDF. A visual illustration for a simplified estimation setup is shown in
Fig. 6.2.

Mixture Model Fitting

Let pi(x|z) denote the ith estimated posterior, which was calculated for a cer-
tain noise level S i (cf. Eq. (6.2)) according to the method described in Sec. 6.2.2.
First, the number of modes, ki, in pi(x|z) is estimated using the mean-shift algo-
rithm [Coma 02]. Next, a GMM Gi with ki components is fitted to pi(x|z) using the
expectation-maximization algorithm. These steps are repeated nS times with distinct
levels of measurement noise uncertainty by varying the error variances of the individ-
ual responses in the covariance matrix S = S i of the likelihood, cf. Eq. (6.2). At the
end of this process, a set of nS mixture models G = {G1 . . .GnS} is generated. The
variability of S i and nS are specified by the user, as these parameters are application-
and data-dependent.

Extraction of Most Likely Parameters

Next, the Gi are aggregated to get the final estimate. Consider one particular mixture
model Gi ∈ G. For each of the j = 1 . . . ki means mij of the components of Gi, its
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Figure 6.2: Illustration of Gaussian mixture model (GMM) aggregation for a highly
simplified demonstrative estimation example (only one parameter x to be estimated).
Left: Colored curves are mixture models Gi fitted to the posterior samples of nS = 3
different noise levels S i. G2 is mono-modal, while others are multi-modal. The modes
mij and their weights are visualized on horizontal axis. Right: Final aggregated mix-
ture model Ĝ based on clustering of weighted modes and combination of covariance
matrices per cluster. Two clusters ♦1 and ♦2 are identified, thus Ĝ has two modes.
Most likely parameter estimate is the mode of the cluster with highest combined
weights, x∗ = m̂l, visualized as red-yellow dot. Black-white dot is alternative solu-
tion.

“support” is computed by summation of the log-probabilities of mij in each of the
other Gt:

wij =
∑
t6=i

log Gt(mij) . (6.6)

The supports wij are normalized such that all values are mapped between 0 and 1, the
latter representing the highest support. Next, the mij are separated into k∗ clusters
♦ = ♦1 . . .♦k∗ using wij-weighted k-means clustering. The number of clusters k∗ is
determined by voting among all ki in G. Finally, the centroid m̂l of the mij in the
cluster with the highest combined support ŵl:

ŵl =
∑
ij∈♦l

wij , (6.7)

is selected as the final estimate x∗ = m̂l. This way, the robustness in the estimate
is increased even without explicitly knowing the level of noise in the measurements,
while still being able to capture multi-modal PDFs.

Explicit Representation of Uncertainty

Uncertainty in estimated parameters is mainly described by confidence regions or
intervals in this work. Let Υ ij be the covariance matrix of the jth mixture component
in the ith mixture model Gi. It is assumed that in each cluster ♦l, all contained mij

with corresponding Υ ij are distorted (through noise) manifestations of the same
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Figure 6.3: Illustration of the main methods and variables involved in computing
the personalized model parameters and uncertainty. First the surrogate PCE model
f̃ is trained from the full model f . MCMC then samples the model posterior given
the measurements z, assuming a specific noise level S i. Sampling involves evaluation
of the surrogate model for generated parameters x to predict model outputs y. Mean
shift is applied on a large set of samples to identify the number of modes ki in the
posterior, which is input to a GMM fitting procedure to estimate the ith posterior
density Gi. This process is repeated for i = 1, . . . nS with varying noise levels S i.
All generated mixture models G are then aggregated into a robust representation of
uncertainty Ĝ (see text for details) and the most likely parameters x∗ are extracted.

normal PDF, which is centered at the centroid m̂l with unknown covariance Υ̂
∗
l . Υ̂

∗
l

is approximated by linear combination of the covariance matrices:

Υ̂ l = ŵ−1
l

∑
ij∈♦l

wijΥ ij . (6.8)

Finally, all information from the k∗ clusters is merged into one “robust GMM”:

Ĝ =
k∗∑
l=1

ŵl · N (m̂l, Υ̂ l) , (6.9)

thus forming an explicit representation of uncertainty. The main steps of the entire
procedure are illustrated in Fig. 6.3.

6.3 Experiments and Results
The proposed stochastic parameter estimation and inverse UQ method was evaluated
for personalization of the patient-specific EM model from Sec. 3.3. The focus of the
evaluation was on two parameters representing the main determinants of active and
passive cardiac biomechanics. In particular, the maximum active contraction force
of the left ventricle (LV), and the global stiffness factor of the passive model were
selected: x = (σ̂LV, β). Heart geometry, EP, hemodynamics (HD), and remaining
biomechanics parameters were assumed to be known for each patient. As this ap-
proach is still in a phase of active research and methodological improvements (see
also discussions in Sec. 7.2.3), the results and conclusions of the following experiments
should be considered preliminary, in particular because only a small group of eight
patients was involved. However, care was taken to select heterogeneous subjects with
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large variety of disease severity (EF ranging from 19–47%) among the DCM patients
from the cohort described in Sec. 4.4.1.

The main objective was to investigate uniqueness and CIs of the biomechanical pa-
rameter estimates given the clinically measured data, which was affected by unknown
levels of noise. In particular, the measurements (z) chosen for evaluating the method
were based on the time-varying LV volume and pressure curves: end-diastolic volume
(EDV), end-systolic volume (ESV) and mean ventricular volume; and end-diastolic,
peak-systolic and mean ventricular pressure.

The PCE surrogate models were computed with maximum polynomial order
npoly = 4, if not stated otherwise. The number of required forward model runs
of the full model to train the PCE depends on the maximum polynomial order,
cf. Eq. (6.5). In total, the full model needed to be computed 25 times per patient on
a 5×5 isotropic grid spanned by physiological parameter ranges of σ̂LV ∈ [50; 300] kPa
and β ∈ [0.2, 1.5].

The mean-shift based posterior analysis described in Sec. 6.2.4 was carried out
using nS = 15 random noise levels. Each intermediate GMM (Gi, one per noise
level) was estimated based on 50 000 MCMC samples. The response-specific level of
noise was modeled as the standard deviation (SD) of the assumed measurement error,
individually drawn from a uniform distribution SDy ∼ U(ly, uy). Lower and upper
bounds ly = 1 units and uy = 3 units, where units denotes ml or kPa for volume and
pressure responses, respectively, were chosen heuristically to model plausible levels
of data noise. The error covariance matrix S (cf. Eq. (6.2)) is defined as diagonal
matrix: S = diag(SD2

y1 , SD2
y2 , . . . ).

6.3.1 Precision of PCE-based Surrogate Model
The goal of the first experiment was to verify that the selected PCE maximum poly-
nomial order npoly = 4 was enough to model the posterior of the forward model. To
this end, the responses computed bye the PCE model of order 4, f̃ , were compared
with those obtained using a high-fidelity PCE model, f̃10, of order npoly = 10. Note
that following the formula in Eq. (6.5), calculation of the high-fidelity model f̃10 re-
quired almost five times (121) as many forward runs of the full model compared to
f̃ (25).

A total of 1 000 parameters were sampled randomly per patient and all model
responses were calculated using both f̃ and f̃10. Averaged over all patients, the errors
over volume and pressure responses were 1.6± 1.1 ml and 0.6± 0.4 kPa, respectively,
two orders of magnitude less than their absolute values (cf. Tab. 2.1). Furthermore,
posterior PDFs estimated from the two surrogates compared qualitatively well. These
results suggested that f̃ was enough to reliably estimate the posterior of the model.

