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Pattern Recognition Pipeline 

  Classification 
  Statistical classifiers 

  Bayesian classifier 
  Gaussian classifier 

  Polynomial classifiers 
  Non-Parametric classifiers 

  k-Nearest-Neighbor density estimation 
  Parzen windows 
  Artificial neural networks 

A/D Pre-processing 
Feature Extraction 
and Selection Classification f’ f h c Ωκ


Learning Training samples 
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Artificial Neural Network (ANN) 

  There is no precise agreed definition among 
researchers as to what is an artificial neural network. 

  Most would agree that it involves a network of simple 
processing elements (neurons), which can exhibit 
complex global behavior, determined by  

  the connections between the processing elements and  

  the element parameters. 

  In a neural network model, simple nodes (neurons, 
or processing elements or units) are connected 
together to form a network of nodes. 
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ANN Operation 

  In general an ANN operates as a function             . 

  The “network” arises because the function        is 
defined as a composition of other functions        , 
which can further be defined as a composition of 
other functions, e.g.        .  
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General Form of ANN 

  There is great variation in ANNs, depending on: 
  The number of layers 
  Whether there are hidden layers or not 
  The connectivity (We could have feedback loops.) 
  The adaptability 

  An ANN does not have to be adaptive. In practice, 
part of their strength comes from adapting: changing 
the weights of the connections in order to produce a 
desired signal flow. 
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network is 
abstracted as an 
ANN black box. 
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Mathematical Description of an ANN 

  A widely used type of composition is the nonlinear 
weighted sum: 

 where     is a predefined function that forces the 
output of a neuron to be in a certain range, typically 
[0,1] or [-1,1].  

     is often referred to as an activation function. 
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Activation Function 

  An activation function tries to mimic the firing of the 
neuron if the incoming signal is sufficiently strong. 

  Mathematically, this is usually 
achieved with a sigmoid function, 
e.g.: 

  Sigmoid functions have the following characteristic 
properties: 
  They are differentiable 
  They have 1 inflection point 
  They have a pair of horizontal asymptotes 

  Another typical sigmoid function employed in ANNs 
is the hyperbolic tangent,                    . 
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ANN and Classification 

  The ANNs that we will examine are used in computing 
discriminant functions. 

  Recall that, a discriminant function for class Ωκ is a 
polynomial that evaluates to 1 if the feature vector      
belongs to that class. Otherwise it evaluates to zero. 

  The input of such an ANN is a feature vector     and 
the output is a discriminant vector,                        .    
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Radial Basis Function ANNs 

  Radial Basis Function (RBF) networks use Radial Basis 
Functions as their activation function. 

  An RBF network is a feed-forward 3 layer network: 
  input layer,      in our case 
  a hidden layer, where each node       is a separate RBF 
  an output layer, which is a weighted sum of the hidden layers. 

€ 

c1

€ 

c2

€ 

cM

€ 

φ1

€ 

φ2

€ 

d1

€ 

φN

  

€ 

  

€ 



€ 

d2

€ 

dK

hidden layer 

output layer input layer 

  

€ 

 c 

€ 

φi



 Seite 10 

Page 10 

Radial Basis Functions 

  Radial basis functions were first used in 1987 by 
Powell. 

  He introduced RBFs as a means of mapping an input 
vector to an output vector. 

  A radial basis function (RBF) is a real-valued 
function whose value depends only on the distance 
from the origin, so that 

  Alternatively, the RBF can be based on the distance 
from some other point    , called a center:  
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Radial Basis Functions - continued 

  So RBFs are a type of distance function.  

  As a distance function, RBFs have the key 
characteristic that response decreases 
monotonically with distance from a central point. 

  Its response decreases radially. 
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Different RBFs 

  Any distance function that decreases radially can be 
considered a radial basis function. Some commonly 
used RBFs are: 

  Two different forms of Gaussians: 

  Multiquadric: 

  Spline (a.k.a Logarithmic): 
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RBF and Classification 

  Within the context of classification, RBFs work as 
follows. 

  We are given a set of N training samples              
and we want to find the best discriminant functions. 

  One radial basis function (RBF) approach is to use a 
set of N basis functions, each centered around one of 
the training samples, i.e.         . 

  Given a new feature vector     we use RBFs to 
compute how far away it is from each of the training 
samples. 
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RBF and Classification – continued  

  The discriminant function is then treated as a linear 
combination of these radial basis functions. 

  In this type of RBFs training corresponds to the 
estimation of  the weights      from the training data. 

  In more detail, recall that each           is a binary 
function. Thus the training set has the form: 

 where             is  the discriminant function of the 
class Ωκ(l) to which the sample      belongs. 

  

€ 

dκ (
 c ) = wi

i=1

N

∑ φ(  c −  c i ) = wi
i=1

N

∑ φi(
 c )

€ 

wi

  

€ 

dκ (
 c )

  

€ 

T =
 c l ,dκ ( l )(

 c l )( ),l =1,2,…,N{ }
  

€ 

dκ (l )(
 c )

  

€ 

 c l



 Seite 15 

Page 15 

RBFN Training 

  So for each training pair                   we have: 

  This can be written as a vector product: 
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RBFN Training - continued 

  Since there are N samples in my training set, I have 
N such equations. 

 which can be written more compactly as: 
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Important Comment on RBFN Training 

  If we have many feature vectors in our training data 
and we have an RBF estimate for each individual 
training sample we end up with too many RBFs, too 
many nodes => Slow training and Overfitting!!  

  Solution: Use centers of clusters of feature vectors 
for the RBFs, instead of the individual feature 
vectors. 

  Each RBF is now centered around                       
instead of                     : 
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Updated Training of RBFNs 

  2-stage process: 

1.  Unsupervised selection of RBF centers 

 K-means:  

 pick s       values at random. 

  Assign each training sample to its nearest     . 
Recompute      as the mean value of the samples of 
cluster j.  

 Repeat this process until the     s  are stabilized.  

 If using a Gaussian RBF, use MLE to compute  

2.  The estimation of      can be done as before via 
linear algebra methods (e.g. SVD) 
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Weaknesses of the 2-stage Approach 

  The estimation of      and      is not guided by the 
discriminant function that is used to compute    .  

  Hence we have a non-symmetric approach. 

  Stage 2 relies on the results of Stage 1.  

  Thus, we have a propagation of estimation errors 
which often means an amplification of errors. 

  Better solution: use an integrated, fully supervised 
approach like the Orthogonal Least Squares 
approach. 
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RBFN Training via Orthogonal Least Squares 

  Main idea of OLS: Do not cluster as a preprocessing 
step. 

  Rather do a sequential selection of the centers 
which leads to the largest reduction in the sum of 
squared errors. 

  Which sum of squared error (SSE)? 

  The difference between the computed and the 
expected result (value) of the discriminant 
functions: 
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Orthogonal Least Squares Algorithm 

1.  Start with N pairs                    and s=0 

2.  For each training pair i of the n=N-s features vectors 

  2a. Add the current feature      to the s centers 

       The new vector becomes an additional 

    2b. Compute the weights  

       Use linear algebra as previously described. 

    2c. Compute the sum of squared error, SSE. 

3.  Out of the n candidate cluster centers, select the one 
with the smallest SSE as the next cluster center. 

4.  s++;  

Repeat until the desired # of clusters is reached. 
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