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= Statistical classifiers
= Bayesian classifier

= Gaussian classifier

= Polynomial classifiers



Key Concepts of Polynomial Classifiers A

B Polynomials classifiers do not use a statistical model
(make no assumptions) about the distribution of
features (and the associated classes) in feature
space.

B Their goal is to directly estimate an approximation
to the ideal decision function by a polynomial.

m Typically, the designer of the classifier decides what
degree of polynomial to use.

B Deriving a polynomial classifier becomes equivalent
to computing the coefficients of these polynomials
from a labeled training set (supervised training).



Discriminant Function A)

B Consider a two class problem, of the form a feature
vector ¢ either belongs to a class or not.

B Examples:

= car/non-car
= person/non-person
= pass quality control/does not pass quality control.

m A discriminant function for class Q_ is a polynomial

that evaluates to 1 if the feature vector ¢ belongs
to that class. Otherwise it evaluates to zero.

1 if cEQ,

\O otherwise




Assumption 1 A

1. Classification is done by using K (K= number of
classes) discriminant functions (Trennfunktionen).

d,(©),d,(©),...,d, (€)
B We have as many discriminant functions as classes.

B Where in the statistical classifiers we had as many
posterior probabilities as we had classes, we now
have discriminant functions.

m We decide for the class Q, that achieves the

maximum discrimination/separation.
A =argmaxd _(C)
K



Assumption 2 A

2. We assume that these K discriminant functions, d_(c),
belong to a parametric family of functions:

d.(c)ed(c,a,)
where a,_ are the coefficients of the polynomial d_(c).

B For example, if I have parabolas as discirminant
functions, the functions are of the form:

—

d (C)=ac’+bé+e and a_=(ab,e)
B Instead of a parametric family of pdfs as in the

Gaussian classifier, we have a parametric family of
functions.



Optimal Decision Function N

m Ideally, an optimal decision function should map a
vector ¢ to class € _ if it truly belongs to €2 :
1 if cEQ,

5(7) .
(C) i() for all other classes 0

B Since we have a binary decision
function, we can build a binary K- ~ 0
dimensional decision vector with 0s  9(¢) =
for all the wrong classes and 1 only
in the correct class €2,.




Linear Discriminant Function A

B Key question: How do we estimate the parameters
of the discriminant function?

B Consider a linear discriminant function:

d,(c) = (ak,o,ak,l,. ..,aA’M) C,

d, () =a,c"

where M is the dimensionality of the feature vector
¢ =(¢,Cy0.sCy ), ¢ =(,c,sCy,...,c,,) @and M+1 is the
number of coefficients.

m We want to derive the values of a,; for i=0,...,.M
and A=1,...,K from the training set.



Training Set A

B We have a training set T composed of N pairs of
feature vectors and their assigned class:

T={(¢,. Q)L =12....N}
where 2, is the class of feature vector c,.

B How can we use this training set?

m An ideal discriminant function d,(¢) would assign a
sample ¢, to its correct class Q_ .

m In other words, if A=x(/) then in an ideal separating
function d,(c¢)=1, while for A=k(/) one should
get d,(c)=0.
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Multiple Equations A

m So given a feature vector c¢,, which belongs to
some class Q, we can write K equations, out of
which one will be equal to 1 and for the rest it will

be zero.
d(c,)= ﬁAEl’T =0
d,(c,) = ﬁAEl’T =()

d, (€)=, =1

d (G)=a,c" =0
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Ideal Discriminant Function I

B As previously stated an ideal discriminant function
should lead to correct classification decision.