6.3.2 Estimation of Biomechanical Parameters
Next, the biomechanical model parameters x = (σ̂LV, β) were estimated for all cases
using the proposed stochastic approach. The estimated parameters yielded high
goodness of fit (errors were below clinical variability), with a mean EF error of 2.3±
1.3% and stroke volume (SV) error of 8.6 ± 3.6 ml, respectively. In Fig. 6.4, the
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Figure 6.4: Visualization of 95% confidence interval (CI) of GMM mode with highest
combined support estimated by the proposed stochastic approach. The red dots
and blue circles represent most likely parameter values computed by the stochastic
approach and by the BOBYQA reference method, respectively. All BOBYQA results
lie within (or near) the CIs.

values of the estimated parameters and their 95% CI extracted from the main modes
of the model posteriors are visualized. As one can see, the noise in the data can
have significant impact on the confidence of the estimated values, with in some cases
intervals of up to ±40 kPa and 0.3 for σ̂ and β, respectively. Such estimates could be
employed as indicators of model fitting quality to suggest to the operator to acquire
more or higher-quality data in order to reduce these uncertainties. The method can
further capture multi-model PDFs as shown in Fig. 6.5, left panel.

6.3.3 Comparison to Deterministic Personalization
Next, the personalization results of the proposed method were compared to those
obtained using BOBYQA optimization [Powe 09]. The employed objective function
writes ζ(y) = ‖y − z‖2

2. The BOBYQA-based EF errors after personalization of the
same patients were approximately equivalent to those resulting from the stochastic
method: on average, EF and SV errors were 2.0±0.9%, and 7.6±2.6 ml, respectively.

In terms of run-time, BOBYQA required 13.3±1.9 evaluations of the full EM for-
ward model to converge to the final solution. In comparison, the proposed stochastic
approach always required exactly 25 forward runs in order to estimate the surrogate
model as described earlier. The stochastic method is therefore slightly less efficient,
but it provides valuable additional outputs in terms of confidence intervals and other
properties of the model posterior.

6.3.4 Empirical Evaluation of Estimated Uncertainty
Finally, in an empirical experiment on one dataset with complex posterior, the “mean-
ingfulness” of the computed uncertainty was investigated by analyzing how the good-
ness of fit of the model responses z varied between regions of high confidence and
regions of low confidence of the posterior. To this end, the full forward model was
computed based on several sets of parameters x along two one-dimensional sub-spaces
of the full parameters space as shown in Fig. 6.5. As one can see from the error profile
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Figure 6.5: Empirical evaluation of estimated uncertainty. Left: Automatically
estimated robust model posterior Ĝ visualized by 80%, 95% and 99% confidence
regions. The overlaid black lines depict the one-dimensional subspaces A and B that
were analyzed in this experiment (see text for details). The red and orange dots depict
the most likely solution and an “alternative solution” as computed by the stochastic
algorithm, respectively. Middle and right: LV EF error profiles of A and B, overlaid
by vertical lines representing the intersections of the 1D subspaces with the 80% (light
green), 95% and 99% (blue) confidence regions of the estimated posterior.

“A”, the absolute errors in terms of EF are significantly lower for parameters within
the marked high confidence regions, while outside the 99% confidence region (blue
contours), the errors increase suddenly and drastically. The further away from these
regions, the larger the errors became. The same trends were observed for other errors
such as SV and systolic and diastolic ventricular pressures. In the second profile “B”,
the underlying one-dimensional sub-space connects the two modes of the bi-modal
posterior Ĝ. All points on the resulting line are inside regions of high confidence. The
obtained errors along this line are consistently low, while the two modes (solution
and alternative solution) mark points that are approximately local minima of the
error profile. These empirical findings suggest that the proposed aggregation method
is meaningful. More comprehensive and theoretical evaluation will be needed in the
future.

6.4 Summary
In this chapter, the impact of data noise on the estimated biomechanical parameters
was explored. The proposed parameter uncertainty quantification (UQ) framework
relies on stochastic parameter estimation and aggregates the probabilities estimated
under different noise levels to derive a robust parameter estimate without explicitly
knowing the level of noise in the data. Experimental results on real clinical data
showed that not only the approach is as effective as well-established deterministic,
optimization-based methods, but that it is also computationally efficient while provid-
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ing rich information regarding the most likely parameter and measures of confidence
and uncertainty. Furthermore, using this approach, the non-uniqueness of the inverse
problem of cardiac biomechanics could be demonstrated by reporting different solu-
tion spaces, which can be automatically identified through the estimated posterior
PDFs. Such an approach could therefore provide precious insights when analyzing
the clinical relevance of estimated parameters and personalized model predictions. In
addition to that, it could constitute a criterion to select and refine data acquisition
protocols used for model personalization.
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What if we could create a virtual heart of a patient? We could better describe the
state of the patient, better diagnose the patient’s condition, predict therapy outcome
and proactively prescribe optimal interventions. The work performed during the
course of this thesis tackles some of the most challenging aspects in creating virtual
hearts and in their translation into clinical practice: from streamlined personalization
of a multi-physics computational electromechanics (EM) heart model, to intelligent
agents aiding the design of parameter estimation methods, to a stochastic framework
for robust parameter uncertainty quantification (UQ). A comprehensive summary in
Sec. 7.1 and an outlook for future work in Sec. 7.2 conclude this thesis.

7.1 Summary
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure

(HF) with significant mortality and morbidity rates (Chap. 1). However, clinical
management of these patients is challenged by the wide variety of disease causes
and therapies. There is therefore an important need for new tools to better stratify
patients. Computational models of heart function are being explored to improve
patient stratification, risk prediction and therapy planning. They can not only be
used to estimate hidden information from clinical data, but also to predict therapy
outcome and disease course due to their generative nature. However, in order to
use such models in clinical practice, they need to be precisely personalized to the
patient. The multi-physics 3D computational whole-heart model that has been used
and enhanced in the course of this thesis aims to capture the most relevant aspects
of real cardiac physiology, which are briefly introduced in Chap. 2 together with the
most common tools and devices to measure heart morphology and function.

7.1.1 Patient-specific Virtual Hearts
The model itself, which was developed by a team of researchers at Siemens Healthi-
neers, is then described in Chap. 3, which marks the beginning of the first main part of
this thesis, which concerns the path from routine clinical data to patient-specific vir-
tual hearts. The whole-heart model consists of a set of coupled components, which can
be computed independently, but interact with each other. Each component models
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an integral part of the heart’s morphology or physiology: anatomy, electrophysiology
(EP), biomechanics or boundary conditions.

The first component, anatomical model, captures the geometric and structural
properties of the heart. To this end, bi-ventricular heart anatomy is efficiently seg-
mented under expert guidance from magnetic resonance imaging (MRI) using ma-
chine learning (ML) techniques and converted to a volumetric mesh representation.
A rule-based model of myocardial fiber architecture is fitted to the patient geome-
try, and the mesh is automatically tagged with certain spatially-varying information
required by the other components.

Next, cardiac EP models the propagation of the electrical signal in the my-
ocardium. Two interchangeable EP models are available in the framework. The first
one, LBM-EP, is based on the Mitchell-Schaeffer cellular model, and the second one,
Graph-EP, is a highly efficient graph-based method, which is more simplified than
LBM-EP, but still able to capture normal electrical activity and certain pathologies.
Both approaches support anisotropic tissue properties by incorporating local fiber ori-
entation into the computations. Models of the fast Purkinje network are also available
for both approaches. The EP model further connects to an electrocardiogram (ECG)
model by propagating electrical potentials on the heart to the torso.

The third component models cardiac biomechanics triggered by the potentials
of the EP model. It is based on intertwined active and passive forces: a simplified
model of active myocyte contraction and an orthotropic passive tissue constitutive
law, which incorporates fiber orientation. Biomechanics is solved using a fast GPU-
accelerated finite element method (FEM) implementation.

