Automated Classification of Erosions in MRI Sequences of Patients with Rheumatoid Arthritis Final Presentation

Johannes Bopp, Mathias Unberath, Stefan Steidl, Andreas Maier December 18, 2015 Computer Science Dept. 5 (Pattern Recognition) Friedrich-Alexander University Erlangen-Nuremberg

TECHNISCHE FAKULTÄ

Outline

- Motivation & State of the Art
- Related Work
- Data
- Pipeline
 - Initialization
 - Model Training
 - Model Fitting
 - Bone Classification
- Conclusion & Discussion
- Outlook

Motivation & State of the Art

What is Rheumatoid Arthritis?

- Autoimmune disorder
- Primarily affects joints
- Characterized by 3 symptoms
 - Synovitis
 - Bone edema
 - Erosions

Erosion

State of the Art

Classification using the EULAR-OMERACT system

- · Assessment of 3 symptoms for each bone
- Scoring of 1 cm of bone from the joint for long bones
- · Scoring of the whole bone for wrist bones
- Proportion between ideally healthy bone and unhealthy structure
- Erosion graduation in 10% steps

Region of interest for scoring

Purpose of the Project

Focus on erosion detection and classification

- Reduce interobserver variability
- Increase the graduation of assessment
- Reduce time for diagnosis
- Reduce time during follow up
- Create an automated tool for erosion detection

Related Work

Related Work

Segmentation of the wrist bones with marginal space learning¹

- 100 manually segmented training samples
- Only for wrist bones
- Higher quality data with a voxel spacing of $0.365 \times 0.365 \times 0.734$ mm
- Accuracy of $83.2\pm10.6\%$

¹Koch M, Schwing A, Comaniciu D, Pollefeys M. "Fully automatic segmentation of wrist bones for arthritis patients", Proceedings of the ISBI, 2011.

Related Work

The BoneXpert method for automated determination of skeletal maturity²

- Detection of 15 bones in radiography images
- Model based bone detection
- Texture based age assessment
- Trained with 1559 images

²Thodberg H, Kreiborg S, Juul A, Pedersen K. "The BoneXpert method for auto- mated determination of skeletal maturity" in TMI, 2009.

Data

Given Training Data

10 MRI sequences

- T1 weighted sequences with turbo spin echo
- · Right hands only
- Similar relaxed hand position
- Voxel spacing of 0.5×0.5×2.75 mm
- Manual segmentation required

Challenges

- Inter-slice gap of 2.75 mm
- Similarity between erosions and cysts
- The head of the bone can completely disappear by an erosion
- Bones can be displaced
- Not the whole bone is visible in MRI

Slices of 2.75 mm

Difference CT vs MRI

СТ

MRI

The bright white cortical bone in the CT image stays black in the MRI image

Pipeline

Pipeline

Strategy

- Project volume into 2D
- Train a classifier to detect joints in 2D
- Propagate position of the joints into 3D

Finding the Joints

Training

1. Calculation of parallel-beam forward projection

$$\boldsymbol{v}(x,y) = \frac{1}{Z} \sum_{z} \boldsymbol{u}(x,y,z)$$

- 2. Label joints manually
- 3. Train a classifier

Parallel-Beam Forward Projection

Forward Projection

Manually labeled joints

Feature

Gaussian blur

intensity feature

- Sobel filter
 edge detection
- Hessian matrix
 orientation
- Difference of Gaussians
 blob detection
- Membrane projection
 line detection

Membrane Projection

- Developed to detect cell membranes
- 30 different kernels
- Each shows a straight line at a distinct slope
- Images are z-projected into one single image

Finding the Joints

Prediction

- 1. Calculate probability map and threshold \rightarrow get a prediction of the position
- 2. Use morphological thinning to get center points of the joints
- 3. Find the hand above the detected joints by threshold
- 4. Z coordinate is mean of the hand

Experiment

Evaluate joint prediction

- · Leave one out cross validation
- Spatial overlap between manually labeled set and prediction \rightarrow Calculation of Dice score

Results

• Dice score: $67 \pm 5.6\%$

Prediction after threshold

Skeletons

Discussion

- Interested in position
- No need for exact volumetric segmentation
- Ground truth not an exact segmentation either

