Drucken
Univis
Search
 
FAU-Logo
Techn. Fakultät Willkommen am Institut für Informatik FAU-Logo

Exercises

The exercise will be held on Tuesday:

2.45 - 3.30 pm (H10) !!!

News

  • The exercises on 07/12 and 07/26 will be held in H9.

  • Starting from 05/17, there is only one exercise: 2.45 - 3.30 pm (H10)

Assignments

No.
Topic
Sheet
1Pattern Recognition - RevisitedPDF
2ROCPDF Matlab data
3Regression Trees (corrected, 05/18)PDF Matlab code
4Classification Trees - Part IPDF
5Classification Trees - Part IIPDF
6Bayesian NetworksPDF
7Boosting

PDF, patterns.mat

8Parzen WindowPDF
9Hidden Markov Models (updated 07/05)PDF
10Statistical Object ModelingPDF Points Head

Classification Toolbox

Description
Download
Classification Toolbox (MATLAB)ZIP

Additional Material

Paper
Topic
Sheet
Tom Fawcett
An introduction to ROC analysis

Pattern Recognition Letters, Volume 27, Issue 8, ROC Analysis in Pattern Recognition, Pages 861 - 874, June 2006
ROCPDF
John A. Swets, Robyn M. Dawes and John Monahan
Better Decicions through Science
Scientific American Magazine, Pages 82 - 87, October 2000
ROCPDF

Trevor Hastie, Robert Tibshirani, and Jerome Friedmann
The Elements of Stastical Learning

(Chapters 9 - Additive Models, Trees and Related Methods)
(Chapter 10 - Boosting and Additive Trees)
2nd Edition, Springer Verlag

TreesPDF

Richard O. Duda, Peter E. Hart, and David G. Stork
Pattern Classification

(Chapter 8 - Non-metric Methods)
2nd Edition, Wiley Interscience

TreesPDF
Zhuowen Tu
Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering

Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, IEEE Computer Society, 2005, 1589-1596
Probabilisitic
Boosting
Tree
PDF
Christopher M. Bishop
Pattern Recognition and Machine Learning

(Chapter 8 - Graphical Models)
Springer

Bayesian
Networks

Markov
Random
Fields

PDF
Richard O. Duda, Peter E. Hart, and David G. Stork
Pattern Classification

(Chapter 4 - Nonparametric Techniques)
2nd Edition, Wiley Interscience
Parzen
Window
PDF
Christopher M. Bishop
Pattern Recognition and Machine Intelligence

(Chapter 2 - Probability Distributions
Slides
Parzen
Window
PDF
Emanuel Parzen
On Estimation of a Probability Density Function and Mode

Ann. Math. Statist. Vol. 33, No. 3, pp. 1065 - 1076, 1962
Parzen
Window
PDF
Alan B. Poritz
Hidden Markov Models: A Guided Tour

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 11 Apr 1988 - 14 Apr 1988, New York, NY, USA
HMMPDF
L. R. Rabiner and B. H. Juang
An Introduction to Hidden Markov Models

ASSP Magazine, IEEE, Vol. 3, No. 1, pp. 4 - 16, Jan 1986
HMMPDF
Lawrence R. Rabiner
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition

Proceedings of the IEEE, Vol. 77, No. 2, pp.257 - 286, Feb 1989
HMMPDF
T. Blum, N. Padoy, H. Feußner, and N. Navab
Modeling and Online Recognition of Surgical Phases Using Hidden Markov Models

MICCAI 2008, LNCS 5242, pp. 627 - 635, 2008.
HMMPDF

J. Hornegger, and H. Niemann
Probabilistic Modeling and Recognition of 3-D Objects
International Journal of Computer Vision, 39(3), pp. 229–251, 2000.

Statistical object modelingPDF

Sudipta N. Sinha
Graph Cut Algorithms in Vision, Graphics and Machine Learning
UNC Chapel Hill, November 2004

Graph Cut

PDF