Finally, several boundary conditions are added to the model to mimic external
conditions such as neighboring organs, blood flow and the circulatory system. First,
a phase model of the cardiac cycle simulates the four cardiac phases by altering ven-
tricular boundary conditions. Second, two three-element Windkessel (WK) models
simulate arterial pressures, one for aorta, one for pulmonary artery. Third, the effect
of the atria is simulated using two independent lumped elastance models. Fourth, two
spatial constraints are introduced: base stiffness to mimic the effect of arteries and
atria on ventricular motion, and pericardium constraint, a contact-based model of the
pericardium to mimic the effects of the neighboring organs and of the pericardium
on the cardiac motion.

The model described above is used for the design and evaluation of the methods
developed in the course of this work, which should be considered the main contribu-
tions of this thesis. In Chap. 4, the first of three major contributions is presented: an
integrated pipeline for streamlined personalization of the full cardiac model. A criti-
cal prerequisite for applying computational models in clinical practice is their ability
to precisely capture an individual patient’s physiology. The process of fitting a model
to patient data by estimating model parameters is called personalization. First, the
state-of-the-art in cardiac model personalization techniques is reviewed. Then each
module of the proposed personalization pipeline is described. It should be noted
that a major requirement was to build tools that work with routinely acquired data
and do not rely specialized acquisition protocols. Based on the anatomical model
segmented from MRI, first, an automated approach for personalizing hemodynamics
(HD) boundary conditions from time-varying pressure and volume curves is presented.
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In a semi-automated pre-processing step, one heart cycle needs to be selected from
the typically multi-cycle pressure data, which is then smoothed and synchronized to
the volume curves. Based on that data, five parameters of each arterial WK model
are then personalized fully automatically by minimizing a specifically designed cost
function in order to fit computed arterial pressure to the measurements. Next, the
EP personalization module is presented. It personalizes four parameters of the EP
model, three related to depolarization, one to repolarization, in order to compute
simulated ECG traces that match the shape of the measured ones. To this end, a
carefully designed multi-stage cascaded inverse optimization procedure is proposed
to counter the ill-posed nature of the inverse EP problem. Next, the biomechanics
personalization procedure is described, which adjusts seven biomechanical parame-
ters, both passive and active, and two additional parameters of the atrial boundary
conditions. As with EP, biomechanics personalization is fully automatized and based
on inverse optimization involving hand-crafted cost functions. Finally, a hierarchical
coarse-to-fine strategy for regional personalization of active biomechanical properties
is proposed.

All modules of the pipeline were then evaluated comprehensively on a very large
and heterogeneous cohort of more than one hundred patients, where about one third
were children or adolescents, and two thirds were adults. The goal was to assess the
ability of the personalization pipeline to capture cardiac physiology of the patients,
thereby integrating the available clinical data into the model. To this end, the full
pipeline was applied to all patients and the outputs of each step were compared to
measured clinical indicators of cardiac function, i. e., by evaluating the goodness of
fit between patient-specific model output and measurements.

The personalized artery pressures after WK personalization matched well for al-
most all patients, except few ones, where the pressure trends were difficult to capture
due to the limited quality of available imaging data. However, in all cases, at least the
diastolic pressure and the peak pressure were matched well, which are the most rel-
evant features for the biomechanical computations. Next, EP results were analyzed.
QRS and QT duration of the computed ECG matched excellently to the measured
data for all patients. However, while analyzing electrical axis (EA), a measurement
that describes the shape of the QRS complex in the ECG and can depend on regional
variations in electrical conductivity of the myocardial tissue, some outliers were ob-
served. The outliers could be the results of potentially invalid assumptions of the EP
model for certain pathologies. For the majority of patients (80%), however, only very
low or acceptable errors within clinical variability were observed. Next, the biome-
chanics personalization was evaluated. The goodness of fit between global indicators
of cardiac function were analyzed. Again, for the majority of patients, simulated clin-
ical features such as ejection fraction (EF) and stroke volume (SV) matched almost
perfectly to the data, which is further verified by qualitative comparison of heart
dynamics as observed in MRI and simulated motion, as well as comparison between
simulated and measured time-varying pressure and volume curves. To summarize
these results: the proposed personalization pipeline can indeed capture physiology
of patients as demonstrated on this large and heterogeneous cohort. Furthermore,
an analysis of the distribution of personalized EP and biomechanics parameters for
both patient groups revealed some minor differences between adults and children,
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which can be explained well based on physiological considerations and findings in
literature. Runtime for the full pipeline is typically between four to twelve hours per
patient depending on various factors.

Next, regional mechanics personalization was tested in several experiments on
both synthetic and real data. The first results were promising, and the preliminary
experiment on real data even suggested that the approach could potentially identify
and localize regional abnormalities in the myocardium. However, more work and
larger test sets will be needed to validate these observations.

Finally, a virtual cardiac resynchronization therapy (CRT) pilot experiment to test
the predictive power of the model was conducted. First, the model was personalized
with respect to the state of a patient’s heart at baseline, i. e., prior to implantation.
Next, virtual CRT was performed in silico by adding electrical stimulation to the
model at the location where the leads of the real CRT device were attached to mimic
the device, and the model was then simulated under these modified conditions. Fi-
nally, quantitative predictors of CRT outcome, such as change in QRS duration, were
computed from the model and compared to the real clinical outcome as observed by
the electrophysiologist during device programming. The results suggested that the
model could indeed predict acute electrophysiological changes for this patient, and
predicted acute hemodynamics changes were consistent.

7.1.2 Advanced Personalization with Artificial Intelligence and
Uncertainty Quantification

Chap. 5 opens part two of this thesis, which covers both the second and the third
major contribution of this work. Starting from the observation that designing robust
personalization algorithms as the ones presented in the previous chapter is a tedious,
time-consuming, model- and data-specific process, the theme of the second major
contribution was to explore whether artificial intelligence (AI) concepts can be used
to learn this task. A novel personalization algorithm called Vito is presented, which
is inspired by how humans approach personalization and after some time excel at
the task: by enduring tedious trial-and-error phases, thereby gaining experience,
and through intuition. Based on a set of training patients, Vito first learns the
characteristics of the computational model to be personalized using a data-driven
model exploration approach, i. e., it learns how the model behaves under change of
parameters. Then this knowledge is transferred into the framework of reinforcement
learning (RL) to automatically compute an optimal personalization strategy, which
can then be applied to robustly personalize unseen patients. The algorithm is generic
and requires only minimal user input to learn by itself how to personalize a model.

Vito was first tested in a synthetic scenario in order to verify its ability to mini-
mize cost functions generically. Then it was evaluated extensively on two challenging
cardiac models: the Graph-EP electrophysiology model from Sec. 3.2 and a lumped-
parameter model of whole-body circulation (WBC). One key observation was that it
reached equivalent success rates as a carefully engineered hand-crafted approach, and
it was substantially more robust than näıve cost function minimization. At the same
time, as shown in detail for several configurations of the WBC model, personalization
of unseen cases converged consistently faster than standard methods: by a factor of
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up to seven. The hyper-parameters to be set by the user were only few and mostly
intuitive to the designers of computational models. Those where more in-depth knowl-
edge of the algorithm is required (e. g., the number of representative states for the
decision process model) could in part be tuned automatically using a set of “scout-
ing” patients. These positive results are evidence of good generalization properties
and suggest that Vito was indeed able to generalize the knowledge obtained from
a set of training patients to personalize unseen patients. Such an approach could
therefore evolve into a unified framework for personalization of any computational
physiological model and support designers of new models by automatically designing
tailored and efficient personalization methods.