Forward Projection Manually labeled joints December 18, 2015 J. Bopp CS Dept. 5, FAU Erlangen-Nuremberg Automated Classification of Erosions in MRI Sequences

Pipeline

Strategy

- Create a model of the hand and each bone
- Initialize hand model using the joints
- Optimize bone models

Creating the Models

- 1. Manually label MRI sequences
- 2. Triangulation yielding surface meshes
- 3. Smoothing of the meshes
- 4. Establish point correspondence

Manually labeled data

Statistical Shape Model

- · Describing an anatomical variation among subjects
- Necessary to have point correspondences
- Solve the Eigenvalue problem of the covariance matrix S

$$S \mathbf{\Phi}_k = \lambda_k \mathbf{\Phi}_k$$

with

$$S = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^T$$

Statistical Shape Model

· Shapes can be expressed by linear combination of

$$\mathbf{y} = \mathbf{\bar{x}} + \mathbf{\Phi}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

• Getting Principal Components eta by projecting shape on $oldsymbol{\Phi}$

$$\boldsymbol{\beta}_i = \boldsymbol{\Phi}^T \left(\boldsymbol{x}_i - \bar{\boldsymbol{x}} \right)$$

Statistical Shape Model

Different types of SSM

One for ...

- 1. ... estimating the hand position out of the joint locations
- 2. ... each of the 27 bones
- 3. ... the whole hand containing all vertices of all bones for regularization

Model of First Hand Bone

Variation of first principal component

Pipeline

Initialize Models

- 1. Estimate centers of the bones between the joints
- 2. Calculate weights for hand model to describe estimated centers best
- 3. Project SSM for each bone into the volume

Segmentation

1. Learn a 2D patch at each vertex of each bone

Iterative for each bone

- 2. Patch based position detection
 - Find optimal position in a 3D cube around the vertices current position
 - · Using sum of squared distances as similarity measure
- 3. Update position and weights of bone model

$$\boldsymbol{\beta}_{i} = \boldsymbol{\Phi}^{T} \left(\boldsymbol{R}^{-1} \left(\boldsymbol{x}_{i} - T \right) - \boldsymbol{\bar{x}} \right)$$

4. Reinitialize with the model

$$\widetilde{\boldsymbol{x}}_{i+1} = R_i (\overline{\boldsymbol{x}} + \boldsymbol{\Phi} \boldsymbol{\beta}_i) + T_i$$

Afterwards

4. Regularization of the hand bones using whole hand model

Evaluation

Evaluation of the segmentation accuracy

- Leave one out cross validation
- Mean squared distance between vertices of the segmentation and the ground truth

Results

	MSD
Bones in between detected joints	3.19 ± 1.96 mm
All other bones	7.93 ± 1.67 mm
Large bones	4.05 ± 1.58 mm
Small bones	9.91 ± 2.98 mm
All bones	$5.77\pm1.35~\text{mm}$

Results

Initialization

After 4 iterations

ground truth

model

Discussion

- Bones where the center can be estimated from the joints are much better
- Regularization does not have the expected results yet
- Add wrist joint into initialization to get better guess of the size of the hand

Pipeline

Erosion Detection

- 1. Morphological dilation of bone labels as a mask
- 2. Train a classifier within the mask to detect bone
- 3. Apply classifier inside bone models
- 4. Calculate ratio between model bone and bone classified structure
- 5. Regression of the results with the expert labels after EULAR-OMERACT

Discussion

- · Bone classifier shows promising results
- Did not yet applied to image

Pipeline

Conclusion & Discussion

Discussion

- First tests show promising results
- Segmentation of the "easy" bones is already quite good
- · Initialization could be improved with adding the wrist joint
- Global optimization of the wrist bones before optimization of the model

Conclusion

What did we do?

- Initialization
 - Projected MRI volume into 2D
 - Trained a classifier to detect joints
 - Estimated center points of the joints in 3D
- Model based segmentation
 - Trained different Statistical Shape Models
 - Fitted them into the volume over a patch based optimization
 - Regularization with a Statistical Shape Model
- Bone classification
 - Trained bone classifier

Outlook

Outlook

- Apply bone classification inside the segmentation
- Make a regression between calculated ratio and expert labels
- Include T2 weighted MRI sequences to prove detected erosions
- Include synovitis and edema detection and classification
- Speed up and implement as ImageJ plugin

The End