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Pattern Recognition Pipeline 

  Classification 
  Statistical classifiers 

  Bayesian classifier 

  Gaussian classifier 

  Polynomial classifiers 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Key Concepts of Polynomial Classifiers 

  Polynomials classifiers do not use a statistical model 
(make no assumptions) about the distribution of 
features (and the associated classes) in feature 
space. 

  Their goal is to directly estimate an approximation 
to the ideal decision function by a polynomial. 

  Typically, the designer of the classifier decides what 
degree of polynomial to use. 

  Deriving a polynomial classifier becomes equivalent 
to computing the coefficients of these polynomials 
from a labeled training set (supervised training). 
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Discriminant Function 

  Consider a two class problem, of the form a feature 
vector      either belongs to a class or not. 

  Examples:  
  car/non-car 

  person/non-person 

  pass quality control/does not pass quality control.  

  A discriminant function for class Ωκ is a polynomial 
that evaluates to 1 if the feature vector      belongs 
to that class. Otherwise it evaluates to zero.  
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Assumption 1 

1.  Classification is done by using K (K= number of 
classes) discriminant functions (Trennfunktionen).  

  We have as many discriminant functions as classes. 

  Where in the statistical classifiers we had as many 
posterior probabilities as we had classes, we now 
have discriminant functions. 

  We decide for the class Ωλ that achieves the 
maximum discrimination/separation. 
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Assumption 2  

2.  We assume that these K discriminant functions,         ,   
belong to a parametric family of functions: 

 where      are the coefficients of the polynomial        .      

  For example, if I have parabolas as discirminant 
functions, the functions are of the form: 

  Instead of a parametric family of pdfs as in the 
Gaussian classifier, we have a parametric family of 
functions. 
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Optimal Decision Function 

  Ideally, an optimal decision function should map a 
vector     to class       if it truly belongs to     :   
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δ
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1   if   c ∈ Ωκ                
0   for all other classes
 
 
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  Since we have a binary decision 
function, we can build a binary K-
dimensional decision vector with 0s 
for all the wrong classes and 1 only 
in the correct class      .     
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Linear Discriminant Function 
  Key question: How do we estimate the parameters 

of the discriminant function? 

  Consider a linear discriminant function: 

 where M is the dimensionality of the feature vector 

                        ,                           and M+1 is the 
number of coefficients. 

  We want to derive the values of       for               
and                 from the training set. 
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Training Set 

  We have a training set T composed of N pairs of 
feature vectors and their assigned class: 

 where          is the class of feature vector    . 

  How can we use this training set?  
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T =
 c l ,Ωκ (l )( ),l =1,2,…,N{ }
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 c l

  An ideal discriminant function          would assign a 
sample      to its correct class        . 

  In other words, if              then in an ideal separating 
function              , while for              one should 
get               .  
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Multiple Equations 

  So given a feature vector     , which belongs to 
some class        we can write K equations, out of 
which one will be equal to 1 and for the rest it will 
be zero. 

  

€ 

 c l

  

€ 

d1(
 c l ) =

 a λ ′ 
 c l

T = 0

  

€ 

dλ(
 c l ) =

 a λ ′ 
 c l

T =1

  

€ 

d2(
 c l ) =

 a λ ′ 
 c l

T = 0

  

€ 



  

€ 



€ 

Ωλ

  

€ 

dK (
 c l ) =

 a λ ′ 
 c l

T = 0



 Seite 11 

Page 11 

Ideal Discriminant Function 

  As previously stated an ideal discriminant function 
should lead to correct classification decision. 

  So the ideal separating function is: 

  In practice, we can not expect to get exactly zero and 
exactly 1, so we use the following approximations: 
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Ideal Discriminant Function – cont. 

  We want our polynomial separating functions to 
approximate as closely as possible the ideal decision 
function. 

  The ideal decision function is          and the linear 
separating function is         , where 

  So when computing the discriminant functions, the 
error we want to minimize is:  € 
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Ideal Separating Function – cont. 

  The goal of a polynomial classifier is then to derive 
the polynomial coefficients that minimize the 
deviation from the ideal decision function: 

  In other words find        such that: 
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Minimizing ε


  For each                          we do the following. 
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Minimizing ε - cont  

  Note that this equation is linear in                            
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Solving the Minimization 

  We need to repeat this process for each 

  We get a system of linear equations:   
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Linear Classifier and Gaussian Classifier 

  Recall that a linear classifier is equivalent to a Gaussian 
classifier where the covariance matrix is independent of 
the class      . 

  Given a classification problem, one can test quickly how 
well a linear classifier works. If we get good results, then 
we most probably have normally distributed features with 
same covariances in all classes. 

  We can then choose to explicitly use a Gaussian classifier, 
or otherwise exploit the normal distribution of the 
features. 

  A similar process can be applied for quadratic separating 
functions and normally distributed features with distinct 
covariances among the different classes. 

€ 

Ωκ
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Higher Order Polynomials 

  In higher order polynomials we take powers of the 
components of the feature vector    . 

  The general form of higher order polynomials is: 

 where P is the degree of the polynomial 

  For example, for P=2 
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Estimation of the Coefficients 

  Note that in the higher order polynomials, the 
discriminant functions are still linear in the      s but 
not in the components of the vector    . 

  This means that estimation of the coefficients       
can be done as before. 

  We want to get as closely as possible to the ideal 
decision function, so we use a similar error function. 

  To minimize it we take the partial derivative for 
each      . 

  We have a system of equations from our training 
data which we could solve via SVD.  
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Remarks 

  When designing a polynomial classifier one needs: 

1.  A labeled training set 

2.  Decide on the degree of the polynomial 

  Be careful: from polynomial approximation we know 
that high order polynomials can perfectly fit the 
training data, but it may lead to an overfitting 
problem. 

  Data Overfitting: The classifier (or more generally 
the model) responds to very specific attributes of 
the data (even noise) that do not generalize to the 
overall population. 
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Overfitting Example 

Plot courtesy of A. Schmidt http://www.teco.edu/~albrecht/neuro/html/node10.html  
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More Remarks 

  Training is equivalent more or less to solving linear 
equations. 

  If we do not restrict           to a parametric family of 
functions, and we use a (0,1) cost function with no 
rejection class, then we will end up with. 

  In general, because of the so-called Weierstrass 
principle, polynomial classifiers are considered 
universal approximations to the Bayesian classifier.  
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