The third major contribution concerns the sometimes neglected, yet highly im-
portant topic of uncertainties in computational modeling. Chap. 6 starts off with
an overview of the various sources of uncertainties in modeling, then the focus shifts
towards inverse uncertainty quantification (UQ), which in this context means the
problem of propagating uncertainties backwards through the model personalization
process. In particular, a stochastic personalization approach is proposed, with the
ability to quantify uncertainties in estimated model parameters, while taking into
account uncertainties due to sparse and limited data and noise in the clinical mea-
surements. It can further identify solution non-uniqueness. The method is based on
Bayesian inference and Markov chain Monte Carlo (MCMC) sampling is employed
to generate samples of the model posterior. To make the sampling practical, an effi-
cient surrogate model based on polynomial chaos expansion (PCE) is utilized, which
approximates the computationally expensive full forward model to ascertain compu-
tational tractability of the problem. The full approach can be summarized as follows.
In a first step, the surrogate PCE model is trained from the full model. Then for
various levels of data noise a set of posterior densities are estimated, which are then
aggregated to generate the final model posterior. The posterior is then analyzed to
derive the most likely parameters given the unknown levels of noise in the data, and
to identify high confidence regions.

This stochastic method was then evaluated on a number of heterogeneous DCM
patients and the cardiac biomechanics model, where the goal was to estimate two
of the most critical parameters related to cardiac dynamics: active contraction force
and passive myocardial tissue stiffness. In a first experiment, the required fidelity of
the PCE surrogate model was evaluated. Next, the proposed method was used to
automatically compute most likely model parameters and confidence intervals. The
fit between the output of the full model computed with the identified parameters and
the real clinical measurements was below clinical variability and equivalent to results
computed using standard deterministic personalization. Furthermore, determinis-
tically estimated model parameters were within the automatically estimated 95%
confidence intervals of the stochastic method. Computed uncertainties (as captured
by the automatically estimated model posteriors) were evaluated empirically and the
results suggested that the proposed inference and aggregation method can indeed pro-
vide meaningful uncertainty outputs. Finally, it could be shown that non-uniqueness
of the problem can be identified automatically. Such an approach could therefore pro-
vide precious insights when analyzing the clinical relevance of estimated parameters
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and personalized model predictions. In addition to that, it could constitute a criterion
to select and refine data acquisition protocols used for model personalization.

7.2 Perspectives
The novel concepts and algorithms proposed in this thesis pushed forward the state-
of-the-art in efficient and robust image-based computational biophysical model per-
sonalization, but at the same time they are opening up new avenues for future research
opportunities. In this section, potential future directions as well as some of the most
pressing open challenges towards clinical translation are discussed.

7.2.1 From Global to Regional Personalization
Most of the proposed methods in this thesis focus on global personalization with the
goal to capture some of the most important clinical indicators of cardiac function,
which are mostly of global nature (e. g., EF and SV capture blood output of an entire
ventricle). For instance, one of the parameters that is adjusted in the EP model in
Sec. 4.3.2 represents electrical conductivity of myocardial tissue. This parameter is
estimated once for the entire myocardium, thus assuming homogeneity of the myocar-
dial tissue (regionally varying fiber orientation is considered). Perfectly homogeneous
tissue is obviously not encountered in many patients, if any at all. Disease-related
variability due to cardiac infarction causing myocardial scars or fibrotic remodeling,
but also non-pathological variability due to natural variations in tissue properties are
not fully taken into account. There are several reasons for the selected choice of pa-
rameter granularity in each of the models and personalization algorithms presented
in this thesis.

The first one concerns theoretical limitations in parameter identifiability. One ma-
jor goal of this work was to develop methods that work with routinely acquired clinical
data, which is inherently sparse. Coming back to the EP example above, the only
standard measurement of cardiac electrical activity available in clinical routine is 12-
lead ECG, which is not even measured directly at the heart, but rather indirectly on
the torso. ECG therefore cannot provide detailed regional information and localized
alterations cannot always be identified without additional information. Therefore, if
more detailed parametrization was used, the solution space would explode quickly
since more and more combinations of parameters could be identified that lead to the
same ECG output. Parameters are more identifiable when less parameters are used.

The second consideration for the selected choice of parameter granularity is com-
putational cost. The complexity of any personalization method heavily depends on
the dimensionality of the parameter space. The best trade-off between computational
burden and model flexibility needed to be found.

Nevertheless, novel methods are being developed to overcome these limitations to
some extent, such as [Seeg 15], where additional information in the form of mechanical
strain maps is incorporated into the EP personalization procedure to derive spatially
varying parameters. In Sec. 4.3.4 of this thesis, an approach for regional biome-
chanical model personalization is proposed, where instead of personalizing a single
contractility parameter for the entire left ventricle (LV), the ventricle is divided into
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17 segments and one parameter is assigned to each segment. Based on “regional
volumes”, a set of advanced descriptors of regional cardiac motion derived from the
tracked endocardium meshes, regional information is extracted and incorporated in
the personalization cost function to increase identifiability of regional alterations.
First results were promising, however, to fully capture local variations in heart phys-
iology for all patients including those with rare pathologies, additional methods may
have to be developed to extract all relevant information from the available data.
As a next step, time-varying spatial distributions of landmarks of the endocardial
surfaces could be incorporated to further enhance identifiability of spatially varying
parameters of the cardiac model.

7.2.2 Challenges of AI-based Personalization
Open questions and challenges related to Vito, the self-taught artificial personal-
ization agent presented in Chap. 5, still remain. In its current form, the number
of actions available to Vito to adjust intermediate parameter estimates is finite and
their nature is discrete, i. e., only discrete increments or decrements to the parameters
can be made, one parameter at a time. This may be limiting in terms of effective-
ness and efficiency of on-line personalization. The incorporation of continuous action
spaces [Van 12] could further improve its performance and versatility. However, care
needs to be taken in order to keep computational costs manageable. The same holds
for the state space. In this thesis, a data-driven state space quantization strategy
is proposed. Contrary to [Neum 15b], where a threshold-based state-quantization in-
volving several manually tuned threshold values (Fig. 5.2) was employed, the new
method is based on a single hyper-parameter only: the number of representative
states. Although it simplifies the setup of Vito, this quantization strategy may still
not be optimal, especially if only little training data is available. Therefore, advanced
approaches for continuous RL with value function approximation [Sutt 98, Mnih 15]
could be integrated to fully circumvent quantization issues.

At the same time, such methods could improve Vito’s scalability towards high-
dimensional estimation tasks. In this work it was shown that Vito can be applied to
typical problems emerging in cardiac modeling, which could be described as medium-
scale problems with moderate number of parameters to personalize and objectives to
match. In unreported experiments involving >10 parameters, however, Vito could
no longer reach satisfactory performance, which is likely due to the steeply increasing
number of transition samples needed to sample the continuous state space of increas-
ing dimensionality sufficiently during training. The trends in Sec. 5.3.3 confirm the
need for more data. In the future, experience replay [Lin 93, Adam 12] or similar
techniques could be employed to increase training data efficiency. Furthermore, mas-
sively parallel approaches [Nair 15] are starting to emerge, opening up new avenues
for large-scale RL.

Although the employed RL techniques guarantee convergence to an optimal pol-
icy, the computed personalization strategy may not be optimal for the model under
consideration as the environment is only partially observable and the personalization
problem ill-posed: there is no guarantee for solution existence or uniqueness. Yet,
it could be shown that Vito can solve personalization more robustly and more ef-
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fectively than standard methods under the same conditions. However, a theoretical
analysis in terms of convergence guarantees and general stability of the method would
be desirable, in particular with regards to the proposed re-initialization strategy. As
a first step towards this goal, in preliminary (unreported) experiments on the EP
and the WBC model, it could be observed that the number of patients which do not
require re-initialization (due to oscillation) to converge to a successful personalization
consistently increased with increasing training data.