B So the ideal separating function is:
1 if A=x()

d C = <
() 0 if A=x()

B In practice, we can not expect to get exactly zero and
exactly 1, so we use the following approximations:

(d,(¢)-1) =min if A=x()

d,(C)=-+ ,
€) (d,(¢)) =min if A= ()
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Ideal Discriminant Function — cont. I

m We want our polynomial separating functions to

approximate as closely as possible the ideal decision
function.

m The ideal decision function is 0, () and the linear
separating function is d (), where § =(5,,5,.....5. .....0;)

B So when computing the discriminant functions, the
error we want to minimize is:

e= Yy ¥ (5,(6)-d.())

k=1 [=1
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Ideal Separating Function - cont. A

B The goal of a polynomial classifier is then to derive
the polynomial coefficients that minimize the
deviation from the ideal decision function:

e= Yy ¥ (5,(6)-d.())

m In other words find a, such that:

a, =argmine

ay



Minimizing ¢ i

m For each a,,,1=0,1,...,M we do the following.

o€ &EE((SK (51) - d]{ (Ez))z

—=O:> [=1 k=1 =O
da, da,
( i 1 '\2
N K €1
é)EE (SK (El) _(aK,O’aK,l’”"aK,M) Cio
=1 k=1 .
\ Cim | _0

o"aM



Minimizing € - cont A
( 1

N K
22N N18,(6) = (ay 4. el ) €12 |[e1 =0

[=]1 k=1

N K
2Y M (6, -d,e ), =0

[=1 k=1

m Note that this equation is linear in (a, ,,a,,...,a, ;)
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Solving the Minimization N

m We need to repeat this process for each a,,,i=0,,....M
O We get a system of linear equations:

-222(5 ) -a E,’T)—

[=1 k=1 - - _ -
aK,O aK,O

(5:< (€))- ZiKEl’T)Cl,l =0 a

|
= ;
N> 7

K.l K.l

=~
I
SN
A
I
[S—Y

(6,(€)=ad,c" ), =0

e

_aK M _aK M

N
A M

(6., ) Q)" e,y =0

Mz

-2

=~
I
[S=Y
A
Il
[,
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Linear Classifier and Gaussian Classifier Ay

B Recall that a linear classifier is equivalent to a Gaussian
classifier where the covariance matrix is independent of
the class 2.

B Given a classification problem, one can test quickly how
well a linear classifier works. If we get good results, then
we most probably have normally distributed features with
same covariances in all classes.

®m We can then choose to explicitly use a Gaussian classifier,
or otherwise exploit the normal distribution of the
features.

B A similar process can be applied for quadratic separating
functions and normally distributed features with distinct
covariances among the different classes.
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Higher Order Polynomials A

®m In higher order polynomials we take powers of the
components of the feature vector c.

B The general form of higher order polynomials is:
P

A\ — hi by, . lu
d,(c)= Eamc1 Cy e Cyy

n=0
L+, +l3+... 41y =n

where P is the degree of the polynomial

B For example, for P=2
d,(c) = A, 0+ a),C,+a;,Cr+ ...+ a;,Cpy +

2 2 2
+ CZA,ZCI + CZA’2C2 oot amcM + amclcz + aA,zc1C3 + -
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Estimation of the Coefficients A

® Note that in the higher order polynomials, the
discriminant functions are still linear in the a,;s but

—_

not in the components of the vector c.

B This means that estimation of the coefficients a,
can be done as before.

m We want to get as closely as possible to the ideal
decision function, so we use a similar error function.

B To minimize it we take the partial derivative for
each a,;.

B We have a system of equations from our training
data which we could solve via SVD.
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Remarks A

B When designing a polynomial classifier one needs:
1. A labeled training set
2. Decide on the degree of the polynomial

B Be careful: from polynomial approximation we know
that high order polynomials can perfectly fit the
training data, but it may lead to an overfitting
problem.

B Data Overfitting: The classifier (or more generally
the model) responds to very specific attributes of
the data (even noise) that do not generalize to the
overall population.
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A

Overfitting Example

Under-Trained

Well-Trained

Overfited

wd

Plot courtesy of A. Schmidt http://www.teco.edu/~albrecht/neuro/html/nodel0.html
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More Remarks A

m Training is equivalent more or less to solving linear
equations.

m If we do not restrict d,(c) to a parametric family of
functions, and we use a (0,1) cost function with no
rejection class, then we will end up with.

d,(¢c)=p(,|c)

B In general, because of the so-called Weierstrass
principle, polynomial classifiers are considered
universal approximations to the Bayesian classifier.