Beyond these challenges, Vito showed promising performance and versatility,
making it a first step towards an automated, self-taught model personalization agent.

7.2.3 Challenges of Stochastic Personalization
Among the methods proposed in this work, the inverse UQ approach for stochas-
tic model personalization described in Chap. 6 is the one with the largest potential
for additional research. Theories and methodologies for forward UQ are relatively
well established, but in inverse UQ approaches as the one described here, several
difficulties remain unsolved in the UQ community. Challenges due to high dimen-
sionality, which may become a limiting factor even in “standard” (deterministic)
personalization methods, play a much larger role in inverse UQ. Computational cost
increases much more rapidly with the dimensionality of the problem. In the approach
presented in this thesis, thousands of samples of the posterior are needed even for
low-dimensional parameter spaces.

On top of sampling the posterior, the complex model to be personalized needs to
be sampled in an initial training step to determine coefficients of the PCE surrogate
model. The complexity of PCE training is in fact exponential with respect to the
dimensionality of the parameter space: at least as many forward runs of the full
model are required as PCE coefficients need to be determined (cf. Eq. (6.5)). With
increasing desired PCE model fidelity, the computational burden grows even worse.
One potential direction for speeding up training of the PCE model is to employ ad-
vanced sampling techniques such as the recently proposed “adaptive sparse sampling”
approach [Quic 16]. In this approach, each polynomial is analyzed with respect to its
contribution to the quality of the surrogate model, and low-contribution polynomials
are later excluded to reduce the overall number of coefficients to be estimated. How-
ever, even if such an approach improves training speed by a certain factor, still, the
complexity class remains exponential and high-dimensional problems will remain out
of reach. Finally, also other types of surrogate models exist such as Gaussian pro-
cess emulators [Rasm 03] or reduced-order physiology-based models [Moll 16], whose
advantages and limitations should be evaluated carefully for further development of
the method. To explore the limits of the proposed stochastic personalization ap-
proach in terms of parameter dimensionality, as a next step, the number of model
parameters to be estimated could be increased steadily, one by one, e. g., by including
additional biomechanics parameters or parameters of other parts of the model such
as the arterial WK models or EP model.

Despite all these challenges, on the path to translation of patient-specific compu-
tational models into clinical applications, uncertainties in data and modeling assump-
tions need to be considered carefully and extensively in order to prove the credibility
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of the computational models. More work on UQ-driven approaches such as the one
proposed in this work is therefore necessary. Fortunately, such approaches seem to
gain popularity in the computational modeling research community, as very simi-
lar methods already started to appear in other related areas such as brain tumor
growth modeling [Le 15]. This further suggests good generalization properties of such
methods.

7.2.4 Predictive Power of Personalized Models

The generative power of the computational whole-heart model described in Chap. 3,
namely its ability to compute cardiac function under various conditions, makes it ideal
for computing predictors of therapy outcome, provided it is personalized accurately.
Therefore, one important next step should be to further investigate the predictive
power of the patient-specific model after personalization using the proposed method-
ology on a large number of cases. The positive virtual CRT results presented in
Sec. 4.5, where virtual CRT treatment was performed on the personalized heart of
one real CRT patient, should be considered only a starting point. Similar studies for
model-based patient-specific prediction on small patient cohorts and different types
of models have also been carried out [Serm 09, Seeg 15, Croz 16, Okad 17]. However,
only in a large-scale validation effort one can truly evaluate the predictive power of
the model when personalized using the algorithms proposed in this thesis.

7.2.5 What If We Could Create a Virtual Patient?

With the recent advances and the continuous rapid progress in imaging and per-
sonalized computational modeling, one can envision a future, in which new drugs are
discovered by modeling diseases in a computer, and clinical trials are carried out on co-
horts of virtual patients, before even enrolling any real patient into the trial [Vodo 14].
The implications of such a vision becoming reality are manifold with huge benefits
towards the progress of research and medicine through reduction of costs and patient
risk, and thereby acceleration of drug discovery and clinical trials, while at the same
time, the necessity for animal experiments may decrease. Furthermore, new medical
devices (advanced stents, pacemakers, and others) can be tested in silico, with huge
potential towards more efficient regulatory approval and certification [Gott 17].

However, in order to accomplish this vision, society needs to commit to large inter-
disciplinary efforts that will allow the evolution of the current models, which already
cover multiple scales—from cells, to tissues, to organs—into virtual models of entire
patients. This undertaking will require long-standing and close collaboration between
academia, translational researchers and industry. Until the necessary technological
advancements, which may include fast simulation hardware, innovative mathematical
formulations for coupling various multi-scale models, and additional medical insights,
become available, the current organ-scale models, like the patient-specific virtual
heart employed throughout this work, can and should be further extended, improved
and evaluated by clinically-driven hypothesis testing and validated for patient-specific
therapy outcome prediction.
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Towards this goal, a potential next area of research could focus on gradually
extending the current model to, e. g., a four-chamber version by adding atria, to in-
crease the level of detail of the model by explicitly including other structures such as
papillary muscles, or to replace the currently employed lumped models of the circu-
latory system by higher-dimensional ones. All of these changes may have significant
impact on overall cardiac function and may allow to better capture certain patholo-
gies. Progress on the modeling side will also entail the investigation of extended
segmentation and personalization methods for these additional structures.
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Appendix

A.1 Software Tool for Interactive Personalization

A.1.1 VvTk Rapid Prototyping Platform
During the course of this thesis, significant contributions to Vitruvio toolkit (VvTk)
have been made in terms of software engineering and algorithm development. VvTk
is a modular C++ software platform for rapid prototyping and for delivering advanced
clinical solutions, developed as proprietary software by the “Digital Technology and
Innovation” group of the “Digital Services” department in Siemens Healthineers, the
industrial collaboration partner of this thesis. The toolkit enables integration of
algorithms and realization of modular workflows, while supporting large-scale batch
processing and evaluation.

A.1.2 HeartBuildR
Fig. A.1 shows screenshots of the interactive computational heart model personal-
ization software tool called “HeartBuildR”, which is based on VvTk and has been
enhanced and extended continuously throughout this work. First, a patient browser
lists all datasets available in a local database and the user selects one of them or
creates a new entry by importing cardiac MRI data. Next, as described in Sec. 3.1,
cardiac anatomy is automatically segmented from the imaging data. The user can
then review and modify the resulting 3D surface meshes, if needed. Once the seg-
mentation is accepted by the user, the meshes are fused into a single, watertight
bi-ventricular mesh and a volumetric (tetrahedral) mesh is computed automatically
from it. The volumetric mesh is then input to the anatomical model generation
procedure, which adds myocardial fiber architecture, tagging, etc., to the model.
Furthermore, a torso model for EP / ECG modeling is aligned semi-automatically to
the anatomical model and MRI scout sequences, if available. Finally, based on the
anatomical model and torso geometry, cardiac EP and biomechanics are personalized
according to the algorithms described in Sec. 4.3.2 (or Sec. 5.2) and Sec. 4.3.3. As
this process will take some time, there is an option to perform personalization off-line
(script-based batch-processing environment), then load the results into HeartBuildR
once again for inspection as soon as processing has completed.
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Torso and fibersEM personalization

Patient browser Myocardium segmentation

Figure A.1: Overview of the developed user interface (UI) for comprehensive per-
sonalization of the multi-physics whole-heart model.
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A.2 Supplementary Personalization Results
This section presents additional results of the integrated personalization pipeline
(Sec. 4.4) in terms of anatomical models of several patients from the study cohort,
segmented from MRIs, illustrating the large variability in shape.

Figure A.2: Example anatomical models based on segmentation from MRI. The
colored overlay represents myocardial fiber architecture (color-coded by fiber orien-
tation) generated using the rule-based fiber model described in Sec. 3.1.
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Figure A.3: Pre-processing of k-means input data to enforce the success state ŝ.
Left: Continuous state space with observed objective vectors c (blue points). The
points with dashed outline will be canceled out. Right: Delineation of ŝ in green,
enforced by inserted vectors (green / red points) with large weights. See text for
details.

A.3 Additional Details of AI-based Personalization

A.3.1 Data-driven State Space Quantization
This section describes the details of the proposed data-driven quantization approach
to define the set of representative MDP states S (see Sec. 5.2.4). It is based on
clustering, in particular on the weighted k-means algorithm described in [Arth 07].
To this end, all objective vectors C = {c ∈ E} are extracted from the training data
(Sec. 5.2.3). C ⊂ Rnc represents all observed “continuous states”. The goal is to
convert C into the finite set of representative MDP states S while taking into account
that Vito relies on a special “success state” ŝ encoding personalization success.

The success state ŝ does not depend on the data, but on the maximum acceptable
misfit ψ. In particular, since personalization success implies that all objectives are
met, ŝ should approximate a hyper-rectangle centered at 0 and bounded at ±ψ,
i. e., a small region in Rnc where ∀i : |ci| < ψi. To enforce ŝ, the input to weighted
k-means is pre-processed as follows.

First, the 0 -vector is inserted into C, along with two vectors per dimension i,
where all components are zero, except the ith component, which is set to ±2ψi. These
2nc + 1 inserted vectors are later converted into centroids of representative states to
delineate the desired hyper-rectangle for ŝ as illustrated in Fig. A.3. Furthermore,
to avoid malformation of ŝ, no other representative state should emerge within that
region. Therefore, all vectors c ∈ C, where ∀i : |ci| < 2ψi (except for the inserted
vectors) are canceled out by assigning zero weight, while the inserted vectors are
assigned large weights →∞ and all remaining vectors weights of 1.

Next, k-means is initialized by placing a subset of the initial centroids at the
locations of the inserted states, and the remaining nS − 2nc − 1 centroids at random
vectors in C. Both the large weight and the custom initialization enforce the algorithm
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to converge to a solution where one cluster centroid is located at each inserted vector,
while the other centroids are distributed according to the training data. To ensure
equal contribution of all objectives (cancel out different units, etc.), similarity is
defined relative to the inverse of the user-defined convergence criteria (Eq. (5.7)).

Finally, after k-means converged, the resulting centroids, denoted ξs, are used to
delineate the region in Rnc assigned to a representative state s.

A.3.2 Data-driven Initialization
This section describes the details of the proposed data-driven initialization approach
to compute a set of candidate initialization parameters {x0} ∈ Ω for a new patient p
based on the patient’s measurements zp and the training database E (see Sec. 5.2.6).

First, all model states are extracted from the training database: Υ = {y ∈
E}. Next, Υ is fed to a clustering algorithm (e.g. k-means). As in appendix A.3.1,
the distance measure is defined relative to the inverse of the convergence criteria
(Eq. (5.7)). The output is a set of centroids (for simplicity, in this work the number
of centroids was set to nS), and each vector is assigned to one cluster based on its
closest centroid. Let Υp ⊆ Υ denote the members of the cluster whose centroid is
closest to zp and

Ξp = {x ∈ E | f(x) ∈ Υp} (A.1)
the set of corresponding model parameters. For each cluster, an approximation of
the likelihood over the generating parameters is computed in terms of a probability
density function (PDF). In this work a Gaussian mixture model (GMM) G is assumed:

Gp(x) =
K∑
i=1

wi · N (x; mi, Σi) . (A.2)

The parameter vectors in Ξp are treated as random samples drawn from Gp. Its
properties, namely the number of mixture components K, their weights wi, and their
means mi and covariance matrices Σi, are estimated from these samples using a
multivariate kernel density estimator with automated kernel bandwidth estimation,
see [Kris 11] for more details. Finally, the M estimated means are selected as ini-
tialization candidates {x0} = {mi}. The candidates are sorted according to their
wi-value to prioritize more likely initializations.
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AHA American Heart Association 19, 20, 40, 46, 47, 55–58, 60, 117
AI artificial intelligence iii, 4, 65, 66, 83, 100
AP action potential 22, 23, 27, 28, 41, 42, 52
APD action potential duration 23, 43, 52
ATP adenosine triphosphate 28
BEM boundary element method 26
BOBYQA bound optimization by quadratic approximation 43, 44, 48, 52, 56–

58, 75, 77, 92, 93
CI confidence interval 51, 53, 87, 91–93
CO cardiac output 12
CRT cardiac resynchronization therapy 2, 59–61, 100, 105
CT computed tomography 9, 10, 17, 26
DBP diastolic arterial pressure 12
DCM dilated cardiomyopathy 1, 2, 22, 48, 60, 87, 91, 97, 101
DL deep learning 18
DTI diffusion tensor imaging 20, 21
EA electrical axis 11, 12, 26, 43, 50, 51, 75, 99
ECG electrocardiogram 10–13, 22, 25, 26, 32, 35, 37, 39, 42, 48–51, 59,

60, 75, 98, 99, 102, 107, 113, 115, 116
ED end-diastole 41, 49
EDP end-diastolic pressure 45
EDV end-diastolic volume 12, 45, 49, 79, 91
EF ejection fraction 10, 12, 45–47, 49, 52, 56, 58, 59, 86, 91, 93, 94, 99,

102, 113, 114
EM electromechanics 30, 35, 38–40, 43, 44, 46, 47, 49, 53–55, 57, 60,

86–88, 91, 93, 97, 114
EP electrophysiology 3, 17, 19, 21, 23–26, 28, 29, 35–37, 39, 41–43,

48–52, 59–61, 73, 83, 84, 86, 91, 98, 99, 102, 104, 107, 114, 117
ES end-systole 41
ESP end-systolic pressure 45
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ESV end-systolic volume 12, 45, 79, 91
ET ejection time 40
FEM finite element method 29, 98
FSI fluid-structure interaction 30
GMM Gaussian mixture model 89–92, 111, 114
GPU graphics processing unit 24, 30, 52, 98
HD hemodynamics 17, 35, 39, 43, 48, 60, 91, 98
HF heart failure iii, 1, 97
HO Holzapfel-Ogden 27, 39, 43, 113
ICD implantable cardioverter-defibrillators 2
LA left atrium 8, 33, 43, 79
LBM Lattice-Boltzmann method 23, 24, 41
LV left ventricle 8, 13, 18–20, 25, 31, 33, 40, 43, 45–47, 49, 52–60, 79,

81, 91, 94, 102, 113, 115, 117
MAP mean arterial pressure 12
MCMC Markov chain Monte Carlo 88, 91, 92, 101
MDP Markov decision process 67–72, 78, 83, 84, 113–117
ML machine learning 3, 5, 17, 36, 37, 47, 66, 98
MRI magnetic resonance imaging 2, 9, 10, 17, 18, 26, 38, 40, 43, 45, 46,

48, 49, 52–55, 58, 75, 79, 98, 99, 107, 109
MSDL marginal space deep learning 18
MSL marginal space learning 18
PCE polynomial chaos expansion 86, 88, 89, 91, 92, 101, 104, 114, 115
PDF probability density function 87, 89, 90, 92–94, 111, 114, 116, 118
RA right atrium 8, 33, 43, 79
RL reinforcement learning iii, 4, 66–68, 72, 83, 100, 103
RV right ventricle 8, 20, 21, 25, 31, 40, 43, 45, 46, 50, 52, 55, 56, 59, 79,

113–115, 117
SBP systolic arterial pressure 12
SSD sum of squared differences 45, 46
SSFP steady-state free precession 10, 18, 48, 52, 75
SV stroke volume 10, 12, 45–47, 49, 52, 93, 99, 102, 117
TLED total Lagrangian explicit dynamics 30
UI user interface 47, 108



List of Acronyms 119

UQ uncertainty quantification iii, 4, 85–87, 91, 94, 97, 101, 104
US ultrasound 9, 10, 17
VvTk Vitruvio toolkit 107
WBC whole-body circulation 73, 79–83, 100, 104
WK Windkessel 30, 31, 36, 38–41, 49, 50, 60, 79, 98, 99, 104, 113, 114,

116
XML extensible markup language 47, 48
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List of Symbols
a MDP action

A set of MDP actions

]fiber fiber angle

]sheet sheet angle

β dimensionless factor to isotropically scale tissue stiffness (HO model)

C compliance: accounts for the elasticity of the arterial walls (WK model)

C Rayleigh damping matrix

c personalization objective

C set of personalization objective vectors c

c vector of personalization objectives c

♦ cluster of points

D anisotropy tensor

D distance map

δ reference value

δ vector of reference values

e model exploration episode

E set of model exploration episodes e

ε measure of misfit between two variables or two vectors

]EA computed electrical axis (ECG)

]EA measured electrical axis (ECG)

EF computed ejection fraction (EF)

EFLV computed LV EF

EFLV measured LV EF

EFRV computed RV EF
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EFRV measured RV EF

f computational model

f̃ surrogate model based on PCE

f̃10 high-fidelity surrogate model based on PCE

fEM computational EM (biomechanics) model

fEP computational EP model

fWK computational WK model

g normalized gradient vector

G Gaussian mixture model (GMM)

G vector of GMMs G

γ MDP discount factor

ha active stress force vector

hb boundary conditions force vector

hbase base stiffness force vector

HO Holzapfel-Ogden energy function

hp ventricular pressure force vector

hperic pericardium constraint force vector

I identity matrix

K internal elastic stiffness matrix

kATP contraction rate (active force model)

kRS relaxation rate (active force model)

Kbase base stiffness

Λ anisotropic stress tensor

M mass matrix

M Markov decision process (MDP)

m mean

N normal PDF

n normal vector (e. g., surface normal)
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nA number of MDP actions

nc number of personalization objectives

ncoeff number of PCE coefficients

ndatasets number of datasets

nE number of model exploration episodes

ne-steps number of consecutive transitions in a model exploration episode

niter maximum number of iterations

npoly maximum polynomial order of PCE model

nψ number of convergence criteria

nS number of MDP states

nsamples number of training samples

nS number of noise levels

ν electrical conductivity (Graph-EP) or diffusivity (LBM-EP)

νLV electrical conductivity (Graph-EP) or diffusivity (LBM-EP) of the LV en-
docardium domain

νMyo electrical conductivity (Graph-EP) or diffusivity (LBM-EP) of the my-
ocardium domain

νPurk electrical conductivity (Graph-EP) or diffusivity (LBM-EP) of the Purkinje
fibers

νRV electrical conductivity (Graph-EP) or diffusivity (LBM-EP) of the RV en-
docardium domain

νtorso electrical conductivity of the torso (ECG model)

nx number of model parameters

ny number of model state variables

nz number of patient measurements

Ω domain of physiologically plausible model parameters

o fiber orientation vector

Par time-varying artery pressure

Patr time-varying atrium pressure

Par measured time-varying artery pressure
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p PDF

φφφ voltage / electrical potential

π deterministic MDP policy

π∗ optimal deterministic MDP policy for a given problem

π̃ stochastic MDP policy

π̃∗ optimal stochastic MDP policy for a given problem

Pinit initial arterial pressure (WK model)

PLA pulmonary vein pressure (left atrium model)

∆PR computed PR duration (ECG)

Pref constant low pressure of reference (WK model)

PRA vena cava pressure (right atrium model)

∆PR measured PR duration (ECG)

ψ convergence criterion

ψ vector of convergence criteria ψ

Ψ multivariate polynomial basis

Pven time-varying ventricle pressure

Pven measured time-varying ventricle pressure

Qar time-varying artery flow

∆QRS computed QRS duration (ECG)

∆QRS measured QRS duration (ECG)

∆QT computed QT duration (ECG)

∆QT measured QT duration (ECG)

R scalar MDP reward function

R set of real numbers

Rc characteristic resistance: accounts for the blood mass and the compliance
of the artery proximal to the valves (WK model)

Rp peripheral resistance: accounts for the distal resistance of the circulatory
system (WK model)

σ time-varying active contraction force (biomechanics model)
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σ̂ maximum asymptotic active contraction force

σ̂AHA maximum asymptotic active contraction force in tissue of specific AHA
segment

σ̂LV maximum asymptotic active contraction force in LV tissue

σ̂RV maximum asymptotic active contraction force in RV tissue

S noise level covariance matrix

s MDP state

ŝ MDP state representing the solution of a given personalization problem

S set of MDP states

SD standard deviation

SV computed stroke volume (SV)

SVLV computed LV SV

SVLV measured LV SV

SVRV computed RV SV

SVRV measured RV SV

T stochastic MDP transition function

tact time of electrical activation

τclose EP model parameter related to the time during which the ion channels are
closed

τin EP model parameter related to the timing of the ion channels

τopen EP model parameter related to the timing of the ion channels

τout EP model parameter related to the timing of the ion channels

tdep depolarization time

tHP heart period (duration of one heart cycle)

trep repolarization time

ttravel travel time of the electrical signal

u mesh node displacement

u̇ mesh node velocity

ü mesh node acceleration
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U uniform PDF

v vertex of a mesh

Vatr time-varying atrium volume

Vven time-varying ventricle volume

Vven measured time-varying ventricle volume

w weighting factor

ξ centroid

ξ vector of centroids

x model parameter

x vector of model parameters x

Υ estimated covariance matrix

y observable model state variable, also called model response

y vector of observable model state variables y

z patient measurement (observed data)

z vector of patient measurements z

ζ cost Function
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Supérieure des Mines de Paris, Paris, France, Sep. 2010.

[Marc 13] S. Marchesseau, H. Delingette, M. Sermesant, R. Cabrera-Lozoya,
C. Tobon-Gomez, P. Moireau, R. M. Figueras i Ventura, K. Lekadir,
A. Hernandez, M. Garreau, E. Donal, C. Leclercq, S. G. Duckett,
K. Rhode, C. A. Rinaldi, A. F. Frangi, R. Razavi, D. Chapelle, and
N. Ayache. “Personalization of a Cardiac Electromechanical Model using
Reduced Order Unscented Kalman Filtering From Regional Volumes”.
Medical Image Analysis, Vol. 17, No. 7, pp. 816–829, Oct. 2013.

[Marz 07] Y. M. Marzouk, H. N. Najm, and L. A. Rahn. “Stochastic Spectral
Methods for Efficient Bayesian Solution of Inverse Problems”. Journal
of Computational Physics, Vol. 224, No. 2, pp. 560–586, June 2007.

[McMu 12] J. McMurray, S. Adamopoulos, S. Anker, A. Auricchio, K. Dickstein,
V. Falk, G. Filippatos, C. Fonseca, and M. Gomez-Sanchez. “ESC Guide-
lines for the Diagnosis and Treatment of Acute and Chronic Heart Fail-
ure”. European Heart Journal, Vol. 33, No. 14, pp. 1787–1847, Aug.
2012.

[McQu 00] D. M. McQueen and C. S. Peskin. “A Three-dimensional Computer
Model of the Human Heart for Studying Cardiac Fluid Dynamics”. ACM
SIGGRAPH Computer Graphics, Vol. 34, No. 1, pp. 56–60, Feb. 2000.

[Miha 09] V. Mihalef, D. Metaxas, M. Sussman, V. Hurmusiadis, and L. Axel.
“Atrioventricular Blood Flow Simulation Based on Patient-specific
Data”. In: International Conference on Functional Imaging and Mod-
eling of the Heart, pp. 386–395, Springer, Berlin, Heidelberg, Germany,
June 2009.

[Mill 07] K. Miller, G. Joldes, D. Lance, and A. Wittek. “Total Lagrangian Ex-
plicit Dynamics Finite Element Algorithm for Computing Soft Tissue
Deformation”. Communications in Numerical Methods in Engineering,
Vol. 23, No. 2, pp. 121–134, Aug. 2007.

[Mira 16] G. R. Mirams, P. Pathmanathan, R. A. Gray, P. Challenor, and R. H.
Clayton. “Uncertainty and Variability in Computational and Mathemat-
ical Models of Cardiac Physiology”. The Journal of Physiology, pp. 6833–
6847, March 2016.



140 Bibliography

[Mitc 03] C. C. Mitchell and D. G. Schaeffer. “A Two-Current Model for the Dy-
namics of Cardiac membrane”. Bulletin of Mathematical Biology, Vol. 65,
No. 5, pp. 767–793, Sep. 2003.

[Mnih 15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumara,
D. Wierstra, S. Legg, and D. Hassabis. “Human-level Control through
Deep Reinforcement Learning”. Nature, Vol. 518, No. 7540, pp. 529–533,
Feb. 2015.

[Moir 09] P. Moireau. Assimilation de Données par Filtrage pour les Systèmes
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and O. Dössel. “Wave-Direction and Conduction-Velocity Analysis from
Intracardiac Electrograms: a Single-Shot Technique”. IEEE Transac-
tions on Biomedical Engineering, Vol. 57, No. 10, pp. 2394–2401, Oct.
2010.

[West 71] N. Westerhof, G. Elzinga, and P. Sipkema. “An Artificial Arterial System
for Pumping Hearts”. Journal of Applied Physiology, Vol. 31, No. 5,
pp. 776–781, Nov. 1971.

[Wigg 24] C. J. Wiggers. “Modern Aspects of the Circulation in Health and
Disease”. The Canadian Medical Association Journal, Vol. 14, No. 2,
pp. 185–186, Feb. 1924.

[Wong 15] K. C. Wong, M. Sermesant, K. Rhode, M. Ginks, C. A. Rinaldi,
R. Razavi, H. Delingette, and N. Ayache. “Velocity-based Cardiac Con-
tractility Personalization from Images using Derivative-free Optimiza-
tion”. Journal of the Mechanical Behavior of Biomedical Materials,
Vol. 43, pp. 35–52, March 2015.

[Wu 09] M.-T. Wu, M.-Y. M. Su, Y.-L. Huang, K.-R. Chiou, P. Yang, H.-B. Pan,
T. G. Reese, V. J. Wedeen, and W.-Y. I. Tseng. “Sequential Changes
of Myocardial Microstructure in Patients Postmyocardial Infarction by
Diffusion-Tensor Cardiac MR Correlation with Left Ventricular Struc-
ture and Function”. Circulation: Cardiovascular Imaging, Vol. 2, No. 1,
pp. 32–40, Jan. 2009.

[Xi 11] J. Xi, P. Lamata, J. Lee, P. Moireau, D. Chapelle, and N. Smith. “My-
ocardial Transversely Isotropic Material Parameter Estimation from In-
silico Measurements based on a Reduced-order Unscented Kalman Fil-
ter”. Journal of the Mechanical Behavior of Biomedical Materials Mate-
rials, Vol. 4, No. 4, pp. 1090–1102, 2011.

[Xi 13] J. Xi, P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin,
S. G. Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi,
and N. P. Smith. “The Estimation of Patient-specific Cardiac Diastolic
Functions from Clinical Measurements”. Medical Image Analysis, Vol. 17,
No. 2, pp. 133–146, Feb. 2013.

[Yang 08] L. Yang, B. Georgescu, Y. Zheng, P. Meer, and D. Comaniciu. “3D Ultra-
sound Tracking of the Left Ventricle using One-Step Forward Prediction
and Data Fusion of Collaborative Trackers”. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8, IEEE, Anchorage,
AK, USA, Aug. 2008.



Bibliography 147

[Zett 13] O. Zettinig, T. Mansi, B. Georgescu, S. Rapaka, A. Kamen, J. Haas,
K. S. Frese, F. Sedaghat-Hamedani, E. Kayvanpour, A. Amr, et al.
“From Medical Images to Fast Computational Models of Heart Elec-
tromechanics: an Integrated Framework Towards Clinical Use”. In:
International Conference on Functional Imaging and Modeling of the
Heart, pp. 249–258, Springer, Berlin, Heidelberg, Germany, June 2013.

[Zett 14] O. Zettinig, T. Mansi, D. Neumann, B. Georgescu, S. Rapaka,
P. Seegerer, E. Kayvanpour, F. Sedaghat-Hamedani, A. Amr, J. Haas,
H. Steen, H. Katus, B. Meder, N. Navab, A. Kamen, and D. Comaniciu.
“Data-Driven Estimation of Cardiac Electrical Diffusivity from 12-Lead
ECG Signals”. Medical Image Analysis, Vol. 18, No. 8, pp. 1361–1376,
Dec. 2014.

[Zhen 07] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu.
“Fast Automatic Heart Chamber Segmentation from 3D CT Data using
Marginal Space Learning and Steerable Features”. In: IEEE Interna-
tional Conference on Computer Vision, pp. 1–8, IEEE, Rio de Janeiro,
Brazil, Oct. 2007.

[Zhen 08] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu.
“Four-chamber Heart Modeling and Automatic Segmentation for 3-D
Cardiac CT Volumes using Marginal Space Learning and Steerable Fea-
tures”. IEEE Transactions on Medical Imaging, Vol. 27, No. 11, pp. 1668–
1681, Nov. 2008.

[Zhen 14] Y. Zheng and D. Comaniciu. “Marginal Space Learning”. In: Marginal
Space Learning for Medical Image Analysis, pp. 25–65, Springer Sci-
ence+Business Media, New York, NY, USA, March 2014.



148 Bibliography


	Cover
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scientific Contributions
	1.3 Organization of this Thesis

	2 The Human Heart
	2.1 Heart Anatomy and Function
	2.2 Measuring Structure and Function of the Heart

	I Patient-specific Virtual Hearts
	3 Image-Based, Multi-Physics Model of Heart Function
	3.1 Anatomy
	3.2 Electrophysiology
	3.3 Biomechanics
	3.4 Boundary Conditions

	4 Whole-Heart Personalization Through Inverse Optimization
	4.1 State-of-the-Art Model Personalization
	4.2 Problem Formulation
	4.3 Integrated Personalization Pipeline
	4.4 Experiments and Results
	4.5 Predictive Power of Personalized Model
	4.6 Summary


	II Advanced Personalization with Artificial Intelligence and Uncertainty Quantification
	5 Intelligent Agent for Computational Model Personalization
	5.1 The Potential of Artificial Intelligence for Model Personalization
	5.2 Learning How to Personalize a Model
	5.3 Experiments and Results
	5.4 Summary

	6 Uncertainty Quantification in Personalized Modeling
	6.1 Uncertainty Quantification
	6.2 Robust Estimation of Model Parameters and Their Uncertainty
	6.3 Experiments and Results
	6.4 Summary


	III Conclusion
	7 Summary and Perspectives
	7.1 Summary
	7.2 Perspectives

	A Appendix
	A.1 Software Tool for Interactive Personalization
	A.2 Supplementary Personalization Results
	A.3 Additional Details of AI-based Personalization

	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Bibliography


